Dietary Interventions, Supplements, and Plant-Derived Compounds for Adjunct Vitiligo Management: A Review of the Literature
Abstract
:1. Introduction
2. Pathogenesis of Vitiligo
2.1. Convergence Theory: A Unified Framework
2.2. Autoimmunity
2.3. Oxidative Stress
2.4. Neurogenic Factors
2.5. Role of Genetic Predisposition
2.6. Recent Insights
3. Diet
3.1. High-Fat Foods
3.2. Sugar and Refined Carbohydrates
3.3. Gluten
3.4. Impact of Gut Microbiota
4. Nutrients
4.1. Vitamins
4.2. Trace Elements
4.3. Amino Acids
4.4. Unsaturated Fatty Acids
4.5. Antioxidant Pool
4.6. Probiotics and Prebiotics
5. Plant-Derived Compounds
Compound | Active Ingredient | Potential Benefits | Precautions/Interactions | References |
---|---|---|---|---|
Ginkgo biloba | Polyphenols, flavonoids (e.g., naringenin, hesperetin, baicalein) | -Decreases oxidative stress -Supports melanogenesis | -May increase risk of bleeding -May reduce effects of alprazolam, anticonvulsants, statins | [113,114,115,116] |
Polypodium leucotomos | Phenolic compounds | -Reduces UV-induced oxidative stress -Supports repigmentation | Rare gastrointestinal discomfort | [117,118,119] |
Khellin | Furanochromone | Stimulates melanocytes when combined with UVA light | Rare photosensitivity when used with UV therapy | [120,121] |
Pyllanthus embelica | Phenolic compounds, terpenoids, amino acids, alkaloids, and vitamins | Reduce UVB-induced keratinocyte inflammation and apoptosis | -May increase risk of bleeding -May decrease blood sugar | [122,123,124] |
Black Pepper (Piper nigrum) | Piperine | Stimulates melanocytes when combined with UVB light | May cause gastrointestinal discomfort | [16,125] |
Nigella sativa | Thymoquinone | Decreases generation of highly reactive oxygen species | May increase risk of bleeding | [126,127,128] |
Pomegranate (Punica granatum) | Ellagic acid, flavonoids | -Regulates T-cell function -Antioxidant and anti-inflammatory effects | -May increase risk of bleeding -May reduce effects of statins, carbamazepine -May increase effects of CYP2C9 substrates | [129,130,131] |
Green tea (Camellia sinensis) | Epigallocatechin-3-gallate | Modulates inflammatory cytokine release | May reduce effects of statins, nadolol | [132,133,134,135] |
Turmeric (Curcuma longa) | Curcumin | Reduces inflammatory mediator production | -May decrease blood sugar -May reduce effects of certain medications (e.g., talinolol) | [136,137,138] |
Psoralea corylifolia | Psoralens (e.g., isopsoralen, imperatorin) | -Reduces inflammation -Promotes pigmentation with UV exposure | -Increases risk of phototoxicity -May interact with CYP3A4 substrates | [139,140,141,142] |
Melissa officinalis (Lemon Balm) | Rosmarinic acid | -Promotes melanogenesis -Reduces UV-induced oxidative stress | - | [143,144] |
Berberis vulgaris (Barberry) | Berberine | -Promotes melanogenesis (production and dispersion) | -Potential for gastrointestinal discomfort | [145,146,147] |
Licorice (Glycyrrhiza glabra) | Glycyrrhizin, terpenoids | -Antioxidant and anti-inflammatory properties | -May increase risk of bleeding -Interactions with immunosuppressants | [148,149,150,151,152] |
5.1. Ginkgo Biloba
- Primary phytochemicals: Polyphenols, flavonoids
5.2. Polypodium Leucotomos
- Primary phytochemicals: Phenolic compounds
5.3. Khella (Ammi Visnaga)
- Active phytochemical: Khellin
5.4. Phyllanthus Emblica (Amla or Indian Gooseberry)
- Active phytochemicals: Antioxidants and anti-inflammatory compounds
5.5. Black Pepper (Piper Nigrum)
- Active phytochemical: Piperine
5.6. Nigella Sativa
- Active phytochemical: Thymoquinone
5.7. Pomegranate (Punica Granatum)
- Active phytochemicals: Ellagic acid, flavonoids
5.8. Green Tea (Camellia Sinensis)
- Active phytochemical: Epigallocatechin-3-gallate
5.9. Turmeric (Curcuma Longa)
- Active phytochemical: Curcumin
5.10. Psoralea Corylifolia (Cullen Corylifolium)
- Active compound: Psoralens
5.11. Melissa Officinalis (Lemon Balm)
- Active phytochemical: Rosmarinic acid
5.12. Berberis Vulgaris (Barberry)
- Active phytochemical: Berberine
5.13. Licorice (Glycyrrhiza Glabra)
- Primary phytochemicals: Terpenoids (glycyrrhizin)
6. Patient Counseling
7. Practical Implications and Recommendations
8. Future Directions and Priorities
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bergqvist, C.; Ezzedine, K. Vitiligo: A focus on pathogenesis and its therapeutic implications. J. Dermatol. 2021, 48, 252–270. [Google Scholar] [CrossRef] [PubMed]
- Akl, J.; Lee, S.; Ju, H.J.; Parisi, R.; Kim, J.Y.; Jeon, J.J.; Heo, Y.-W.; Eleftheriadou, V.; Hamzavi, I.; Griffiths, C.E.M.; et al. Estimating the burden of vitiligo: A systematic review and modelling study. Lancet Public Health 2024, 9, e386–e396. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, K.; Ezzedine, K.; Anastassopoulos, K.P.; Patel, R.; Sikirica, V.; Daniel, S.R.; Napatalung, L.; Yamaguchi, Y.; Baik, R.; Pandya, A.G. Prevalence of Vitiligo Among Adults in the United States. JAMA Dermatol. 2022, 158, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Riding, R.L.; Harris, J.E. The Role of Memory CD8+ T Cells in Vitiligo. J. Immunol. 2019, 203, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.Y.; Chan, Y.-P.; Chiu, Y.-C.; Shih, H.-P.; Lin, Y.-N.; Chung, P.-H.; Huang, J.-Y.; Chen, H.-K.; Chung, W.-H.; Ku, C.-L. Targeting the elevated IFN-γ in vitiligo patients by human anti- IFN-γ monoclonal antibody hampers direct cytotoxicity in melanocyte. J. Dermatol. Sci. 2023, 110, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Frisoli, M.L.; Essien, K.; Harris, J.E. Vitiligo: Mechanisms of Pathogenesis and Treatment. Annu. Rev. Immunol. 2020, 38, 621–648. [Google Scholar] [CrossRef]
- Rosmarin, D.; Pandya, A.G.; Lebwohl, M.; Grimes, P.; Hamzavi, I.; Gottlieb, A.B.; Butler, K.; Kuo, F.; Sun, K.; Ji, T.; et al. Ruxolitinib cream for treatment of vitiligo: A randomised, controlled, phase 2 trial. Lancet 2020, 396, 110–120. [Google Scholar] [CrossRef]
- Qi, F.; Liu, F.; Gao, L. Janus Kinase Inhibitors in the Treatment of Vitiligo: A Review. Front. Immunol. 2021, 12, 790125. [Google Scholar] [CrossRef] [PubMed]
- Inoue, S.; Suzuki, T.; Sano, S.; Katayama, I. JAK inhibitors for the treatment of vitiligo. J. Dermatol. Sci. 2024, 113, 86–92. [Google Scholar] [CrossRef]
- Utama, A.; Wijesinghe, R.; Thng, S. Janus kinase inhibitors and the changing landscape of vitiligo management: A scoping review. Int. J. Dermatol. 2024, 63, 1020–1035. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Zhou, L.; Shi, M.; Cong, T.; Yang, X.; Zhou, X.; Cheng, M.; Ma, C.; Yao, S.; Ying, P.; et al. JAK inhibitors in immune regulation and treatment of vitiligo. Cytokine Growth Factor Rev. 2024, 80, 87–96. [Google Scholar] [CrossRef]
- Harris, J.E.; Harris, T.H.; Weninger, W.; Wherry, E.J.; Hunter, C.A.; Turka, L.A. A mouse model of vitiligo with focused epidermal depigmentation requires IFN-γ for autoreactive CD8+ T-cell accumulation in the skin. J. Investig. Dermatol. 2012, 132, 1869–1876. [Google Scholar] [CrossRef] [PubMed]
- Migayron, L.; Boniface, K.; Seneschal, J. Vitiligo, From Physiopathology to Emerging Treatments: A Review. Dermatol. Ther. 2020, 10, 1185–1198. [Google Scholar] [CrossRef] [PubMed]
- Poondru, S.; Yang, L.J.; Kundu, R.V. Use of complementary and alternative medicine in vitiligo: A cross-sectional survey. Arch. Dermatol. Res. 2024, 316, 126. [Google Scholar] [CrossRef]
