Antioxidant Capacity of Colostrum of Mothers with Gestational Diabetes Mellitus—A Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Group
2.3. Collection and Processing of Colostrum Samples
2.4. Measurements
2.4.1. Analysis of Total Antioxidant Capacity (TAC)
2.4.2. Analysis of Catalase Activity (CAT)
2.4.3. Analysis of Superoxide Dismutase (SOD)
2.4.4. Analysis of Glutathione Peroxidase (GPx)
2.4.5. Analysis of Basic Composition of Colostrum
2.5. Statistical Analysis
2.6. Data Collection
3. Results
3.1. General Characteristics of the Study Population
3.2. Analysis of Antioxidant Status and Basic Composition of Colostrum
| Comparison | Z Value | Unadjusted p | Adjusted p |
|---|---|---|---|
| Control vs. GDM G1 | 1.61 | 0.107 | 0.320 |
| Control vs. GDM G2 | 3.84 | 0.000 | 0.000 |
| GDM G1 vs. GDM G2 | 1.61 | 0.107 | 0.321 |
| Components of HM | All Participants n = 77 | GDM G1 n = 15 | GDM G2 n = 41 | Control Group n = 21 | p Value |
|---|---|---|---|---|---|
| Total protein [g/dL] | 2.1 (0.7) | 2.2 (0.9) | 2.0 (0.6) | 2.3 (0.7) | 0.153 b |
| True protein [g/dL] | 1.7 (0.6) | 1.8 (0.8) | 1.6 (0.5) | 1.9 (0.9) | 0.141 b |
| Fat [g/dL] | 1.9 (1.2) | 1.7 (1.7) | 1.8 (1.5) | 2.1 (1.1) | 0.673 b |
| Energy [kcal/dL] | 58.0 (13.0) | 55.5 (14.0) | 56.0 (13.0) | 61 (11.5) | 0.048 b |
| Carbohydrates [g/dL] | 7.5 (0.5) | 7.3 (0.5) | 7.5 (0.6) | 7.5 (0.3) | 0.650 b |
| Dry matter [g/dL] | 12.0 (1.4) | 11.7 (1.3) | 11.8 (1.7) | 12.9 (1.4) | 0.015 b |
| Variable | Comparison | Z Value | Unadjusted p | Adjusted p |
|---|---|---|---|---|
| Dry Matter | Control vs. GDM G1 | 2.524 | 0.012 | 0.035 |
| Control vs. GDM G2 | 2.530 | 0.011 | 0.034 | |
| GDM G1 vs. GDM G2 | −0.577 | 0.564 | 1.000 | |
| Energy | Control vs. GDM G1 | 2.355 | 0.019 | 0.056 |
| Control vs. GDM G2 | 1.845 | 0.065 | 0.195 | |
| GDM G1 vs. GDM G2 | −0.998 | 0.318 | 0.955 |
3.3. Cluster Analysis
Antioxidant Status and Basic Composition of Colostrum According to Cluster Analysis
| Variable | All Participants n = 77 | Cluster 1 n = 43 | Cluster 2 n = 13 | Cluster 3 n = 21 | p Value |
|---|---|---|---|---|---|
| CAT activity [nmol/min/mL] | 13.9 (29.3) | 12.9 (30.2) | 16.3 (26.3) | 16.9 (27.2) | 0.676 b |
| SOD activity [U/mL] | 0.6 (0.4) | 0.6 (0.5) | 0.8 (0.4) | 0.5 (0.3) | 0.073 b |
| GPx activity [nmol/min/mL], | 10.7 (8.9) | 12.7 (9.2) | 9.2 (7.6) | 9.2 (7.9) | 0.240 b |
| TAC [nmol/uL] = [mM] | 4.6 (2.7) | 4.1 (3.0) | 3.6 (1.9) | 5.2 (1.4) | 0.001 b |
| Comparison | Z Value | Unadjusted p | Adjusted p |
|---|---|---|---|
| Cluster 1 vs. 2 | 1.07 | 0.273 | 0.819 |
| Cluster 1 vs. 3 | −3.083 | 0.002 | 0.006 |
| Cluster 2 vs. 3 | −3.309 | 0.001 | 0.003 |
| Components of HM | All Participants n = 77 | Cluster 1 n = 43 | Cluster 2 n = 13 | Cluster 3 n = 21 | p Value |
|---|---|---|---|---|---|
| Total protein [g/dL] | 2.1 (0.7) | 2.1 (0.6) | 2.1 (0.7) | 2.3 (0.7) | 0.258 b |
| True protein [g/dL] | 1.7 (0.6) | 1.7 (0.5) | 1.7 (0.7) | 1.9 (0.9) | 0.219 b |
| Fat [g/dL] | 1.9 (1.2) | 1.8 (1.4) | 1.5 (1.1) | 2.1 (1.1) | 0.173 b |
| Energy [kcal/dL] | 58.0 (13.0) | 56.0 (13.5) | 55.5 (15.5) | 61.0 (11.5) | 0.047 b |
| Carbohydrates [g/dL] | 7.5 (0.5) | 7.5 (0.6) | 7.3 (0.4) | 7.5 (0.3) | 0.488 b |
| Dry matter [g/dL] | 12.0 (1.4) | 11.8 (1.6) | 11.5 (1.9) | 12.9 (2.2) | 0.011 b |
| Variable | Comparison | Z Value | Unadjusted p | Adjusted p |
|---|---|---|---|---|
| Dry Matter | Cluster 1 vs. 2 | 1.007 | 0.314 | 0.942 |
| Cluster 1 vs. 3 | −2.448 | 0.014 | 0.043 | |
| Cluster 2 vs. 3 | 2.750 | 0.006 | 0.018 | |
| Energy | Cluster 1 vs. 2 | 1.025 | 0.305 | 0.916 |
| Cluster 1 vs. 3 | −1.880 | 0.060 | 0.180 | |
