Influence of Dietary Habits on Oxidative Stress Parameters, Selenium, Copper, and Zinc Levels in the Serum of Patients with Age-Related Cataract
Abstract
1. Introduction
2. Materials and Methods
2.1. Characteristic of the Study Groups
2.2. Collection and Preparation of Samples
2.3. Determination of Mineral Components
2.4. Determination of Total Antioxidant Status and Total Oxidant Status
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AAS | Atomic absorption spectrometry |
| ARC | Age-related cataract |
| ATP | Adenosine triphosphate |
| BMI | Body mass index |
| BP | Blood pressure |
| CAT | Catalase |
| Cu | Copper |
| Cu/Zn molar ratio | Copper to Zn molar ratio |
| DHA | Docosahexaenoic acid |
| DNA | Deoxyribonucleic acid |
| ECG | Electrocardiography |
| EPA | Eicosapentaenoic acid |
| EPIC-Oxford | European Prospective Investigation into Cancer and Nutrition |
| FBS | Fasting blood sugar |
| FFQ | Food frequency questionnaire |
| GPX | Glutathione peroxidase |
| GSH | Glutathione |
| HR | Heart rate |
| LFTs | Liver function tests |
| LOCS III | Lens Opacities Classification System III |
| M | Mean |
| Me | Median |
| Mn | Manganese |
| MSVI | Moderate to severe vision impairment |
| mtDNA | Mitochondrial DNA |
| MUB | Medical University of Białystok |
| NO | Nitric oxide |
| OR | Odds Ratio |
| OS | Oxidative stress |
| OSI | Oxidative stress index |
| PRS | Peripheral blood smear |
| PSC | Posterior subcapsular cataract |
| ROS | Reactive oxygen species |
| Se | Selenium |
| SOD | Superoxide dismutase |
| TAC | Total antioxidant capacity |
| TAS | Total antioxidant status |
| TOS | Total oxidant status |
| TrxR | Thioredoxin reductase |
| UV | Ultraviolet |
| Zn | Zinc |
References
- Kulbay, M.; Wu, K.Y.; Nirwal, G.K.; Bélanger, P.; Tran, S.D. Oxidative Stress and Cataract Formation: Evaluating the Efficacy of Antioxidant Therapies. Biomolecules 2024, 14, 1055. [Google Scholar] [CrossRef]
- Sunkireddy, P.; Jha, S.N.; Kanwar, J.R.; Yadav, S.C. Natural antioxidant biomolecules promises future nanomedicine based therapy for cataract. Colloids Surf. B Biointerfaces 2013, 112, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Cicinelli, M.V.; Buchan, J.C.; Nicholson, M.; Varadaraj, V.; Khanna, R.C. Cataracts. Lancet 2023, 401, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, D.; Qin, T.; Zhang, X.; Lin, X.; Chen, J.; Chen, W.; Zhao, L.; Huang, W.; Lin, Z.; et al. Early Diagnosis of Syndromic Congenital Cataracts in a Large Cohort of Congenital Cataracts. Am. J. Ophthalmol. 2024, 263, 206–213. [Google Scholar] [CrossRef]
- Chylack, L.T., Jr.; Wolfe, J.K.; Singer, D.M.; Leske, M.C.; Bullimore, M.A.; Bailey, I.L.; Friend, J.; McCarthy, D.; Wu, S.Y. The Lens Opacities Classification System III. The Longitudinal Study of Cataract Study Group. Arch Ophthalmol. 1993, 111, 831–836. [Google Scholar] [CrossRef]
- Ruan, X.; Liu, Z.; Luo, L.; Liu, Y. The Structure of the Lens and Its Associations with the Visual Quality. BMJ Open Ophthalmol. 2020, 5, e000459. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, H.; Pakzad, R.; Yekta, A.; Aghamirsalim, M.; Pakbin, M.; Ramin, S.; Khabazkhoob, M. Global and regional prevalence of age-related cataract: A comprehensive systematic review and meta-analysis. Eye 2020, 34, 1357–1370. [Google Scholar] [CrossRef]
- Lee, B.J.; Afshari, N.A. Advances in drug therapy and delivery for cataract treatment. Curr. Opin. Ophthalmol. 2023, 34, 3–8. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.; Men, X.; Liu, X.; Luo, J. Research progress on antioxidants and protein aggregation inhibitors in cataract prevention and therapy (Review). Mol. Med. Rep. 2025, 31, 1–13. [Google Scholar] [CrossRef]
- Lundström, M.; Barry, P.; Henry, Y.; Rosen, P.; Stenevi, U. Evidence-based guidelines for cataract surgery: Guidelines based on data in the European Registry of Quality Outcomes for Cataract and Refractive Surgery database. J. Cataract. Refract. Surg. 2012, 38, 1086–1093. [Google Scholar] [CrossRef]
- Liu, Y.C.; Wilkins, M.; Kim, T.; Malyugin, B.; Mehta, J.S. Cataracts. Lancet 2017, 390, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Falkowska, M.; Młynarczyk, M.; Micun, Z.; Konopińska, J.; Socha, K. Influence of Diet, Dietary Products and Vitamins on Age-Related Cataract Incidence: A Systematic Review. Nutrients 2023, 15, 4585. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, X.; Xu, T.; Chu, F.; He, B. Research progress on the correlation between cataract occurrence and nutrition. Front. Nutr. 2024, 11, 1405033. [Google Scholar] [CrossRef]
- Steinmetz, J.D.; Bourne, R.R.; Briant, P.S.; Flaxman, S.R.; Taylor, H.R.; Jonas, J.B.; Abdoli, A.A.; Abrha, W.A.; Abualhasan, A.; Abu-Gharbieh, E.G.; et al. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: The Right to Sight: An analysis for the Global Burden of Disease Study. Lancet Glob. Health 2021, 9, e144–e160. [Google Scholar] [CrossRef] [PubMed]
- Grabska-Liberek, I.L.W.; Rejdak, R.; Rękas, M.; Romanowska-Dixon, B.; Szaflik, J.; Wylęgała, E.; Żarnowski, T. Qualification Standards for Cataract Removal Surgery. 2018. Available online: https://www.nfz.gov.pl/aktualnosci/aktualnosci-centrali/nowe-standardy-kwalifikacji-do-zabiegow-usuniecia-zacmy,7176.html (accessed on 1 October 2025).