- Elzahrani, M.; Aleid, A.; Alhwimani, A.; Altamamy, S.; Almalki, R.; AlKushi, A.; AlJasser, M.; Feroz, Z. Perceptions, knowledge, and attitudes toward complementary and alternative medicine among Saudi patients with vitiligo. Acta Dermatovenerol. Alp. Pannonica Adriat. 2020, 29, 165–168. [Google Scholar] [CrossRef]
- Dutta, R.R.; Kumar, T.; Ingole, N. Diet and Vitiligo: The Story So Far. Cureus 2022, 14, e28516. [Google Scholar] [CrossRef] [PubMed]
- Hadi, Z.; Kaur, R.; Parekh, Z.; Khanna, S.; Khalil, A.B.B.; Abbasi, H.Q.; Ashfaque, F.; Shah, D.; Patel, V.J.; Hasibuzzaman, M.A. Exploring the impact of diet and nutrition on vitiligo: A systematic review of dietary factors and nutritional interventions. J. Cosmet. Dermatol. 2024, 23, 2320–2327. [Google Scholar] [CrossRef]
- Bzioueche, H.; Simonyté Sjödin, K.; West, C.E.; Khemis, A.; Rocchi, S.; Passeron, T.; Tulic, M.K. Analysis of Matched Skin and Gut Microbiome of Patients with Vitiligo Reveals Deep Skin Dysbiosis: Link with Mitochondrial and Immune Changes. J. Investig. Dermatol. 2021, 141, 2280–2290. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, M.S.; Han, C.Y.; Sukumaran, S.; Delaney, C.L.; Miller, M.D. Effect of anti-inflammatory diets on inflammation markers in adult human populations: A systematic review of randomized controlled trials. Nutr. Rev. 2022, 81, 55–74. [Google Scholar] [CrossRef]
- Ni, Y.; Zhang, Y.; Sun, J.; Zhao, L.; Wu, B.; Ye, J. The effect of antioxidant dietary supplements and diet-derived circulating antioxidants on vitiligo outcome: Evidence from genetic association and comprehensive Mendelian randomization. Front. Nutr. 2023, 10, 1280162. [Google Scholar] [CrossRef]
- Diotallevi, F.; Gioacchini, H.; De Simoni, E.; Marani, A.; Candelora, M.; Paolinelli, M.; Molinelli, E.; Offidani, A.; Simonetti, O. Vitiligo, from Pathogenesis to Therapeutic Advances: State of the Art. Int. J. Mol. Sci. 2023, 24, 4910. [Google Scholar] [CrossRef] [PubMed]
- Kundu, R.V.; Mhlaba, J.M.; Rangel, S.M.; Le Poole, I.C. The convergence theory for vitiligo: A reappraisal. Exp. Dermatol. 2019, 28, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Allam, M.; Riad, H. Concise review of recent studies in vitiligo. Qatar Med. J. 2013, 2013, 1–19. [Google Scholar] [CrossRef]
- Patel, S.; Rauf, A.; Khan, H.; Meher, B.R.; Hassan, S.S.U. A holistic review on the autoimmune disease vitiligo with emphasis on the causal factors. Biomed. Pharmacother. 2017, 92, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Gill, L.; Zarbo, A.; Isedeh, P.; Jacobsen, G.; Lim, H.W.; Hamzavi, I. Comorbid autoimmune diseases in patients with vitiligo: A cross-sectional study. J. Am. Acad. Dermatol. 2016, 74, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Sawicki, J.; Siddha, S.; Rosen, C. Vitiligo and associated autoimmune disease: Retrospective review of 300 patients. J. Cutan. Med. Surg. 2012, 16, 261–266. [Google Scholar] [CrossRef]
- Kanwar, A.J.; Mahajan, R.; Parsad, D. Low-dose oral mini-pulse dexamethasone therapy in progressive unstable vitiligo. J. Cutan. Med. Surg. 2013, 17, 259–268. [Google Scholar] [CrossRef]
- Hu, W.; Xu, Y.; Ma, Y.; Lei, J.; Lin, F.; Xu, A.-E. Efficacy of the Topical Calcineurin Inhibitors Tacrolimus and Pimecrolimus in the Treatment of Vitiligo in Infants Under 2 Years of Age: A Randomized, Open-Label Pilot Study. Clin. Drug. Investig. 2019, 39, 1233–1238. [Google Scholar] [CrossRef]
- Xie, H.; Zhou, F.; Liu, L.; Zhu, G.; Li, Q.; Li, C.; Gao, T. Vitiligo: How do oxidative stress-induced autoantigens trigger autoimmunity? J. Dermatol. Sci. 2016, 81, 3–9. [Google Scholar] [CrossRef]
- Arican, O.; Kurutas, E.B. Oxidative stress in the blood of patients with active localized vitiligo. Acta Dermatovenerol. Alp. Pannonica Adriat. 2008, 17, 12–16. [Google Scholar]
- Mitra, S.; De Sarkar, S.; Pradhan, A.; Pati, A.K.; Pradhan, R.; Mondal, D.; Sen, S.; Ghosh, A.; Chatterjee, S.; Chatterjee, M. Levels of oxidative damage and proinflammatory cytokines are enhanced in patients with active vitiligo. Free Radic. Res. 2017, 51, 986–994. [Google Scholar] [CrossRef]
- Jung, H.M.; Jung, Y.S.; Lee, J.H.; Kim, G.M.; Bae, J.M. Antioxidant supplements in combination with phototherapy for vitiligo: A systematic review and metaanalysis of randomized controlled trials. J. Am. Acad. Dermatol. 2021, 85, 506–508. [Google Scholar] [CrossRef]
- Tu, C.; Zhao, D.; Lin, X. Levels of neuropeptide-Y in the plasma and skin tissue fluids of patients with vitiligo. J. Dermatol. Sci. 2001, 27, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Laddha, N.C.; Dwivedi, M.; Mansuri, M.S.; Singh, M.; Patel, H.H.; Agarwal, N.; Shah, A.M.; Begum, R. Association of neuropeptide Y (NPY), interleukin-1B (IL1B) genetic variants and correlation of IL1B transcript levels with vitiligo susceptibility. PLoS ONE 2014, 9, e107020. [Google Scholar] [CrossRef]
- Pichler, R.; Sfetsos, K.; Badics, B.; Gutenbrunner, S.; Auböck, J. Vitiligo patients present lower plasma levels of alpha-melanotropin immunoreactivities. Neuropeptides 2006, 40, 177–183. [Google Scholar] [CrossRef]
- Kotb El-Sayed, M.-I.; Abd El-Ghany, A.A.; Mohamed, R.R. Neural and Endocrinal Pathobiochemistry of Vitiligo: Comparative Study for a Hypothesized Mechanism. Front. Endocrinol. 2018, 9, 197. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Wang, W.-M.; Chung, C.-H.; Tsao, C.-H.; Chien, W.-C.; Hung, C.-T. Increased risk of psychiatric disorders in adult patients with vitiligo: A nationwide, population-based cohort study in Taiwan. J. Dermatol. 2020, 47, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Yanik, M.E.; Erfan, G.; Albayrak, Y.; Aydin, M.; Kulac, M.; Kuloglu, M. Reduced serum brain-derived neurotrophic factor in patients with first onset vitiligo. Neuropsychiatr. Dis. Treat. 2014, 10, 2361–2367. [Google Scholar] [CrossRef]
- Spritz, R.A.; Santorico, S.A. The Genetic Basis of Vitiligo. J. Investig. Dermatol. 2021, 141, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Czajkowski, R.; Męcińska-Jundziłł, K. Current aspects of vitiligo genetics. Postępy Dermatol. Alergol. 2014, 31, 247–255. [Google Scholar] [CrossRef]
- Jin, Y.; Andersen, G.; Yorgov, D.; Ferrara, T.M.; Ben, S.; Brownson, K.M.; Holland, P.J.; Birlea, S.A.; Siebert, J.; Hartmann, A.; et al. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants. Nat. Genet. 2016, 48, 1418–1424. [Google Scholar] [CrossRef]
- Roberts, G.H.L.; Paul, S.; Yorgov, D.; Santorico, S.A.; Spritz, R.A. Family Clustering of Autoimmune Vitiligo Results Principally from Polygenic Inheritance of Common Risk Alleles. Am. J. Hum. Genet. 2019, 105, 364–372. [Google Scholar] [CrossRef]
- Yuan, X.; Meng, D.; Cao, P.; Sun, L.; Pang, Y.; Li, Y.; Wang, X.; Luo, Z.; Zhang, L.; Liu, G. Identification of pathogenic genes and transcription factors in vitiligo. Dermatol. Ther. 2019, 32, e13025. [Google Scholar] [CrossRef]
- Xu, M.; Liu, Y.; Liu, Y.; Li, X.; Chen, G.; Dong, W.; Xiao, S. Genetic polymorphisms of GZMB and vitiligo: A genetic association study based on Chinese Han population. Sci. Rep. 2018, 8, 13001. [Google Scholar] [CrossRef]
- Jeong, K.-H.; Kim, S.K.; Seo, J.-K.; Shin, M.K.; Lee, M.-H. Association of GZMB polymorphisms and susceptibility to non-segmental vitiligo in a Korean population. Sci. Rep. 2021, 11, 397. [Google Scholar] [CrossRef]