| Cluster 2 vs. 3 | −2.338 | 0.019 | 0.058 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AAP | American Academy of Pediatrics |
| CAT | catalase |
| CVD | cardiovascular disease |
| ESPGHAN | European Society for Paediatric Gastroenterology, Hepatology and Nutrition |
| GDM | gestational diabetes mellitus |
| GPx | glutathione peroxidase |
| LGA | large for gestational age |
| RDS | respiratory distress syndrome |
| ROS | reactive oxygen species |
| SOD | superoxide dismutase |
| TAC | Total Antioxidant Capacity |
| UTIs | urinary tract infections |
| WHO | World Health Organization |
References
- American Diabetes Association. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42 (Suppl. S1), S13–S28. [Google Scholar] [CrossRef] [PubMed]
- Sweeting, A.; Hannah, W.; Backman, H.; Catalano, P.; Feghali, M.; Herman, W.H.; Hivert, M.-F.; Immanuel, J.; Meek, C.; Oppermann, M.L.; et al. Epidemiology and management of gestational diabetes. Lancet 2024, 404, 175–192. [Google Scholar] [CrossRef] [PubMed]
- Lappe, V.; Greiner, G.G.; Linnenkamp, U.; Viehmann, A.; Adamczewski, H.; Kaltheuner, M.; Weber, D.; Schubert, I.; Icks, A. Gestational diabetes in Germany—Prevalence, trend during the past decade and utilization of follow-up care: An observational study. Sci. Rep. 2023, 13, 16157. [Google Scholar] [CrossRef] [PubMed]
- Yefet, E.; Bejerano, A.; Iskander, R.; Zilberman Kimhi, T.; Nachum, Z. The association between gestational diabetes mellitus and infections in pregnancy: Systematic review and meta-analysis. Microorganisms 2023, 11, 1956. [Google Scholar] [CrossRef]
- Song, C.; Lyu, Y.; Li, C.; Liu, P.; Li, J.; Ma, R.C.; Yang, X. Long-term risk of diabetes in women at varying durations after gestational diabetes: A systematic review and meta-analysis with more than 2 million women. Obes. Rev. 2018, 19, 421–429. [Google Scholar] [CrossRef]
- Oikonomou, E.; Chatzakis, C.; Stavros, S.; Potiris, A.; Nikolettos, K.; Sotiriou, S.; Domali, E.; Nikolettos, N.; Sotiriadis, A.; Gerede, A. A review of the impact of gestational diabetes on fetal brain development: An update on neurosonographic markers during the last decade. Life 2025, 15, 210. [Google Scholar] [CrossRef]
- Karcz, K.; Królak-Olejnik, B. Impact of gestational diabetes mellitus on fetal growth and nutritional status in newborns. Nutrients 2024, 16, 4093. [Google Scholar] [CrossRef]
- Kallem, V.R.; Pandita, A.; Pillai, A. Infant of diabetic mother: What one needs to know? J. Matern.-Fetal Neonatal Med. 2020, 33, 482–492. [Google Scholar] [CrossRef]
- Pathirana, M.M.; Lassi, Z.S.; Ali, A.; Arstall, M.A.; Roberts, C.T.; Andraweera, P.H. Association between metabolic syndrome and gestational diabetes mellitus in women and their children: A systematic review and meta-analysis. Endocrine 2020, 71, 310–320. [Google Scholar] [CrossRef]
- Billionnet, C.; Mitanchez, D.; Weill, A.; Nizard, J.; Alla, F.; Hartemann, A.; Jacqueminet, S. Gestational diabetes and adverse perinatal outcomes from 716,152 births in France in 2012. Diabetologia 2017, 60, 636–644. [Google Scholar] [CrossRef]
- Zhong, H.; Zhang, J.; Xia, J.; Zhu, Y.; Chen, C.; Shan, C.; Cui, X. Influence of gestational diabetes mellitus on lipid signatures in breast milk and association with fetal physical development. Front. Nutr. 2022, 9, 924301. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lopes, F.O.; Soares, F.V.M.; Silva, D.A.D.; Moreira, M.E.L. Do Thyroid Diseases during Pregnancy and Lactation Affect the Nutritional Composition of Human Milk? Rev. Bras. Ginecol. Obstet. 2020, 42, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Peila, C.; Gazzolo, D.; Bertino, E.; Cresi, F.; Coscia, A. Influence of Diabetes during Pregnancy on Human Milk Composition. Nutrients 2020, 12, 185. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Feig, D.S.; Berger, H.; Donovan, L.; Godbout, A.; Kader, T.; Keely, E.; Sanghera, R. Diabetes Canada 2018 Clinical Practice Guidelines for the Prevention and Management of Diabetes in Canada: Diabetes and pregnancy. Can. J. Diabetes 2018, 42 (Suppl. S1), S255–S282. [Google Scholar] [CrossRef]