- Rychlik, E.S.K.; Woźniak, A.; Mojskiej, H. Nutritional Standards for the Polish Population; National Institute of Public Health—National Research Institute: Warszawa, Poland, 2024. [Google Scholar]
- Gomółka, E. Toxicology Diagnosis. In Laboratory Diagnostics with Elements of Clinical Biochemistry, 4th ed.; Edra Urban & Partner: Wrocław, Poland, 2017; p. 909. [Google Scholar]
- Total Antioxidant Status (TAS). Randox Laboratories Ltd. Available online: https://www.randox.com/total-antioxidant-status/ (accessed on 7 September 2025).
- Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef]
- Wróblewska, J.; Nuszkiewicz, J.; Wróblewski, M.; Wróblewska, W.; Woźniak, A. Selected Trace Elements and Their Impact on Redox Homeostasis in Eye Health. Biomolecules 2024, 14, 1356. [Google Scholar] [CrossRef]
- Li, J.; Buonfiglio, F.; Zeng, Y.; Pfeiffer, N.; Gericke, A. Oxidative Stress in Cataract Formation: Is There a Treatment Approach on the Horizon? Antioxidants 2024, 13, 1249. [Google Scholar] [CrossRef]
- Hsueh, Y.J.; Chen, Y.N.; Tsao, Y.T.; Cheng, C.M.; Wu, W.C.; Chen, H.C. The Pathomechanism, Antioxidant Biomarkers, and Treatment of Oxidative Stress-Related Eye Diseases. Int. J. Mol. Sci. 2022, 23, 1255. [Google Scholar] [CrossRef]
- Shu, D.Y.; Chaudhary, S.; Cho, K.S.; Lennikov, A.; Miller, W.P.; Thorn, D.C.; Yang, M.; McKay, T.B. Role of Oxidative Stress in Ocular Diseases: A Balancing Act. Metabolites 2023, 13, 187. [Google Scholar] [CrossRef]
- Aldhabaan, W.; Al-Zomia, A.S.; Lahiq, L.A.; Alqahtani, M.; Al-Qahtani, S.; Aljohani, S.; Al-Mufarrih, T.; Alshahrani, Y.S. Impact of Food Habits on Cataract Development Among Adults in Aseer Region, Saudi Arabia: A Retrospective Study. Cureus 2022, 14, e24878. [Google Scholar] [CrossRef] [PubMed]
- Kiełczykowska, M.; Kocot, J.; Paździor, M.; Musik, I. Selenium—A fascinating antioxidant of protective properties. Adv. Clin. Exp. Med. 2018, 27, 245–255. [Google Scholar] [CrossRef]
- Post, M.; Lubiński, W.; Lubiński, J.; Krzystolik, K.; Baszuk, P.; Muszyńska, M.; Marciniak, W. Serum selenium levels are associated with age-related cataract. Ann. Agric. Environ. Med. 2018, 25, 443–448. [Google Scholar] [CrossRef]
- Chakraborty, I.; Kunti, S.; Bandyopadhyay, M.; Dasgupta, A.; Chattopadhyay, G.D.; Chakraborty, S. Evaluation of serum zinc level and plasma SOD activity in senile cataract patients under oxidative stress. Indian J. Clin. Biochem. 2007, 22, 109–113. [Google Scholar] [CrossRef]
- Akyol, N.; Değer, O.; Keha, E.E.; Kiliç, S. Aqueous humour and serum zinc and copper concentrations of patients with glaucoma and cataract. Br. J. Ophthalmol. 1990, 74, 661–662. [Google Scholar] [CrossRef]
- Katta, A.V.; Katkam, R.V.; Geetha, H. Lipid peroxidation and the total antioxidant status in the pathogenesis of age related and diabetic cataracts: A study on the lens and blood. J. Clin. Diagn. Res. 2013, 7, 978–981. [Google Scholar] [CrossRef] [PubMed]
- Selvi, R.; Angayarkanni, N.; Biswas, J.; Ramakrishnan, S. Total antioxidant capacity in Eales’ disease, uveitis & cataract. Indian J. Med. Res. 2011, 134, 83–90. [Google Scholar]