- Hlača, N.; Žagar, T.; Kaštelan, M.; Brajac, I.; Prpić-Massari, L. Current Concepts of Vitiligo Immunopathogenesis. Biomedicines 2022, 10, 1639. [Google Scholar] [CrossRef] [PubMed]
- Marchioro, H.Z.; Silva de Castro, C.C.; Fava, V.M.; Sakiyama, P.H.; Dellatorre, G.; Miot, H.A. Update on the pathogenesis of vitiligo. An. Bras. Dermatol. 2022, 97, 478–490. [Google Scholar] [CrossRef]
- Kądziela, M.; Kutwin, M.; Karp, P.; Woźniacka, A. Role of Cytokines and Chemokines in Vitiligo and Their Therapeutic Implications. J. Clin. Med. 2024, 13, 4919. [Google Scholar] [CrossRef]
- Mukhatayev, Z.; Le Poole, I.C. Vitiligo: Advances in pathophysiology research and treatment development. Trends Mol. Med. 2024, 30, 844–862. [Google Scholar] [CrossRef] [PubMed]
- Tulic, M.K.; Cavazza, E.; Cheli, Y.; Jacquel, A.; Luci, C.; Cardot-Leccia, N.; Hadhiri-Bzioueche, H.; Abbe, P.; Gesson, M.; Sormani, L.; et al. Innate lymphocyte-induced CXCR3B-mediated melanocyte apoptosis is a potential initiator of T-cell autoreactivity in vitiligo. Nat. Commun. 2019, 10, 2178. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.; Migayron, L.; Drullion, C.; Jacquemin, C.; Lucchese, F.; Rambert, J.; Merhi, R.; Michon, P.; Taieb, A.; Rezvani, H.-R.; et al. Vitiligo Skin T Cells Are Prone to Produce Type 1 and Type 2 Cytokines to Induce Melanocyte Dysfunction and Epidermal Inflammatory Response Through Jak Signaling. J. Investig. Dermatol. 2022, 142, 1194–1205.e7. [Google Scholar] [CrossRef]
- Zhang, J.; Xiang, F.; Ding, Y.; Hu, W.; Wang, H.; Zhang, X.; Lei, Z.; Li, T.; Wang, P.; Kang, X. Identification and validation of RNA-binding protein SLC3A2 regulates melanocyte ferroptosis in vitiligo by integrated analysis of single-cell and bulk RNA-sequencing. BMC Genom. 2024, 25, 236. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xie, Z.; Qian, X.; Wang, T.; Jiang, M.; Qin, J.; Wang, C.; Wu, R.; Song, C. Identification of a Potentially Functional circRNA-miRNA-mRNA Regulatory Network in Melanocytes for Investigating Pathogenesis of Vitiligo. Front. Genet. 2021, 12, 663091. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.-L.; Ko, C.-H. The Role of Oxidative Stress in Vitiligo: An Update on Its Pathogenesis and Therapeutic Implications. Cells 2023, 12, 936. [Google Scholar] [CrossRef]
- Laddha, N.C.; Dwivedi, M.; Mansuri, M.S.; Gani, A.R.; Ansarullah, M.; Ramachandran, A.V.; Dalai, S.; Begum, R. Vitiligo: Interplay between oxidative stress and immune system. Exp. Dermatol. 2013, 22, 245–250. [Google Scholar] [CrossRef]
- Tanwar, S.; Thakur, V.; Bhatia, A.; Parsad, D. Catecholamines’ accumulation and their disturbed metabolism at perilesional site: A possible cause of vitiligo progression. Arch. Dermatol. Res. 2023, 315, 173–180. [Google Scholar] [CrossRef]
- Radzikowska, U.; Rinaldi, A.O.; Çelebi Sözener, Z.; Karaguzel, D.; Wojcik, M.; Cypryk, K.; Akdis, M.; Akdis, C.A.; Sokolowska, M. The Influence of Dietary Fatty Acids on Immune Responses. Nutrients 2019, 11, 2990. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.G.; Contaifer, D.; Madurantakam, P.; Carbone, S.; Price, E.T.; Van Tassell, B.; Brophy, D.F.; Wijesinghe, D.S. Dietary Bioactive Fatty Acids as Modulators of Immune Function: Implications on Human Health. Nutrients 2019, 11, 2974. [Google Scholar] [CrossRef]
- Derakhshandeh-Rishehri, S.-M.; Heidari-Beni, M.; Jaffary, F.; Askari, G.; Nilfroshzade, M.; Adibi, N. Role of Fatty Acids Intake in Generalized Vitiligo. Int. J. Prev. Med. 2019, 10, 52. [Google Scholar] [CrossRef]
- Hamada, R.; Funasaka, Y.; Saeki, H.; Serizawa, N.; Hagino, T.; Yano, Y.; Mitsui, H.; Kanda, N. Dietary habits in adult Japanese patients with vitiligo. J. Dermatol. 2024, 51, 491–508. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Chen, J.; Du, P.; Ni, Q.; Li, B.; Zhang, Z.; Wang, Q.; Cui, T.; Yi, X.; Li, C.; et al. Metabolomics Signature and Potential Application of Serum Polyunsaturated Fatty Acids Metabolism in Patients with Vitiligo. Front. Immunol. 2022, 13, 839167. [Google Scholar] [CrossRef]
- Garg, S.; Rajagopalan, M.; George, A.M.; Parwani, H.; Hans, T. Reversal and prevention of deregulated autophagy in cutaneous autoimmune disorders—A pilot study on vitiligo with nutrigenomics based approach of “Maximum Nutrition and Minimum Medication”. Pigment. Int. 2024, 11, 12. [Google Scholar] [CrossRef]
- Yang, S.; Hu, X.; Zou, P.; Zeng, Z.; Hu, Y.; Xiao, R. Roles of blood metabolites in mediating the relationship between vitiligo and autoimmune diseases: Evidence from a Mendelian randomization study. Int. Immunopharmacol. 2024, 133, 112132. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.Z.; Rahman, M.H.; Satter, M.A. Study of some biochemical parameters of vitiligo patients in Bangladesh. Bangladesh J. Sci. Ind. Res. 2012, 47, 173–186. [Google Scholar] [CrossRef]
- Chang, H.-C.; Lin, M.-H.; Huang, Y.-C.; Hou, T.-Y. The association between vitiligo and diabetes mellitus: A systematic review and meta-analysis. J. Am. Acad. Dermatol. 2019, 81, 1442–1445. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-Z.; Abudoureyimu, D.; Wang, M.; Yu, S.-R.; Kang, X.-J. Association between celiac disease and vitiligo: A review of the literature. World J. Clin. Cases 2021, 9, 10430–10437. [Google Scholar] [CrossRef] [PubMed]
- Khandalavala, B.N.; Nirmalraj, M.C. Rapid partial repigmentation of vitiligo in a young female adult with a gluten-free diet. Case Rep. Dermatol. 2014, 6, 283–287. [Google Scholar] [CrossRef]
- Rodríguez-García, C.; González-Hernández, S.; Pérez-Robayna, N.; Guimerá, F.; Fagundo, E.; Sánchez, R. Repigmentation of vitiligo lesions in a child with celiac disease after a gluten-free diet. Pediatr. Dermatol. 2011, 28, 209–210. [Google Scholar] [CrossRef] [PubMed]
- Ertekin, V.; Selimoglu, M.A.; Altinkaynak, S. Celiac disease in childhood: Evaluation of 140 patients. Eurasian J. Med. 2009, 41, 154–157. [Google Scholar] [PubMed]
- Shahmoradi, Z.; Najafian, J.; Naeini, F.F.; Fahimipour, F. Vitiligo and autoantibodies of celiac disease. Int. J. Prev. Med. 2013, 4, 200–203. [Google Scholar]
- Luan, M.; Niu, M.; Yang, P.; Han, D.; Zhang, Y.; Li, W.; He, Q.; Zhao, Y.; Mao, B.; Chen, J.; et al. Metagenomic sequencing reveals altered gut microbial compositions and gene functions in patients with non-segmental vitiligo. BMC Microbiol. 2023, 23, 265. [Google Scholar] [CrossRef] [PubMed]
- Ni, Q.; Ye, Z.; Wang, Y.; Chen, J.; Zhang, W.; Ma, C.; Li, K.; Liu, Y.; Liu, L.; Han, Z.; et al. Gut Microbial Dysbiosis and Plasma Metabolic Profile in Individuals with Vitiligo. Front. Microbiol. 2020, 11, 592248. [Google Scholar] [CrossRef]
- Wu, Q.; Cheng, P.; Shao, T.; Li, Z.; Ji, Q.; Wang, L.; Yao, S.; Lu, B. Alterations of gut microbiota and gut metabolites in the young-adult vitiligo patients. J. Eur. Acad. Dermatol. Venereol. 2023, 37, e904–e907. [Google Scholar] [CrossRef] [PubMed]
- Giri, P.S.; Bharti, A.; Kemp, E.H.; Dwivedi, M.K. Microorganisms in Pathogenesis and Management of Vitiligo. In Role of Microorganisms in Pathogenesis and Management of Autoimmune Diseases. Volume I: Liver, Skin, Thyroid, Rheumatic & Myopathic Diseases; Dwivedi, M.K., Amaresan, N., Kemp, E.H., Shoenfeld, Y., Eds.; Springer Nature: Singapore, 2022; pp. 189–223. ISBN 978-981-19194-6-6. [Google Scholar]
- Aly, D.; Mohammed, F.; Sayed, K.; Gawdat, H.; Mashaly, H.; Abdel Hay, R.; Elias, T.; Agaiby, M. Is There a Relation between Vitamin D and Interleukin-17 in Vitiligo? A Cross-Sectional Study. Dermatology 2017, 233, 413–418. [Google Scholar] [CrossRef]