- World Health Organization. Protecting, Promoting and Supporting Breastfeeding in Facilities Providing Maternity and Newborn Services; WHO: Geneva, Switzerland, 2017; Available online: https://apps.who.int/iris/handle/10665/259386 (accessed on 20 September 2025).
- Meek, J.Y.; Noble, L.; Section on Breastfeeding. Policy statement: Breastfeeding and the use of human milk. Pediatrics 2022, 150, e2022057988. [Google Scholar] [CrossRef]
- ESPGHAN Committee on Nutrition; Agostoni, C.; Braegger, C.; Decsi, T.; Kolacek, S.; Koletzko, B.; Michaelsen, K.F.; Mihatsch, W.; Moreno, L.A.; Puntis, J.; et al. Breast-feeding: A commentary by the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2009, 49, 112–125. [Google Scholar] [CrossRef]
- Suwaydi, M.A.; Zhou, X.; Perrella, S.L.; Wlodek, M.E.; Lai, C.T.; Gridneva, Z.; Geddes, D.T. The impact of gestational diabetes mellitus on human milk metabolic hormones: A systematic review. Nutrients 2022, 14, 3620. [Google Scholar] [CrossRef]
- Lappas, M.; Hiden, U.; Desoye, G.; Froehlich, J.; Mouzon, S.H.D.; Jawerbaum, A. The role of oxidative stress in the pathophysiology of gestational diabetes mellitus. Antioxid. Redox Signal. 2011, 15, 3061–3100. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Free radicals, antioxidants and human disease: Curiosity, cause, or consequence? Lancet 1994, 344, 721–724. [Google Scholar] [CrossRef] [PubMed]
- Newburg, D.S.; Walker, W.A. Protection of the neonate by the innate immune system of developing gut and of human milk. Pediatr. Res. 2007, 61, 2–8. [Google Scholar] [CrossRef]
- Tsopmo, A.; Friel, J.K. Human milk has anti-oxidant properties to protect premature infants. Curr. Pediatr. Rev. 2007, 3, 45–51. [Google Scholar] [CrossRef]
- Lorenzetti, S.; Plösch, T.; Teller, I.C. Antioxidative molecules in human milk and environmental contaminants. Antioxidants 2021, 10, 550. [Google Scholar] [CrossRef] [PubMed]
- Churchill, M.; Zawawi, H.; Elisia, I.; Seider, M.; Noseworthy, R.; Thompson, A.; Glenn, A.J.; Ramdath, D.D.; O’connor, D.; Darling, P.; et al. The antioxidant capacity of breast milk and plasma of women with or without gestational diabetes mellitus. Antioxidants 2023, 12, 842. [Google Scholar] [CrossRef]
- Kusano, C.; Ferrari, B. Total antioxidant capacity: A biomarker in biomedical and nutritional studies. J. Cell Mol. Biol. 2008, 7, 1–15. [Google Scholar]
- Karcz, K.; Czosnykowska-Lukacka, M.; Królak-Olejnik, B. Impact of gestational diabetes and other maternal factors on neonatal body composition in the first week of life: A case-control study. Ginekol. Pol. 2023, 94, 119–128. [Google Scholar] [CrossRef]
- Marczewski, E.; Steinhaus, H. On a certain distance of sets and the corresponding distance of functions. Colloq. Math. 1958, 6, 319–327. [Google Scholar] [CrossRef]
- Zhai, C.X. A Note on the Expectation-Maximization (EM) Algorithm; Department of Computer Science, University of Illinois at Urbana-Champaign: Chicago, IL, USA, 2007; Available online: https://www.academia.edu/2785848/A_note_on_the_expectation_maximization_em_algorithm (accessed on 20 September 2025).