- Sorte Gawali, K.S.; Jadhao, A.N.; Ramteke, T.D.; Patil, N.J.; Sahare, H. Evaluation of antioxidant status of lens epithelial cells in cataract patients. Indian J. Ophthalmol. 2024, 72, 1506–1511. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, W.; Xie, Z.; Wu, W.; Zhang, D. Vitamin E and risk of age-related cataract: A meta-analysis. Public Health Nutr. 2015, 18, 2804–2814. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Han, J.; Jiang, Y.; Zhang, D. Association of vitamin A and β-carotene with risk for age-related cataract: A meta-analysis. Nutrition 2014, 30, 1113–1121. [Google Scholar] [CrossRef]
- Platel, K.; Srinivasan, K. Bioavailability of Micronutrients from Plant Foods: An Update. Crit. Rev. Food Sci. Nutr. 2016, 56, 1608–1619. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Iezhitsa, I.N.; Agarwal, P.; Spasov, A.A. Mechanisms of cataractogenesis in the presence of magnesium deficiency. Magnes. Res. 2013, 26, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Donma, O.; Yorulmaz, E.Ö.; Pekel, H.; Suyugül, N. Blood and lens lipid peroxidation and antioxidant status in normal individuals, senile and diabetic cataractous patients. Curr. Eye Res. 2002, 25, 9–16. [Google Scholar] [CrossRef]
- Dilsiz, N.; Olcucu, A.; Atas, M. Determination of calcium, sodium, potassium and magnesium concentrations in human senile cataractous lenses. Cell. Biochem. Funct. 2000, 18, 259–262. [Google Scholar] [CrossRef]
- Micun, Z.; Falkowska, M.; Młynarczyk, M.; Kochanowicz, J.; Socha, K.; Konopińska, J. Levels of Trace Elements in the Lens, Aqueous Humour, and Plasma of Cataractous Patients—A Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 10376. [Google Scholar] [CrossRef]
- Agarwal, R.; Iezhitsa, I.; Agarwal, P.; Spasov, A. Magnesium deficiency: Does it have a role to play in cataractogenesis? Exp. Eye Res. 2012, 101, 82–89. [Google Scholar] [CrossRef]
- Chen, K.-J.; Pan, W.H.; Huang, C.J.; Lin, B.-F. Association between folate status, diabetes, antihypertensive medication and age-related cataracts in elderly Taiwanese. J. Nutr. Health Aging 2011, 15, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Appleby, P.N.; Allen, N.E.; Key, T.J. Diet, vegetarianism, and cataract risk. Am. J. Clin. Nutr. 2011, 93, 1128–1135. [Google Scholar] [CrossRef] [PubMed]
- Jue, Z.; Xu, Z.; Yuen, V.L.; Chan, O.D.S.; Yam, J.C. Association between vitamin D level and cataract: A systematic review and meta-analysis. Graefes Arch. Clin. Exp. Ophthalmol. 2025, 263, 147–156. [Google Scholar] [CrossRef]
- Sedaghat, F.; Ghanavati, M.; Nezhad Hajian, P.; Hajishirazi, S.; Ehteshami, M.; Rashidkhani, B. Nutrient patterns and risk of cataract: A case-control study. Int. J. Ophthalmol. 2017, 10, 586–592. [Google Scholar] [CrossRef]
- Theodoropoulou, S.; Samoli, E.; Theodossiadis, P.G.; Papathanassiou, M.; Lagiou, A.; Lagiou, P.; Tzonou, A. Diet and cataract: A case-control study. Int. Ophthalmol. 2014, 34, 59–68. [Google Scholar] [CrossRef]
- Adachi, S.; Sawada, N.; Yuki, K.; Uchino, M.; Iwasaki, M.; Tsubota, K.; Tsugane, S. Intake of Vegetables and Fruits and the Risk of Cataract Incidence in a Japanese Population: The Japan Public Health Center-Based Prospective Study. J. Epidemiol. 2021, 31, 21–29. [Google Scholar] [CrossRef]