- Khurrum, H.; AlGhamdi, K.M. The Relationship Between the Serum Level of Vitamin D and Vitiligo: A Controlled Study on 300 Subjects. J. Cutan. Med. Surg. 2016, 20, 139–145. [Google Scholar] [CrossRef]
- Huo, J.; Liu, T.; Huan, Y.; Li, F.; Wang, R. Serum level of antioxidant vitamins and minerals in patients with vitiligo, a systematic review and meta-analysis. J. Trace Elem. Med. Biol. 2020, 62, 126570. [Google Scholar] [CrossRef]
- Speeckaert, R.; Dugardin, J.; Lambert, J.; Lapeere, H.; Verhaeghe, E.; Speeckaert, M.M.; van Geel, N. Critical appraisal of the oxidative stress pathway in vitiligo: A systematic review and meta-analysis. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Upala, S.; Sanguankeo, A. Low 25-hydroxyvitamin D levels are associated with vitiligo: A systematic review and meta-analysis. Photodermatol. Photoimmunol. Photomed. 2016, 32, 181–190. [Google Scholar] [CrossRef]
- Finamor, D.C.; Sinigaglia-Coimbra, R.; Neves, L.C.M.; Gutierrez, M.; Silva, J.J.; Torres, L.D.; Surano, F.; Neto, D.J.; Novo, N.F.; Juliano, Y.; et al. A pilot study assessing the effect of prolonged administration of high daily doses of vitamin D on the clinical course of vitiligo and psoriasis. Dermatoendocrinology 2013, 5, 222–234. [Google Scholar] [CrossRef] [PubMed]
- Karagüzel, G.; Sakarya, N.P.; Bahadır, S.; Yaman, S.; Ökten, A. Vitamin D status and the effects of oral vitamin D treatment in children with vitiligo: A prospective study. Clin. Nutr. ESPEN 2016, 15, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Omidian, M.; Pazyar, N.; Mousavi, Z.S. Is vitamin D supplement accompanied with narrow band UVB effective for treatment of vitiligo? Comp. Clin. Pathol. 2018, 27, 685–690. [Google Scholar] [CrossRef]
- Garza-Davila, V.F.; Valdespino-Valdes, J.; Ramos, A.; Gonzalez-Martínez, G.; Herz-Ruelas, M.E.; Gomez-Flores, M.; Ocampo-Candiani, J.; Welsh-Lozano, O.; Cuellar-Barboza, A.B. Combination of NB-UVB phototherapy and oral vitamin D supplementation in patients with generalized vitiligo: A randomized, triple-blind, placebo-controlled clinical trial. J. Eur. Acad. Dermatol. Venereol. 2023, 37, e1423–e1425. [Google Scholar] [CrossRef] [PubMed]
- Anam, K.; Ananyan, S.; Rishabh, M.; Dinesh, A.; Ashwin, K. Zinc, copper, and selenium levels in vitiligo: A systematic review and meta-analysis. Sci. Rep. 2024, 14, 23700. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.R. Critical Role of Zinc as Either an Antioxidant or a Prooxidant in Cellular Systems. Oxid. Med. Cell. Longev. 2018, 2018, 9156285. [Google Scholar] [CrossRef]
- Prasad, A.S.; Bao, B. Molecular Mechanisms of Zinc as a Pro-Antioxidant Mediator: Clinical Therapeutic Implications. Antioxidants 2019, 8, 164. [Google Scholar] [CrossRef]
- Archana, S.A.; Rangappa, V.; Savitha, T.G.; Jayadev, B.; Kushalappa, P.A.; Ashwini, P.K. Does copper has a role in vitiligo? Analysis of tissue and serum copper in vitiligo. Pigment. Int. 2021, 8, 30. [Google Scholar]
- Narang, I.; Barman, K.D.; Sahoo, B.; Lali, P. Evaluation of serum levels of zinc and copper in vitiligo. Pigment. Int. 2021, 8, 42. [Google Scholar]
- Lv, J.; Ai, P.; Lei, S.; Zhou, F.; Chen, S.; Zhang, Y. Selenium levels and skin diseases: Systematic review and meta-analysis. J. Trace Elem. Med. Biol. 2020, 62, 126548. [Google Scholar] [CrossRef] [PubMed]
- Wacewicz, M.; Socha, K.; Soroczyńska, J.; Niczyporuk, M.; Aleksiejczuk, P.; Ostrowska, J.; Borawska, M.H. Selenium, zinc, copper, Cu/Zn ratio and total antioxidant status in the serum of vitiligo patients treated by narrow-band ultraviolet-B phototherapy. J. Dermatolog. Treat. 2018, 29, 190–195. [Google Scholar] [CrossRef]
- Dai, T.; Xiaoying, S.; Li, X.; Hongjin, L.; Yaqiong, Z.; Bo, L. Selenium Level in Patients with Vitiligo: A Meta-Analysis. Biomed. Res. Int. 2020, 2020, 7580939. [Google Scholar] [CrossRef]
- Gianfaldoni, S.; Tchernev, G.; Lotti, J.; Wollina, U.; Satolli, F.; Rovesti, M.; França, K.; Lotti, T. Unconventional Treatments for Vitiligo: Are They (Un) Satisfactory? Open Access Maced. J. Med. Sci. 2018, 6, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Cormane, R.H.; Siddiqui, A.H.; Westerhof, W.; Schutgens, R.B. Phenylalanine and UVA light for the treatment of vitiligo. Arch. Dermatol. Res. 1985, 277, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Camacho, F.; Mazuecos, J. Treatment of vitiligo with oral and topical phenylalanine: 6 years of experience. Arch. Dermatol. 1999, 135, 216–217. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, A.H.; Stolk, L.M.; Bhaggoe, R.; Hu, R.; Schutgens, R.B.; Westerhof, W. L-phenylalanine and UVA irradiation in the treatment of vitiligo. Dermatology 1994, 188, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Ramakrishnan, R.; Narasimhan, M.; Jegadish, N. A comparative study of efficacy and safety of topical 10% phenylalanine gel versus 0.1% mometasone furoate cream in limited nonsegmental vitiligo. Pigment. Int. 2022, 9, 210. [Google Scholar] [CrossRef]
- Marzabani, R.; Rezadoost, H.; Choopanian, P.; Kolahdooz, S.; Mozafari, N.; Mirzaie, M.; Karimi, M.; Nieminen, A.I.; Jafari, M. Metabolomic signature of amino acids in plasma of patients with non-segmental Vitiligo. Metabolomics 2021, 17, 92. [Google Scholar] [CrossRef] [PubMed]
- Zheleva, A.; Nikolova, G.; Karamalakova, Y.; Hristakieva, E.; Lavcheva, R.; Gadjeva, V. Comparative study on some oxidative stress parameters in blood of vitiligo patients before and after combined therapy. Regul. Toxicol. Pharmacol. 2018, 94, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Dell’Anna, M.L.; Mastrofrancesco, A.; Sala, R.; Venturini, M.; Ottaviani, M.; Vidolin, A.P.; Leone, G.; Calzavara, P.G.; Westerhof, W.; Picardo, M. Antioxidants and narrow band-UVB in the treatment of vitiligo: A double-blind placebo controlled trial. Clin. Exp. Dermatol. 2007, 32, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Elgoweini, M.; Nour El Din, N. Response of vitiligo to narrowband ultraviolet B and oral antioxidants. J. Clin. Pharmacol. 2009, 49, 852–855. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, W.; Wang, P.; Ding, Y.; Wang, H.; Kang, X. Research Progress on Targeted Antioxidant Therapy and Vitiligo. Oxid. Med. Cell. Longev. 2022, 2022, 1821780. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Khan, M.; Jiang, L.; Fu, C.; Dong, Y.; Luo, L.; Guo, H.; Gao, L.; Lei, X.; Zhang, L.; et al. The Current Status of Antioxidants in the Treatment of Vitiligo in China. Oxid. Med. Cell. Longev. 2022, 2022, 2994558. [Google Scholar] [CrossRef] [PubMed]
- Speeckaert, R.; Bulat, V.; Speeckaert, M.M.; van Geel, N. The Impact of Antioxidants on Vitiligo and Melasma: A Scoping Review and Meta-Analysis. Antioxidants 2023, 12, 2082. [Google Scholar] [CrossRef]
- Białczyk, A.; Wełniak, A.; Kamińska, B.; Czajkowski, R. Oxidative Stress and Potential Antioxidant Therapies in Vitiligo: A Narrative Review. Mol. Diagn. Ther. 2023, 27, 723–739. [Google Scholar] [CrossRef]
- Colucci, R.; Dragoni, F.; Conti, R.; Pisaneschi, L.; Lazzeri, L.; Moretti, S. Evaluation of an oral supplement containing Phyllanthus emblica fruit extracts, vitamin E, and carotenoids in vitiligo treatment. Dermatol. Ther. 2015, 28, 17–21. [Google Scholar] [CrossRef]