- Milart, P.; Czuczwar, P.; Woźniakowska, E.; Szkodziak, P.; Paszkowski, T. Standards of Polish Society of Gynecologists and Obstetricians in management of women with diabetes. Ginekol. Pol. 2018, 89, 341–350. [Google Scholar] [CrossRef]
- American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020, 43 (Suppl. S1), S14–S31. [Google Scholar] [CrossRef]
- Schloot, N.C.; Hood, R.C.; Corrigan, S.M.; Panek, R.L.; Heise, T. Oxidative stress markers in saliva and plasma differ between diet-controlled and insulin-controlled gestational diabetes mellitus. Diabetes Res. Clin. Pract. 2019, 148, 72–80. [Google Scholar] [CrossRef]
- Qin, X.; Li, S.; Wang, H. Human milk composition in women with gestational diabetes mellitus: A systematic review and meta-analysis. BMC Pregnancy Childbirth 2025, 25, 549. [Google Scholar] [CrossRef] [PubMed]
- Saucedo, R.; Ortega-Camarillo, C.; Ferreira-Hermosillo, A.; Díaz-Velázquez, M.F.; Meixueiro-Calderón, C.; Valencia-Ortega, J. Role of oxidative stress and inflammation in gestational diabetes mellitus. Antioxidants 2023, 12, 1812. [Google Scholar] [CrossRef] [PubMed]
- Erdoğan, F.; Şenkal, E.; Özer, Ö.F.; İpek, İ.Ö.; Altuntaş, Ş.L.; Özde, Ş. Oxidative stress in maternal milk and cord blood in gestational diabetes mellitus: A prospective study. Sao Paulo Med. J. 2022, 140, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Kryczyk-Kozioł, J.; Moniak, P.; Zagrodzki, P.; Lauterbach, R.; Huras, H.; Staśkiewicz, M.; Krośniak, M.; Paśko, P.; Podsiadły, R.; Dobrowolska-Iwanek, J. The assessment of iodine concentrations in colostrum and breast milk using ICP-MS: The impact of delivery type, thyroid function and gestational diabetes—A pilot study. Foods 2024, 13, 2241. [Google Scholar] [CrossRef]
- Gutiérrez-Repiso, C.; Velasco, I.; Garcia-Escobar, E.; Garcia-Serrano, S.; Rodríguez-Pacheco, F.; Linares, F.; de Adana, M.S.R.; Rubio-Martin, E.; Garrido-Sanchez, L.; Cobos-Bravo, J.F.; et al. Does dietary iodine regulate oxidative stress and adiponectin levels in human breast milk? Antioxid. Redox Signal. 2014, 20, 847–853. [Google Scholar] [CrossRef]
- Hatmal, M.M.; Al-Hatamleh, M.A.I.; Olaimat, A.N.; Alshaer, W.; Hasan, H.; Albakri, K.A.; Alkhafaji, E.; Issa, N.N.; Al-Holy, M.A.; Abderrahman, S.M.; et al. Immunomodulatory properties of human breast milk: MicroRNA contents and potential epigenetic effects. Biomedicines 2022, 10, 1219. [Google Scholar] [CrossRef]
- Ibrahim, A.; Khoo, M.I.; Ismail, E.H.E.; Hussain, N.H.N.; Zin, A.A.M.; Noordin, L.; Abdullah, S.; Mahdy, Z.A.; Lah, N.A.Z.N. Oxidative stress biomarkers in pregnancy: A systematic review. Reprod. Biol. Endocrinol. 2024, 22, 93. [Google Scholar] [CrossRef] [PubMed]
| Feature | All Participants n = 77 | GDM G1 n = 15 | GDM G2 n = 41 | Control Group n = 21 | p-Value |