- Pastor-Valero, M. Fruit and vegetable intake and vitamins C and E are associated with a reduced prevalence of cataract in a Spanish Mediterranean population. BMC Ophthalmol. 2013, 13, 52. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Wu, L.; Qiu, L.; Lai, J.; Huang, Z.; Liao, L. Association between vegetables consumption and the risk of age-related cataract: A meta-analysis. Int. J. Clin. Exp. Med. 2015, 8, 18455–18461. [Google Scholar]
- Chiu, T.H.T.; Chang, C.C.; Lin, C.L.; Lin, M.N. A Vegetarian Diet Is Associated with a Lower Risk of Cataract, Particularly Among Individuals with Overweight: A Prospective Study. J. Acad. Nutr. Diet. 2021, 121, 669–677.e661. [Google Scholar] [CrossRef]
- Cumming, R.G.; Mitchell, P.; Smith, W. Dietary sodium intake and cataract: The Blue Mountains Eye Study. Am. J. Epidemiol. 2000, 151, 624–626. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, H.; Li, P.; Gao, T.; Lin, J.; Yang, J.; Wu, Y.; Ye, J. Association between dietary carbohydrate intake and dietary glycemic index and risk of age-related cataract: A meta-analysis. Investig. Ophthalmol. Vis. Sci. 2014, 55, 3660–3668. [Google Scholar] [CrossRef]
- Młynarska, E.; Biskup, L.; Możdżan, M.; Grygorcewicz, O.; Możdżan, Z.; Semeradt, J.; Uramowski, M.; Rysz, J.; Franczyk, B. The Role of Oxidative Stress in Hypertension: The Insight into Antihypertensive Properties of Vitamins A, C and E. Antioxidants 2024, 13, 848. [Google Scholar] [CrossRef] [PubMed]
- Al-Timimi, D.; Haji, M. Zinc Status Among Smokers and Non Smokers: Relation to Oxidative Stress. Dohok Med. J. 2010, 4, 67. [Google Scholar]
- Grabia, M.; Socha, K.; Soroczyńska, J.; Bossowski, A.; Markiewicz-Żukowska, R. Determinants Related to Oxidative Stress Parameters in Pediatric Patients with Type 1 Diabetes Mellitus. Nutrients 2023, 15, 2084. [Google Scholar] [CrossRef]
| Parameter | Unit | Wavelength | Material |
|---|---|---|---|
| Se | µg/L | 196 nm | Serum |
| Cu | mg/L | 324.8 nm | Serum |
| Zn | mg/L | 213.9 nm | Serum |
| TAS | mmol/L | 600 nm | Serum |
| TOS | μmol H2O2 equiv./L | 560/800 nm | Serum |
| ARC Group (n = 68) | Control Group (n = 64) | |
|---|---|---|
| Gender (F/M) | 43/25 | 53/11 |
| Age (years): median (min.–max.) | 72 (48–92) | 57 (49–83) |
| Height (m): median (min.–max.) | 1.65 (1.4–1.82) | - |
| Weight (kg): median (min.–max.) | 75 (50–118) | - |
| BMI (kg/m2): median (min.–max.) | 28.04 (17.28–48.89) | - |
| Smoking status: smoker (n)/non-smoker (n) | 21/47 | - |
| Alcohol intake: drinker (n)/ non-drinker (n) | 31/37 | - |
| ARC Group | Control Group | p-Value | |||
|---|---|---|---|---|---|
| Median (Q1–Q3) | |||||
| F (a) (n = 43) | M (b) (n = 25) | F (c) (n = 53) | M (d) (n = 11) | ||
| Se | 55.22 (46.66; 66.03) | 74.24 (62.34–90.77) | <0.001 | ||
| 57.34 (49.30–66.16) | 54.25 (40.10–65.90) | 73.60 (62.79–90.41) | 79.99 (61.23–91.13) | a vs. c * b vs. d * ac vs. bd * | |
| Cu | 0.869 (0.583–1.101) | 0.995 (0.817–1.145) | <0.005 | ||
| 0.873 (0.605–1.124) | 0.864 (0.566–0.990) | 0.993 (0.807–1.189) | 1.017 (0.858–1.108) | a vs. c * | |
| Zn | 0.755 (0.645–0.828) | 0.855 (0.745–0.958) | <0.001 | ||