- Al-Smadi, K.; Leite-Silva, V.R.; Filho, N.A.; Lopes, P.S.; Mohammed, Y. Innovative Approaches for Maintaining and Enhancing Skin Health and Managing Skin Diseases through Microbiome-Targeted Strategies. Antibiotics 2023, 12, 1698. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Goyal, A. The current trends and future perspectives of prebiotics research: A review. 3 Biotech 2012, 2, 115–125. [Google Scholar] [CrossRef]
- Baral, K.C.; Bajracharya, R.; Lee, S.H.; Han, H.-K. Advancements in the Pharmaceutical Applications of Probiotics: Dosage Forms and Formulation Technology. Int. J. Nanomed. 2021, 16, 7535–7556. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghazzewi, F.H.; Tester, R.F. Impact of prebiotics and probiotics on skin health. Benef. Microbes 2014, 5, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Maldonado Galdeano, C.; Cazorla, S.I.; Lemme Dumit, J.M.; Vélez, E.; Perdigón, G. Beneficial Effects of Probiotic Consumption on the Immune System. Ann. Nutr. Metab. 2019, 74, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Peng, C.; Sakandar, H.A.; Kwok, L.-Y.; Zhang, W. Meta-Analysis: Randomized Trials of Lactobacillus plantarum on Immune Regulation over the Last Decades. Front. Immunol. 2021, 12, 643420. [Google Scholar] [CrossRef]
- Abdulqadir, R.; Engers, J.; Al-Sadi, R. Role of Bifidobacterium in Modulating the Intestinal Epithelial Tight Junction Barrier: Current Knowledge and Perspectives. Curr. Dev. Nutr. 2023, 7, 102026. [Google Scholar] [CrossRef] [PubMed]
- Rombolà, L.; Scuteri, D.; Marilisa, S.; Watanabe, C.; Morrone, L.A.; Bagetta, G.; Corasaniti, M.T. Pharmacokinetic Interactions between Herbal Medicines and Drugs: Their Mechanisms and Clinical Relevance. Life 2020, 10, 106. [Google Scholar] [CrossRef] [PubMed]
- Markowitz, J.S.; Donovan, J.L.; Lindsay DeVane, C.; Sipkes, L.; Chavin, K.D. Multiple-dose administration of Ginkgo biloba did not affect cytochrome P-450 2D6 or 3A4 activity in normal volunteers. J. Clin. Psychopharmacol. 2003, 23, 576–581. [Google Scholar] [CrossRef]
- Bent, S.; Goldberg, H.; Padula, A.; Avins, A.L. Spontaneous bleeding associated with Ginkgo biloba: A case report and systematic review of the literature: A case report and systematic review of the literature. J. Gen. Intern. Med. 2005, 20, 657–661. [Google Scholar] [CrossRef]
- Le, T.T.; McGrath, S.R.; Fasinu, P.S. Herb-drug Interactions in Neuropsychiatric Pharmacotherapy—A Review of Clinically Relevant Findings. Curr. Neuropharmacol. 2022, 20, 1736–1751. [Google Scholar] [CrossRef] [PubMed]
- Winkelmann, R.R.; Del Rosso, J.; Rigel, D.S. Polypodium leucotomos extract: A status report on clinical efficacy and safety. J. Drugs Dermatol. 2015, 14, 254–261. [Google Scholar] [PubMed]
- Kohli, I.; Shafi, R.; Isedeh, P.; Griffith, J.L.; Al-Jamal, M.S.; Silpa-Archa, N.; Jackson, B.; Athar, M.; Kollias, N.; Elmets, C.A.; et al. The impact of oral Polypodium leucotomos extract on ultraviolet B response: A human clinical study. J. Am. Acad. Dermatol. 2017, 77, 33–41.e1. [Google Scholar] [CrossRef]
- Zattra, E.; Coleman, C.; Arad, S.; Helms, E.; Levine, D.; Bord, E.; Guillaume, A.; El-Hajahmad, M.; Zwart, E.; van Steeg, H.; et al. Polypodium leucotomos extract decreases UV-induced Cox-2 expression and inflammation, enhances DNA repair, and decreases mutagenesis in hairless mice. Am. J. Pathol. 2009, 175, 1952–1961. [Google Scholar] [CrossRef]
- Carlie, G.; Ntusi, N.B.A.; Hulley, P.A.; Kidson, S.H. KUVA (khellin plus ultraviolet A) stimulates proliferation and melanogenesis in normal human melanocytes and melanoma cells in vitro. Br. J. Dermatol. 2003, 149, 707–717. [Google Scholar] [CrossRef] [PubMed]
- de Leeuw, J.; Assen, Y.J.; van der Beek, N.; Bjerring, P.; Martino Neumann, H.A. Treatment of vitiligo with khellin liposomes, ultraviolet light and blister roof transplantation. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 74–81. [Google Scholar] [CrossRef]
- Kunchana, K.; Jarisarapurin, W.; Chularojmontri, L.; Wattanapitayakul, S.K. Potential Use of Amla (Phyllanthus emblica L.) Fruit Extract to Protect Skin Keratinocytes from Inflammation and Apoptosis after UVB Irradiation. Antioxidants 2021, 10, 703. [Google Scholar] [CrossRef]
- Avinash, P.G.; Hamid; Shams, R.; Dash, K.K.; Shaikh, A.M.; Ungai, D.; Harsányi, E.; Suthar, T.; Kovács, B. Recent Insights into the Morphological, Nutritional and Phytochemical Properties of Indian Gooseberry (Phyllanthus emblica) for the Development of Functional Foods. Plants 2024, 13, 574. [Google Scholar] [CrossRef] [PubMed]
- D’souza, J.J.; D’souza, P.P.; Fazal, F.; Kumar, A.; Bhat, H.P.; Baliga, M.S. Anti-diabetic effects of the Indian indigenous fruit Emblica officinalis Gaertn: Active constituents and modes of action. Food Funct. 2014, 5, 635–644. [Google Scholar] [CrossRef]
- Soumyanath, A.; Venkatasamy, R.; Joshi, M.; Faas, L.; Adejuyigbe, B.; Drake, A.F.; Hider, R.C.; Young, A.R. UV irradiation affects melanocyte stimulatory activity and protein binding of piperine. Photochem. Photobiol. 2006, 82, 1541–1548. [Google Scholar] [CrossRef] [PubMed]
- Hannan, M.A.; Rahman, M.A.; Sohag, A.A.M.; Uddin, M.J.; Dash, R.; Sikder, M.H.; Rahman, M.S.; Timalsina, B.; Munni, Y.A.; Sarker, P.P.; et al. Black Cumin (Nigella sativa L.): A Comprehensive Review on Phytochemistry, Health Benefits, Molecular Pharmacology, and Safety. Nutrients 2021, 13, 1784. [Google Scholar] [CrossRef] [PubMed]
- Mosbah, A.; Khither, H.; Mosbah, C.; Slimani, A.; Mahrouk, A.; Akkal, S.; Nieto, G. Effects of Nigella sativa Oil Fractions on Reactive Oxygen Species and Chemokine Expression in Airway Smooth Muscle Cells. Plants 2023, 12, 2171. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jiang, A.; Batra, V. Severe Thrombocytopenia Associated with Black Seed Oil and Evening Primrose Oil. Cureus 2020, 12, e8390. [Google Scholar] [CrossRef]
- Ahmadiankia, N. Molecular targets of pomegranate (Punica granatum) in preventing cancer metastasis. Iran. J. Basic Med. Sci. 2019, 22, 977–988. [Google Scholar] [CrossRef]
- Kshirsagar, K.R.; Pathak, S.S.; Patil, S.M. Pomegranate (Punica granatum L): A Fruitful Fountain of Remedial Potential. Cureus 2023, 15, e45677. [Google Scholar] [CrossRef] [PubMed]
- Hidaka, M.; Okumura, M.; Fujita, K.-I.; Ogikubo, T.; Yamasaki, K.; Iwakiri, T.; Setoguchi, N.; Arimori, K. Effects of pomegranate juice on human cytochrome p450 3A (CYP3A) and carbamazepine pharmacokinetics in rats. Drug Metab. Dispos. 2005, 33, 644–648. [Google Scholar] [CrossRef]
- Hisanaga, A.; Ishida, H.; Sakao, K.; Sogo, T.; Kumamoto, T.; Hashimoto, F.; Hou, D.-X. Anti-inflammatory activity and molecular mechanism of Oolong tea theasinensin. Food Funct. 2014, 5, 1891–1897. [Google Scholar] [CrossRef]
- Werba, J.P.; Misaka, S.; Giroli, M.G.; Shimomura, K.; Amato, M.; Simonelli, N.; Vigo, L.; Tremoli, E. Update of green tea interactions with cardiovascular drugs and putative mechanisms. J. Food Drug Anal. 2018, 26, S72–S77. [Google Scholar] [CrossRef] [PubMed]
- Misaka, S.; Yatabe, J.; Müller, F.; Takano, K.; Kawabe, K.; Glaeser, H.; Yatabe, M.S.; Onoue, S.; Werba, J.P.; Watanabe, H.; et al. Green tea ingestion greatly reduces plasma concentrations of nadolol in healthy subjects. Clin. Pharmacol. Ther. 2014, 95, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Molina, N.; Bolin, A.P.; Otton, R. Green tea polyphenols change the profile of inflammatory cytokine release from lymphocytes of obese and lean rats and protect against oxidative damage. Int. Immunopharmacol. 2015, 28, 985–996. [Google Scholar] [CrossRef] [PubMed]