|---|---|---|---|---|---|
| Age (years), Mean (SD) | 33.5 (4.8) | 32.5 (5.7) | 34.1 (4.0) | 32.8 (5.6) | 0.622 b |
| Maternal pre-gestational BMI, Median (IQR) | 24.4 (4.5) | 24.6 (4.7) | 26.2 (5.5) | 23.1 (3.6) | 0.003 a |
| Maternal post-partum BMI, Median (IQR) | 28.0 (6.1) | 28.4 (9.0) | 28.3 (4.5) | 26.9 (5.3) | 0.028 a |
| Gestational weight gain: | |||||
| within normal limits | 59 (76.6) | 9 (11.7) | 32 (41.6) | 18 (23.4) | |
| excessive | 18 (23.4) | 6 (7.8) | 9 (11.7) | 3 (3.9) | 0.189 c |
| Maternal hypothyroidism, n (%) | 13 (16.9) | 2 (2.6) | 11 (14.3) | 0 (0.0) | 0.261 c |
| Gestational age at birth (weeks), Median (IQR) | 39 (1.0) | 39 (2.0) | 38 (1.0) | 40 (2.0) | 0.0002 a |
| Mode of delivery: | |||||
| vaginal | 35 (45.5) | 6 (7.8) | 20 (26.0) | 9 (11.7) | |
| cesarean section | 42 (54.5) | 9 (11.7) | 21 (27.2) | 12 (15.6) | 0.811 c |
| Assigned child gender: | |||||
| female | 41 (53.2) | 10 (12.9) | 20 (26.0) | 11 (14.3) | |
| male | 36 (46.8) | 5 (6.5) | 21 (27.3) | 10 (13.0) | 0.492 c |
| Child birth weight (kg), Mean (SD) | 3.4 (0.5) | 3.4 (0.5) | 3.3 (0.6) | 3.4 (0.4) | 0.800 b |
| Method of feeding of a newborn, n (%): | |||||
| Exclusive breastfeeding | 45 (58.4) | 9 (11.7) | 27 (35.0) | 9 (11.7) | 0.218 c |
| Mixed breastfeeding | 32 (41.6) | 6 (7.8) | 14 (18.2) | 12 (15.6) |
| Variable | All Participants n = 77 | GDM G1 n = 15 | GDM G2 n = 41 | Control Group n = 21 | p Value |
|---|---|---|---|---|---|
| CAT activity [nmol/min/mL] | 13.9 (29.3) | 20.3 (24.0) | 9.7 (24.5) | 16.9 (27.2) | 0.349 |
| SOD activity [U/mL] | 0.6 (0.4) | 0.9 (0.5) | 0.6 (0.4) | 0.5 (0.3) | 0.052 |
| GPx activity [nmol/min/mL] | 10.7 (8.9) | 14.5 (7.4) | 9.7 (9.4) | 9.2 (7.9) | 0.213 |
| TAC [nmol/uL] = [mM] | 4.6 (2.7) | 4.6 (6.8) | 3.7 (2.4) | 5.2 (1.4) | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaweł, P.; Karcz, K.; Zaręba-Wdowiak, N.; Królak-Olejnik, B. Antioxidant Capacity of Colostrum of Mothers with Gestational Diabetes Mellitus—A Cross-Sectional Study. Nutrients 2025, 17, 3324. https://doi.org/10.3390/nu17213324
Gaweł P, Karcz K, Zaręba-Wdowiak N, Królak-Olejnik B. Antioxidant Capacity of Colostrum of Mothers with Gestational Diabetes Mellitus—A Cross-Sectional Study. Nutrients. 2025; 17(21):3324. https://doi.org/10.3390/nu17213324
Chicago/Turabian StyleGaweł, Paulina, Karolina Karcz, Natalia Zaręba-Wdowiak, and Barbara Królak-Olejnik. 2025. "Antioxidant Capacity of Colostrum of Mothers with Gestational Diabetes Mellitus—A Cross-Sectional Study" Nutrients 17, no. 21: 3324. https://doi.org/10.3390/nu17213324
APA StyleGaweł, P., Karcz, K., Zaręba-Wdowiak, N., & Królak-Olejnik, B. (2025). Antioxidant Capacity of Colostrum of Mothers with Gestational Diabetes Mellitus—A Cross-Sectional Study. Nutrients, 17(21), 3324. https://doi.org/10.3390/nu17213324