| 0.766 (0.660–0.838) | 0.735 (0.634–0.778) | 0.853 (0.745–0.954) | 0.901 (0.739–0.961) | a vs. c * b vs. d * | |
| Cu/Zn | 1.141 (0.810–1.514) | 1.168 (0.941–1.352) | ns | ||
| 1.154 (0.798–1.520) | 1.134 (0.823–1.402) | 1.163 (0.949–1.358) | 1.188 (0.780–1.346) | - | |
| TAS | 1.452 (1.276–1.667) | 1.5117 (1.2195–1.7753) | ns | ||
| 1.452 (1.307–1.667) | 1.429 (1.241–1.684) | 1.570 (1.224–1.747) | 1.396 (1.062–2.309) | - | |
| TOS | 5.494 (4.217–6.228) | 5.753 (4.655–7.327) | ns | ||
| 5.666 (4.247–6.315) | 4.600 (4.135–5.892) | 5.722 (4.623–7.150) | 6.191 (4.784–9.406) | - | |
| OSI | 0.354 (0.268–0.431) | 0.3775 (0.2537–0.5852) | ns | ||
| 0.367 (0.268–0.425) | 0.320 (0.268–0.437) | 0.375 (0.258–0.555) | 0.428 (0.215–0.811) | - | |
| Reference Range | Group Classification | Study Group | p-Value (ARC Patients vs. Controls) | |
|---|---|---|---|---|
| ARC Group (n = 68) | Control Group (n = 64) | |||
| Se (selenium) | ||||
| 66–104 µg/L | Low: n (%) | 51 (75%) | 20 (31%) | <0.001 |
| Normal: n (%) | 17 (25%) | 33 (52%) | ||
| High: n (%) | 0 (0%) | 11 (17%) | ||
| Cu (copper) | ||||
| 0.7–1.6 mg/L | Low: n (%) | 26 (38%) | 7 (11%) | * <0.005 |
| Normal: n (%) | 40 (59%) | 55 (86%) | ||
| High: n (%) | 2 (3%) | 2 (3%) | ||
| Zn (zinc) | ||||
| 0.7–1.3 mg/L | Low: n (%) | 26 (38%) | 8 (13%) | * <0.005 |
| Normal: n (%) | 42 (62%) | 52 (81%) | ||
| High: n (%) | 0 (0%) | 4 (6%) | ||
| Cu/Zn (Cu/Zn molar ratio) | ||||
| 0.6–1.0 | Low: n (%) | 10 (15%) | 2 (3%) | ns |
| Normal: n (%) | 15 (22%) | 18 (28%) | ||
| High: n (%) | 43 (63%) | 44 (69%) | ||
| TAS (total antioxidant status) | ||||
| 1.45–2.0 mmol/L | Low: n (%) | 32 (47%) | 30 (47%) | * <0.05 |
| Normal: n (%) | 36 (53%) | 26 (41%) | ||
| High: n (%) | 0 (0%) | 8 (12%) | ||
| TOS (total oxidant status) | ||||
| 5–8 μmol H2O2 Equiv./L | Low: n (%) | 31 (46%) | 22 (34%) | <0.05 |
| Normal: n (%) | 34 (50%) | 30 (47%) | ||
| High: n (%) | 3 (4%) | 12 (19%) | ||
| OSI (oxidative stress index) | ||||
| 0.3–0.6 | Low: n (%) | 21 (31%) | 22 (34%) | ns |
| Normal: n (%) | 39 (57%) | 27 (42%) | ||
| High: n (%) | 8 (12%) | 15 (24%) | ||
| Independent Variables | β Coefficient | SE | p-Value | Adj. R2 |
|---|---|---|---|---|
| Se (selenium) | ||||
| Full-fat cheese | 0.252 | 0.117 | 0.0359 | 0.25 |
| Oils | 0.258 | 0.130 | 0.0522 | |
| Sausages | 0.204 | 0.129 | 0.1215 | |
| Groats and rice | 0.179 | 0.122 | 0.1471 | |
| Milk | 0.164 | 0.127 | 0.2043 | |
| Sweetbread | 0.161 | 0.131 | 0.2271 | |
| Potatoes | −0.381 | 0.128 | 0.0043 | |
| Butter | −0.260 | 0.126 | 0.0444 | |
| Farinaceous dishes | −0.179 | 0.113 | 0.1206 | |
| Tinned fish | −0.181 | 0.115 | 0.1218 | |
| Jam | −0.158 | 0.114 | 0.1724 | |
| Margarine | −0.167 | 0.127 | 0.1938 | |
| Tea | −0.145 | 0.114 | 0.2091 | |
| Raw vegetables | −0.153 | 0.126 | 0.2312 | |
| Cu (copper) | ||||
| Milk | 0.342 | 0.123 | 0.0069 | 0.14 |
| Sugar | 0.177 | 0.121 | 0.1506 | |
| Oils | −0.280 | 0.120 | 0.0233 | |
| Margarine | −0.270 | 0.117 | 0.0238 | |
| Potatoes | −0.146 | 0.118 | 0.2196 | |
| Zn (zinc) | ||||
| White bread | 0.411 | 0.126 | 0.0019 | 0.36 |
| Whole-grain bread | 0.305 | 0.115 | 0.0104 | |
| Legumes | 0.280 | 0.106 | 0.0104 | |
| Fish | 0.260 | 0.107 | 0.0181 | |