- Uchio, R.; Okuda-Hanafusa, C.; Sakaguchi, H.; Saji, R.; Muroyama, K.; Murosaki, S.; Yamamoto, Y.; Hirose, Y. Curcuma longa extract reduces serum inflammatory markers and postprandial hyperglycemia in healthy but borderline participants with overweight and glycemia in the normal/prediabetes range: A randomized, double-blind, and placebo-controlled trial. Front. Nutr. 2024, 11, 1324196. [Google Scholar] [CrossRef] [PubMed]
- Okuda-Hanafusa, C.; Uchio, R.; Fuwa, A.; Kawasaki, K.; Muroyama, K.; Yamamoto, Y.; Murosaki, S. Turmeronol A and turmeronol B from Curcuma longa prevent inflammatory mediator production by lipopolysaccharide-stimulated RAW264.7 macrophages, partially via reduced NF-κB signaling. Food Funct. 2019, 10, 5779–5788. [Google Scholar] [CrossRef]
- Pathomwichaiwat, T.; Jinatongthai, P.; Prommasut, N.; Ampornwong, K.; Rattanavipanon, W.; Nathisuwan, S.; Thakkinstian, A. Effects of turmeric (Curcuma longa) supplementation on glucose metabolism in diabetes mellitus and metabolic syndrome: An umbrella review and updated meta-analysis. PLoS ONE 2023, 18, e0288997. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Flynn, T.J. CYP3A4 inhibition by Psoralea corylifolia and its major components in human recombinant enzyme, differentiated human hepatoma HuH-7 and HepaRG cells. Toxicol. Rep. 2015, 2, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.; Arora, V.; Verma, K.K. Severe phototoxic reaction to Psoralea corylifolia seeds in a child with vitiligo. Contact Dermat. 2024, 90, 619–621. [Google Scholar] [CrossRef]
- Wang, J.-H.; Pei, Y.-Y.; Xu, H.-D.; Li, L.-J.; Wang, Y.-Q.; Liu, G.-L.; Qu, Y.; Zhang, N. Effects of bavachin and its regulation of melanin synthesis in A375 cells. Biomed. Rep. 2016, 5, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Hussain, N.; Manan, A.; Rashid, A.; Khan, B.; Bakhsh, S. Fabrication of anti-vitiligo ointment containing Psoralea corylifolia: In vitro and in vivo characterization. Drug Des. Devel. Ther. 2016, 10, 3805–3816. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Sánchez, A.; Barrajón-Catalán, E.; Herranz-López, M.; Castillo, J.; Micol, V. Lemon balm extract (Melissa officinalis, L.) promotes melanogenesis and prevents UVB-induced oxidative stress and DNA damage in a skin cell model. J. Dermatol. Sci. 2016, 84, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Miraj, S.; Rafieian-Kopaei; Kiani, S. Melissa officinalis L.: A Review Study with an Antioxidant Prospective. J. Evid. Based Complement. Altern. Med. 2017, 22, 385–394. [Google Scholar] [CrossRef]
- Ali, S.A.; Naaz, I. Understanding the ultrastructural aspects of berberine-induced skin-darkening activity in the toad, Bufo melanostictus, melanophores. J. Microsc. Ultrastruct. 2015, 3, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.A.; Naaz, I.; Choudhary, R.K. Berberine-induced pigment dispersion in Bufo melanostictus melanophores by stimulation of beta-2 adrenergic receptors. J. Recept. Signal Transduct. Res. 2014, 34, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yu, Z.; Li, Y.; Fichna, J.; Storr, M. Effects of berberine in the gastrointestinal tract—A review of actions and therapeutic implications. Am. J. Chin. Med. 2014, 42, 1053–1070. [Google Scholar] [CrossRef] [PubMed]
- Jian, Y.; Wang, X.; Li, Y.; Fu, D.; Gong, Y.; Shi, H. Efficacy and safety of compound glycyrrhizin in combination with conventional therapy in treatment of vitiligo: A systematic review and meta-analysis of randomized controlled trials. Medicine 2023, 102, e35533. [Google Scholar] [CrossRef]
- Mou, K.H.; Han, D.; Liu, W.L.; Li, P. Combination therapy of orally administered glycyrrhizin and UVB improved active-stage generalized vitiligo. Braz. J. Med. Biol. Res. 2016, 49, e5354. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.F.; Srivatsa, A.; Kaul, V. Black licorice ingestion: Yet another confounding agent in patients with melena. World J. Gastrointest. Surg. 2010, 2, 30–31. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Higurashi, T.; Takahashi, M.; Maeda-Minami, A.; Kawano, Y.; Miyazaki, S.; Mano, Y. Concomitant Use of High-dose Methotrexate and Glycyrrhizin Affects Pharmacokinetics of Methotrexate, Resulting in Hepatic Toxicity. Vivo 2021, 35, 2163–2169. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.-C.; Lin, S.-P.; Chao, P.-D.L. Liquorice reduced cyclosporine bioavailability by activating P-glycoprotein and CYP 3A. Food Chem. 2012, 135, 2307–2312. [Google Scholar] [CrossRef]
- Farhan, M. The Promising Role of Polyphenols in Skin Disorders. Molecules 2024, 29, 865. [Google Scholar] [CrossRef] [PubMed]
- Szczurko, O.; Shear, N.; Taddio, A.; Boon, H. Ginkgo biloba for the treatment of vitilgo vulgaris: An open label pilot clinical trial. BMC Complement. Altern. Med. 2011, 11, 21. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Sureda, A.; Belwal, T.; Çetinkaya, S.; Süntar, İ.; Tejada, S.; Devkota, H.P.; Ullah, H.; Aschner, M. Polyphenols in the treatment of autoimmune diseases. Autoimmun. Rev. 2019, 18, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Rong, Y.; Geng, Z.; Lau, B.H. Ginkgo biloba attenuates oxidative stress in macrophages and endothelial cells. Free Radic. Biol. Med. 1996, 20, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yi, X.; Su, X.; Jian, Z.; Cui, T.; Guo, S.; Gao, T.; Li, C.; Li, S.; Xiao, Q. Ginkgo biloba extract protects human melanocytes from H2O2-induced oxidative stress by activating Nrf2. J. Cell. Mol. Med. 2019, 23, 5193–5199. [Google Scholar] [CrossRef] [PubMed]
- Parsad, D.; Pandhi, R.; Juneja, A. Effectiveness of oral Ginkgo biloba in treating limited, slowly spreading vitiligo. Clin. Exp. Dermatol. 2003, 28, 285–287. [Google Scholar] [CrossRef] [PubMed]
- Middelkamp-Hup, M.A.; Pathak, M.A.; Parrado, C.; Garcia-Caballero, T.; Rius-Díaz, F.; Fitzpatrick, T.B.; González, S. Orally administered Polypodium leucotomos extract decreases psoralen-UVA-induced phototoxicity, pigmentation, and damage of human skin. J. Am. Acad. Dermatol. 2004, 50, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Middelkamp-Hup, M.A.; Bos, J.D.; Rius-Diaz, F.; Gonzalez, S.; Westerhof, W. Treatment of vitiligo vulgaris with narrow-band UVB and oral Polypodium leucotomos extract: A randomized double-blind placebo-controlled study. J. Eur. Acad. Dermatol. Venereol. 2007, 21, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Pacifico, A.; Damiani, G.; Iacovelli, P.; Conic, R.R.Z.; Young Dermatologists Italian Network (YDIN); Gonzalez, S.; Morrone, A. NB-UVB plus oral Polypodium leucotomos extract display higher efficacy than NB-UVB alone in patients with vitiligo. Dermatol. Ther. 2021, 34, e14776. [Google Scholar] [CrossRef]
- Nestor, M.S.; Berman, B.; Swenson, N. Safety and Efficacy of Oral Polypodium leucotomos Extract in Healthy Adult Subjects. J. Clin. Aesthet. Dermatol. 2015, 8, 19–23. [Google Scholar] [PubMed]
- Ramírez-Bosca, A.; Zapater, P.; Betlloch, I.; Albero, F.; Martínez, A.; Díaz-Alperi, J.; Horga, J.F.; Grupo de Anapsos en Dermatitis Atópica y Centros de Realización del Studio. Polypodium leucotomos extract in atopic dermatitis: A randomized, double-blind, placebo-controlled, multicenter trial. Actas Dermosifiliogr. 2012, 103, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Fenniche, S.; Zaouak, A.; Tanfous, A.B.; Jrad, M.; Hammami, H. Successful Treatment of Refractory Vitiligo with a Combination of Khellin and 308-nm Excimer Lamp: An Open-Label, 1-Year Prospective Study. Dermatol. Ther. 2018, 8, 127–135. [Google Scholar] [CrossRef]