| Cured meat | 0.259 | 0.121 | 0.0361 | |
| Coffee | 0.217 | 0.108 | 0.0488 | |
| Sweetbread | 0.212 | 0.117 | 0.0768 | |
| Raw vegetables | 0.145 | 0.102 | 0.1624 | |
| Butter | −0.386 | 0.104 | 0.0005 | |
| Poultry | −0.226 | 0.105 | 0.0359 | |
| Potatoes | −0.189 | 0.115 | 0.1066 | |
| Jam | −0.148 | 0.117 | 0.2097 | |
| Cu/Zn (copper/zinc molar ratio) | ||||
| Milk | 0.351 | 0.125 | 0.0067 | 0.17 |
| Butter | 0.172 | 0.127 | 0.1814 | |
| Sugar | 0.137 | 0.118 | 0.2506 | |
| Oils | −0.246 | 0.120 | 0.0444 | |
| Margarine | −0.251 | 0.126 | 0.0503 | |
| Honey | −0.179 | 0.125 | 0.1571 | |
| Cottage cheese | −0.136 | 0.119 | 0.2573 | |
| TAS (total antioxidant status) | ||||
| Tea | 0.418 | 0.115 | 0.0006 | 0.25 |
| Coffee | 0.181 | 0.112 | 0.1109 | |
| Sweetbread | 0.183 | 0.119 | 0.1304 | |
| Milk | 0.172 | 0.116 | 0.1446 | |
| Whole-grain bread | 0.141 | 0.117 | 0.2360 | |
| Full-fat cheese | 0.127 | 0.111 | 0.2599 | |
| Groats and rice | −0.267 | 0.122 | 0.0327 | |
| Sausages | −0.215 | 0.115 | 0.0680 | |
| Jam | −0.173 | 0.118 | 0.1468 | |
| Cottage cheese | −0.198 | 0.123 | 0.1123 | |
| Raw vegetables | −0.154 | 0.114 | 0.1814 | |
| TOS (total oxidant status) | ||||
| Margarine | 0.406 | 0.118 | 0.0012 | 0.33 |
| Fish | 0.242 | 0.115 | 0.0397 | |
| White bread | 0.260 | 0.134 | 0.0577 | |
| Groats and rice | 0.194 | 0.118 | 0.1068 | |
| Butter | 0.144 | 0.120 | 0.2357 | |
| Meat | 0.133 | 0.115 | 0.2506 | |
| Milk | −0.323 | 0.115 | 0.0068 | |
| Tea | −0.315 | 0.115 | 0.0082 | |
| Boiled vegetables | −0.272 | 0.118 | 0.0256 | |
| Potatoes | −0.255 | 0.121 | 0.0397 | |
| Coffee | −0.196 | 0.105 | 0.0680 | |
| Sugar | −0.195 | 0.124 | 0.1234 | |
| Full-fat cheese | −0.181 | 0.116 | 0.1246 | |
| Farinaceous dishes | −0.136 | 0.116 | 0.2463 | |
| OSI (oxidative stress index) | ||||
| Groats and rice | 0.260 | 0.123 | 0.0403 | 0.33 |
| Margarine | 0.226 | 0.110 | 0.0455 | |
| Honey | 0.197 | 0.119 | 0.1019 | |
| White bread | 0.203 | 0.122 | 0.1033 | |
| Sausages | 0.151 | 0.116 | 0.1985 | |
| Poultry | 0.141 | 0.113 | 0.2166 | |
| Tea | −0.404 | 0.111 | 0.0006 | |
| Milk | −0.315 | 0.117 | 0.0097 | |
| Boiled vegetables | −0.301 | 0.118 | 0.0137 | |
| Potatoes | −0.291 | 0.121 | 0.0190 | |
| Coffee | −0.242 | 0.106 | 0.0270 | |
| Full-fat cheese | −0.199 | 0.116 | 0.0921 | |
| Sugar | −0.163 | 0.119 | 0.1758 | |
| Median (Q1–Q3) | ARC Group | p-Value F vs. M | |||
|---|---|---|---|---|---|
| F (n = 43) | M (n = 25) | All (n = 68) | |||
| Na (sodium) | |||||
| Norm: AIF = 1500 mg/day; AIM = 1500 mg/day | |||||
| 3269.788 (2637.895–4008.582) | Below: n (%) | 2 (5%) | 0 (0%) | 2 (3%) | <0.005 |
| Above: n (%) | 41 (95%) | 25 (100%) | 66 (97%) | ||
| K (potassium) | |||||
| Norm: AIF = 3500 mg/day; AIM = 3500 mg/day | |||||
| 3044.111 (2531.669–4001.523) | Below: n (%) | 31 (72%) | 17 (68%) | 48 (71%) | ns |
| Above: n (%) | 12 (28%) | 8 (32%) | 20 (29%) | ||
| Ca (calcium) | |||||
| Norm*: EARF = 800/1000 mg/day; EARM = 800/1000 mg/day | |||||
| 496.749 (314.227–756.352) | Below: n (%) | 41 (95%) | 20 (80%) | 61 (90%) | ns |
| Above: n (%) | 2 (5%) | 5 (20%) | 7 (10%) | ||
| P (phosphorus) | |||||
| Norm: EARF = 580 mg/day; EARM = 580 mg/day | |||||
| 1130.194 (855.115–1406.868) | Below: n (%) | 1 (2%) | 0 (0%) | 1 (1.5%) | ns |
| Above: n (%) | 42 (98%) | 25 (100%) | 67 (98.5%) | ||
| Mg (magnesium) | |||||
| Norm: EARF = 265 mg/day; EAR = 350 mg/day | |||||
| 271.096 (219.470–347.230) | Below: n (%) | 23 (53%) | 18 (72%) | 41 (60%) | ns |
| Above: n (%) | 20 (47%) | 7 (28%) | 27 (40%) | ||
| Fe (iron) | |||||
| Norm: EARF = 6 mg/day; EARM = 6 mg/day | |||||
| 9.768 (7.180–12.582) | Below: n (%) | 6 (14%) | 1 (4%) | 7 (10%) | ns |
| Above: n (%) | 37 (86%) | 24 (96%) | 61 (90%) | ||
| Zn (zinc) | |||||
| Norm: EARF = 6.8 mg; EARM = 9.4 mg | |||||
| 8.652 (6.614–11.978) | Below: n (%) | 15 (35%) | 9 (35%) | 24 (35%) | ns |
| Above: n (%) | 28 (65%) | 16 (65%) | 44 (65%) | ||
| Cu (copper) | |||||
| Norm: EARF = 0.7 mg/day; EARM = 0.7 mg/day | |||||
| 1.059 (0.867–1.396) | Below: n (%) | 9 (21%) | 2 (8%) | 11 (16%) | ns |
| Above: n (%) | 34 (79%) | 23 (92%) | 57 (84%) | ||
| Mn (manganese) | |||||
| Norm: AIF = 1.8 mg/day; AIM = 2.3 mg/day | |||||
| 3.671 (2.461–5.569) | Below: n (%) | 6 (14%) | 4 (16%) | 10 (15%) | ns |
| Above: n (%) | 37 (86%) | 21 (84%) | 58 (85%) | ||
| I (iodine) | |||||
| Norm: EARF = 95 µg/day; EARM = 95 µg/day | |||||
| 141.309 (96.942–170.633) | Below: n (%) | 11 (26%) | 4 (16%) | 15 (22%) | ns |
| Above: n (%) | 32 (74%) | 21 (84%) | 53 (78%) | ||
| Vitamin A (retinol) | |||||
| Norm: EARF = 500 µg/day; EARM = 630 µg/day | |||||
| 954.291 (665.553–1219.684) | Below: n (%) | 6 (14%) | 4 (16%) | 10 (15%) | <0.05 |
| Above: n (%) | 37 (86%) | 21 (84%) | 58 (85%) | ||
| Vitamin B1 (thiamine) | |||||
| Norm: EARF = 0.9 mg/day; EARM = 1.1 mg/day | |||||
| 1.131 (0.837–1.472) | Below: n (%) | 18 (42%) | 6 (24%) | 24 (35%) | <0.005 |
| Above: n (%) | 25 (58%) | 19 (76%) | 44 (65%) | ||
| Vitamin B2 (riboflavin) | |||||
| Norm: EARF = 0.9 mg/day; EARM = 1.1 mg/day | |||||
| 1.414 (1.055–1.887) | Below: n (%) | 4 (9%) | 5 (20%) | 9 (13%) | ns |
| Above: n (%) | 39 (81%) | 20 (80%) | 59 (87%) | ||
| Vitamin B3 (niacin) | |||||
| Norm: EARF = 11 mg/day; EARM = 12 mg/day | |||||
| 15.985 (12.799–20.362) | Below: n (%) | 5 (12%) | 5 (20%) | 10 (15%) | ns |
| Above: n (%) | 38 (88%) | 20 (80%) | 58 (85%) | ||
| Vitamin B6 (pyridoxine) | |||||
| Norm**: EARF = 1.1/1.3 mg/day; EARM = 1.1/1.4 mg/day | |||||
| 1.886 (1.512–2.180) | Below: n (%) | 9 (26%) | 4 (16%) | 13 (19%) | ns |
| Above: n (%) | 34 (74%) | 21 (84%) | 55 (81%) | ||
| Vitamin B9 (folic acid) | |||||
| Norm: EARF = 400 µg/day; EARM = 100 µg/day | |||||
| 240.445 (173.437–312.437) | Below: n (%) | 41 (95%) | 20 (80%) | 61 (90%) | ns |
| Above: n (%) | 2 (5%) | 5 (20%) | 7 (10%) | ||
| Vitamin B12 (cyanocobalamin) | |||||
| Norm: EARF = 2 µg/day; EARM = 2 µg/day | |||||
| 2.418 (1.710–4.046) | Below: n (%) | 19 (44%) | 8 (32%) | 27 (40%) | ns |
| Above: n (%) | 24 (56%) | 17 (68%) | 41 (60%) | ||
| Vitamin C (Ascorbic acid) | |||||
| Norm: EARF = 60 mg/day; EARM = 75 mg/day | |||||
| 83.175 (39.130; 146.091) | Below: n (%) | 18 (42%) | 12 (48%) | 30 (44%) | ns |
| Above: n (%) | 25 (58%) | 13 (52%) | 38 (56%) | ||
| Vitamin D (calciferol) | |||||