- Ortel, B.; Tanew, A.; Hönigsmann, H. Treatment of vitiligo with khellin and ultraviolet A. J. Am. Acad. Dermatol. 1988, 18, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Travaini, M.L.; Sosa, G.M.; Ceccarelli, E.A.; Walter, H.; Cantrell, C.L.; Carrillo, N.J.; Dayan, F.E.; Meepagala, K.M.; Duke, S.O. Khellin and Visnagin, Furanochromones from Ammi visnaga (L.) Lam., as Potential Bioherbicides. J. Agric. Food Chem. 2016, 64, 9475–9487. [Google Scholar] [CrossRef]
- Wang, C.-C.; Yuan, J.-R.; Wang, C.-F.; Yang, N.; Chen, J.; Liu, D.; Song, J.; Feng, L.; Tan, X.-B.; Jia, X.-B. Anti-inflammatory Effects of Phyllanthus emblica L on Benzopyrene-Induced Precancerous Lung Lesion by Regulating the IL-1β/miR-101/Lin28B Signaling Pathway. Integr. Cancer Ther. 2017, 16, 505–515. [Google Scholar] [CrossRef]
- Bang, J.S.; Oh, D.H.; Choi, H.M.; Sur, B.-J.; Lim, S.-J.; Kim, J.Y.; Yang, H.-I.; Yoo, M.C.; Hahm, D.-H.; Kim, K.S. Anti-inflammatory and antiarthritic effects of piperine in human interleukin 1beta-stimulated fibroblast-like synoviocytes and in rat arthritis models. Arthritis Res. Ther. 2009, 11, R49. [Google Scholar] [CrossRef] [PubMed]
- Shafiee, A.; Hoormand, M.; Shahidi-Dadras, M.; Abadi, A. The effect of topical piperine combined with narrowband UVB on vitiligo treatment: A clinical trial study. Phytother. Res. 2018, 32, 1812–1817. [Google Scholar] [CrossRef]
- Bortolotti, M.; Porta, S. Effect of red pepper on symptoms of irritable bowel syndrome: Preliminary study. Dig. Dis. Sci. 2011, 56, 3288–3295. [Google Scholar] [CrossRef] [PubMed]
- Myers, B.M.; Smith, J.L.; Graham, D.Y. Effect of red pepper and black pepper on the stomach. Am. J. Gastroenterol. 1987, 82, 211–214. [Google Scholar] [PubMed]
- Abdel-Moneim, A.; Morsy, B.M.; Mahmoud, A.M.; Abo-Seif, M.A.; Zanaty, M.I. Beneficial therapeutic effects of Nigella sativa and/or Zingiber officinale in HCV patients in Egypt. EXCLI J. 2013, 12, 943–955. [Google Scholar] [PubMed]
- Ghorbanibirgani, A.; Khalili, A.; Rokhafrooz, D. Comparing Nigella sativa Oil and Fish Oil in Treatment of Vitiligo. Iran. Red. Crescent Med. J. 2014, 16, e4515. [Google Scholar] [CrossRef] [PubMed]
- Sarac, G.; Kapicioglu, Y.; Sener, S.; Mantar, I.; Yologlu, S.; Dundar, C.; Turkoglu, M.; Pekmezci, E. Effectiveness of topical Nigella sativa for vitiligo treatment. Dermatol. Ther. 2019, 32, e12949. [Google Scholar] [CrossRef]
- He, Y.; Hu, X.; Chang, L.; Liu, S.; Lv, L.; Qin, G.; Jiang, L. Meta-analysis of randomized controlled trials assessing the efficacy of Nigella sativa supplementation for allergic rhinitis treatment. Front. Pharmacol. 2024, 15, 1417013. [Google Scholar] [CrossRef] [PubMed]
- Huseini, H.F.; Mohtashami, R.; Sadeghzadeh, E.; Shadmanfar, S.; Hashem-Dabaghian, F.; Kianbakht, S. Efficacy and safety of oral Nigella sativa oil for symptomatic treatment of knee osteoarthritis: A double-blind, randomized, placebo-controlled clinical trial. Complement. Ther. Clin. Pract. 2022, 49, 101666. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.E.; Noori, M.; Marandi, H.; Fazlollahi, A.; Nejadghaderi, S.A.; Rahmani, S.; Noordoost, M.; Karamzad, N.; Sullman, M.J.M.; Kolahi, A.-A.; et al. The efficacy and safety of Nigella sativa in the management of osteoarthritis: A systematic review. Health Sci. Rep. 2024, 7, e1989. [Google Scholar] [CrossRef] [PubMed]
- Baradaran Rahimi, V.; Ghadiri, M.; Ramezani, M.; Askari, V.R. Antiinflammatory and anti-cancer activities of pomegranate and its constituent, ellagic acid: Evidence from cellular, animal, and clinical studies. Phytother. Res. 2020, 34, 685–720. [Google Scholar] [CrossRef] [PubMed]
- Schubert, S.Y.; Lansky, E.P.; Neeman, I. Antioxidant and eicosanoid enzyme inhibition properties of pomegranate seed oil and fermented juice flavonoids. J. Ethnopharmacol. 1999, 66, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Guo, H.; DaSilva, N.A.; Li, D.; Zhang, K.; Wan, Y.; Gao, X.-H.; Chen, H.-D.; Seeram, N.P.; Ma, H. Pomegranate (Punica granatum) Phenolics Ameliorate Hydrogen Peroxide-Induced Oxidative Stress and Cytotoxicity in Human Keratinocytes. J. Funct. Foods 2019, 54, 559–567. [Google Scholar] [CrossRef]
- BenSaad, L.A.; Kim, K.H.; Quah, C.C.; Kim, W.R.; Shahimi, M. Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum. BMC Complement. Altern. Med. 2017, 17, 47. [Google Scholar] [CrossRef]
- Nagle, D.G.; Ferreira, D.; Zhou, Y.-D. Epigallocatechin-3-gallate (EGCG): Chemical and biomedical perspectives. Phytochemistry 2006, 67, 1849–1855. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Zhang, L.; Lin, F.; Lei, J.; Zhou, M.; Xu, A. Topical epigallocatechin-3-gallate in the treatment of vitiligo. Australas J. Dermatol. 2021, 62, e404–e407. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Ao, M.; Dong, B.; Jiang, Y.; Yu, L.; Chen, Z.; Hu, C.; Xu, R. Anti-Inflammatory Effects of Curcumin in the Inflammatory Diseases: Status, Limitations and Countermeasures. Drug Des. Devel. Ther. 2021, 15, 4503–4525. [Google Scholar] [CrossRef] [PubMed]
- Jalalmanesh, S.; Mansouri, P.; Rajabi, M.; Monji, F. Therapeutic effects of turmeric topical cream in vitiligo: A randomized, double-blind, placebo-controlled pilot study. J. Cosmet. Dermatol. 2022, 21, 4454–4461. [Google Scholar] [CrossRef]
- Chen, L.; Chen, S.; Sun, P.; Liu, X.; Zhan, Z.; Wang, J. Psoralea corylifolia L.: A comprehensive review of its botany, traditional uses, phytochemistry, pharmacology, toxicology, quality control and pharmacokinetics. Chin. Med. 2023, 18, 4. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Ekavali; Chopra, K.; Mukherjee, M.; Pottabathini, R.; Dhull, D.K. Current knowledge and pharmacological profile of berberine: An update. Eur. J. Pharmacol. 2015, 761, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Takano, K.; Hachiya, A.; Murase, D.; Kawasaki, A.; Uda, H.; Kasamatsu, S.; Sugai, Y.; Takahashi, Y.; Hase, T.; Ohuchi, A.; et al. The Surprising Effect of Phenformin on Cutaneous Darkening and Characterization of Its Underlying Mechanism by a Forward Chemical Genetics Approach. Int. J. Mol. Sci. 2020, 21, 1451. [Google Scholar] [CrossRef] [PubMed]
- Diotallevi, F.; Campanati, A.; Martina, E.; Radi, G.; Paolinelli, M.; Marani, A.; Molinelli, E.; Candelora, M.; Taus, M.; Galeazzi, T.; et al. The Role of Nutrition in Immune-Mediated, Inflammatory Skin Disease: A Narrative Review. Nutrients 2022, 14, 591. [Google Scholar] [CrossRef] [PubMed]
- Di Nardo, V.; Barygina, V.; França, K.; Tirant, M.; Valle, Y.; Lotti, T. Functional nutrition as integrated approach in vitiligo management. Dermatol. Ther. 2019, 32, e12625. [Google Scholar] [CrossRef]
- Namazi, M.R.; Chee Leok, G.O.H. Vitiligo and diet: A theoretical molecular approach with practical implications. Indian J. Dermatol. Venereol. Leprol. 2009, 75, 116–118. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, U.; Gärtner, C.; Wiebusch, M.; Eichler, O.; Sies, H.; Tronnier, H.; Stahl, W. Supplementation with beta-carotene or a similar amount of mixed carotenoids protects humans from UV-induced erythema. J. Nutr. 2003, 133, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Grimes, P.E.; Nashawati, R. The Role of Diet and Supplements in Vitiligo Management. Dermatol. Clin. 2017, 35, 235–243. [Google Scholar] [CrossRef]