| Norm: AIF = 15 µg/day; AIM = 15 µg/day | |||||
| 1.941 (1.353–2.995) | Below: n (%) | 43 (100%) | 25 (100%) | 68 (100%) | ns |
| Above: n (%) | 0 (0%) | 0 (0%) | 0 (0%) | ||
| Vitamin E (tocopherol) | |||||
| Norm: AIF = 8 mg/day; AIM = 10 mg/day | |||||
| 9.268 (7.191–12.765) | Below: n (%) | 15 (35%) | 11 (44%) | 26 (38%) | ns |
| Above: n (%) | 28 (65%) | 14 (56%) | 42 (62%) | ||
| DHA+EPA | |||||
| Norm: AIF = 250 mg/day; AIM = 250 mg/day | |||||
| 58.633 (36.117–112.517) | Below: n (%) | 37 (86%) | 19 (76%) | 56 (82%) | ns |
| Above: n (%) | 6 (14%) | 6 (24%) | 12 (18%) | ||
| NaCl (sodium chloride) | |||||
| Norm: 5 g/day | |||||
| 8.179 (6.599–9.851) | Below: n (%) | 4 (9%) | 0 (0%) | 4 (6%) | <0.005 |
| Above: n (%) | 39 (91%) | 25 (100%) | 64 (94%) | ||
| Protein | |||||
| Norm: EARF = 0.66 g/kg BW; EARM = 0.66 g/kg BW | |||||
| 1.003 (0.823–1.222) | Below: n (%) | 4 (9%) | 1 (4%) | 5 (7%) | ns |
| Above: n (%) | 39 (91%) | 24 (96%) | 63 (93%) | ||
| Fats | |||||
| RI: 30–40% E 1 | |||||
| 33.255 (30.775–36.825) | Below: n (%) | 12 (28%) | 2 (8%) | 14 (21%) | <0.05 |
| Above: n (%) | 31 (72%) | 23 (92%) | 54 (79%) | ||
| Carbohydrates | |||||
| RI: 45–65% E 1 | |||||
| 46.650 (43.525–50.125) | Below: n (%) | 11 (26%) | 12 (48%) | 23 (34%) | <0.05 |
| Above: n (%) | 32 (74%) | 13 (52%) | 45 (66%) | ||
| Fiber | |||||
| Norm***: AIF = 25/20 mg; AIM = 25/20 mg | |||||
| 19.142 (14.506–28.285) | Below: n (%) | 27 (63%) | 11 (26%) | 38 (56%) | ns |
| Above: n (%) | 16 (37%) | 14 (74%) | 30 (44%) | ||
| Variable 1 | Variable 2 | R | p-Value |
|---|---|---|---|
| TOS | Dietary vitamin A | −0.25 | <0.05 |
| Dietary β-carotene | −0.26 | <0.05 | |
| Serum Zn | Smoking status | −0.24 | <0.05 |
| Cu/Zn molar ratio | Dietary Zn | −0.35 | <0.01 |
| Dietary Cu | −0.28 | <0.05 | |
| Dietary Mn | −0.29 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falkowska, M.; Zawadzka, I.; Grabia-Lis, M.; Dobiecka, D.P.; Młynarczyk, M.; Konopińska, J.; Socha, K. Influence of Dietary Habits on Oxidative Stress Parameters, Selenium, Copper, and Zinc Levels in the Serum of Patients with Age-Related Cataract. Nutrients 2025, 17, 3237. https://doi.org/10.3390/nu17203237
Falkowska M, Zawadzka I, Grabia-Lis M, Dobiecka DP, Młynarczyk M, Konopińska J, Socha K. Influence of Dietary Habits on Oxidative Stress Parameters, Selenium, Copper, and Zinc Levels in the Serum of Patients with Age-Related Cataract. Nutrients. 2025; 17(20):3237. https://doi.org/10.3390/nu17203237
Chicago/Turabian StyleFalkowska, Martyna, Izabela Zawadzka, Monika Grabia-Lis, Dominika Patrycja Dobiecka, Maryla Młynarczyk, Joanna Konopińska, and Katarzyna Socha. 2025. "Influence of Dietary Habits on Oxidative Stress Parameters, Selenium, Copper, and Zinc Levels in the Serum of Patients with Age-Related Cataract" Nutrients 17, no. 20: 3237. https://doi.org/10.3390/nu17203237
APA StyleFalkowska, M., Zawadzka, I., Grabia-Lis, M., Dobiecka, D. P., Młynarczyk, M., Konopińska, J., & Socha, K. (2025). Influence of Dietary Habits on Oxidative Stress Parameters, Selenium, Copper, and Zinc Levels in the Serum of Patients with Age-Related Cataract. Nutrients, 17(20), 3237. https://doi.org/10.3390/nu17203237