- Eleftheriadou, V.; Atkar, R.; Batchelor, J.; McDonald, B.; Novakovic, L.; Patel, J.V.; Ravenscroft, J.; Rush, E.; Shah, D.; Shah, R.; et al. British Association of Dermatologists guidelines for the management of people with vitiligo 2021. Br. J. Dermatol. 2022, 186, 18–29. [Google Scholar] [CrossRef]
- Talsania, N.; Lamb, B.; Bewley, A. Vitiligo is more than skin deep: A survey of members of the Vitiligo Society. Clin. Exp. Dermatol. 2010, 35, 736–739. [Google Scholar] [CrossRef]
- Cartwright, M.M.; Graber, E.M.; Stein Gold, L. The Role of Medical Nutrition Therapy in Dermatology and Skin Aesthetics: A Review. J. Drugs. Dermatol. 2020, 19, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Kubelis-López, D.E.; Zapata-Salazar, N.A.; Said-Fernández, S.L.; Sánchez-Domínguez, C.N.; Salinas-Santander, M.A.; Martínez-Rodríguez, H.G.; Vázquez-Martínez, O.T.; Wollina, U.; Lotti, T.; Ocampo-Candiani, J. Updates and new medical treatments for vitiligo (Review). Exp. Ther. Med. 2021, 22, 797. [Google Scholar] [CrossRef] [PubMed]
- Joshipura, D.; Alomran, A.; Zancanaro, P.; Rosmarin, D. Treatment of vitiligo with the topical Janus kinase inhibitor ruxolitinib: A 32-week open-label extension study with optional narrow-band ultraviolet B. J. Am. Acad. Dermatol. 2018, 78, 1205–1207.e1. [Google Scholar] [CrossRef] [PubMed]
- Rothstein, B.; Joshipura, D.; Saraiya, A.; Abdat, R.; Ashkar, H.; Turkowski, Y.; Sheth, V.; Huang, V.; Au, S.C.; Kachuk, C.; et al. Treatment of vitiligo with the topical Janus kinase inhibitor ruxolitinib. J. Am. Acad. Dermatol. 2017, 76, 1054–1060.e1. [Google Scholar] [CrossRef] [PubMed]
- Phan, K.; Phan, S.; Shumack, S.; Gupta, M. Repigmentation in vitiligo using janus kinase (JAK) inhibitors with phototherapy: Systematic review and Meta-analysis. J. Dermatolog. Treat. 2022, 33, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Shakhbazova, A.; Wu, H.; Chambers, C.J.; Sivamani, R.K. A Systematic Review of Nutrition, Supplement, and Herbal-Based Adjunctive Therapies for Vitiligo. J. Altern. Complement. Med. 2021, 27, 294–311. [Google Scholar] [CrossRef] [PubMed]
- Ortet, C.; Vale Costa, L. “Listen to Your Immune System When It’s Calling for You”: Monitoring Autoimmune Diseases Using the iShU App. Sensors 2022, 22, 3834. [Google Scholar] [CrossRef]
Nutrient/Compound | Findings | Studied Patient Population(s) |
---|---|---|
Vitamin D | Lower levels; higher IL-17; adjunct therapy reduces lesion size; positive correlation with disease duration | Males, younger, non-UV treated |
Vitamins C and E | Mixed serum level results; no significant differences in meta-analysis | Non-specified vitiligo |
Selenium | Controversial findings; generally lower levels in recent studies; consistent in meta-analyses; lower in Asians | Asian vitiligo patients |
Copper and Zinc | Conflicting results; lower Cu in tissue; different serum levels in recent studies | Vitiligo patients vs. controls |
Baicalein, Quercetin, etc. | Protect melanocytes, have antioxidant effects, promote repigmentation; antioxidative and anti-inflammatory | Non-specified vitiligo |
Saturated Fat, PUFAs | Higher SFA intake and lower EPA and DHA associated with higher BMI and VASI; increased risk with high total fat intake | Vitiligo hx < 5 y; adult nonsegmental vitiligo |
Refined Carbohydrates | High-carb diets linked to dysregulated autophagy, higher blood sugar, oxidative stress; correlation with high VASI, hyperglycemia, ROS generation | Early-stage and stabilized vitiligo; adult nonsegmental vitiligo; non-specified vitiligo |
Gluten-Free Diet | Effective for resistant vitiligo; associated with celiac disease; progressive and sustained repigmentation; higher CD incidence | Vitiligo patients with celiac disease |
Gut Microbiome | Reduced diversity and richness; altered bacterial abundance; decreased Bacteroidetesratio; distinct microbial composition | Advanced, unstable, and non-specified nonsegmental vitiligo |
Nutritional Supplement | Mechanism of Action | Highest Level of Evidence * Supporting Use | Highest Level of Evidence * Against Use |
---|---|---|---|
Vitamin D | Improve vitamin D levels to limit risk of autoimmunity from hypovitaminosis D | 2 | 1 |
Antioxidants | Mitigate number of reactive oxygen species to limit melanocyte stress and damage | 1 | 1 |
Unsaturated Fatty Acids | Limit inflammatory sequelae of dysregulated fatty acid metabolic pathways | 1 | None currently |
Probiotics and prebiotics | Maintain gut–skin axis health to reduce mitochondrial damage and autoimmune risk | None currently | None currently |
Priority Area | Proposed Actions |
---|---|
Epigenetic modulation through diet | -Track DNA methylation changes in vitiligo patients on antioxidant-rich diets -Assess diet-induced epigenetic effects on melanocyte survival |
‘Intelligent’ personalized dietary interventions | -Train AI on multi-omic and dietary data -Develop real-time predictive models for dietary impact on vitiligo severity |
Gut–skin axis and microbiome engineering | -Test targeted prebiotics and probiotics for immune modulation in vitiligo -Map metabolite effects on melanocyte function and optimize diets to boost beneficial metabolites -Personalize synbiotics using patient-specific microbiome data |
Psycho-dietary research integration | -Assess combined anti-inflammatory diets and stress reduction for vitiligo control -Investigate brain–gut–skin effects on diet response |
Nutrient biomarkers for early detection/action | -Identify biomarker panels for dietary responsiveness in vitiligo -Develop point-of-care tests for real-time nutrient adjustments -Establish lipidomic markers linked to melanocyte protection |
Integrative digital platforms for engagement | -Integrate wearable data (i.e., UV exposure, activity) for holistic lifestyle tracking |
Cross-cultural dietary studies | -Compare diet-specific inflammatory and antioxidant profiles globally -Develop dietary guidelines from multi-country cohort findings |
Biochemical pathway exploration of phytochemicals | -Map phytochemical effects on melanogenesis via metabolomics -e.g., test phytochemical synergy with JAK inhibitors and phototherapy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diaz, M.J.; Tran, J.T.; Rose, D.; Wei, A.; Lakshmipathy, D.; Lipner, S.R. Dietary Interventions, Supplements, and Plant-Derived Compounds for Adjunct Vitiligo Management: A Review of the Literature. Nutrients 2025, 17, 357. https://doi.org/10.3390/nu17020357
Diaz MJ, Tran JT, Rose D, Wei A, Lakshmipathy D, Lipner SR. Dietary Interventions, Supplements, and Plant-Derived Compounds for Adjunct Vitiligo Management: A Review of the Literature. Nutrients. 2025; 17(2):357. https://doi.org/10.3390/nu17020357
Chicago/Turabian StyleDiaz, Michael J., Jasmine T. Tran, Drake Rose, Aria Wei, Deepak Lakshmipathy, and Shari R. Lipner. 2025. "Dietary Interventions, Supplements, and Plant-Derived Compounds for Adjunct Vitiligo Management: A Review of the Literature" Nutrients 17, no. 2: 357. https://doi.org/10.3390/nu17020357
APA StyleDiaz, M. J., Tran, J. T., Rose, D., Wei, A., Lakshmipathy, D., & Lipner, S. R. (2025). Dietary Interventions, Supplements, and Plant-Derived Compounds for Adjunct Vitiligo Management: A Review of the Literature. Nutrients, 17(2), 357. https://doi.org/10.3390/nu17020357