Pregnancy and Caffeine Metabolism: Updated Insights and Implications for Maternal–Fetal Health
Abstract
1. Introduction
2. Materials and Methods
3. Caffeine: Bioavailability and Metabolism
4. Dietary Sources of Caffeine and Recommendations for Pregnant and Lactating Women
5. Experimental Evidence on the Mechanisms of Caffeine Action During Pregnancy
5.1. Caffeine and Adverse Developmental Outcomes in Offspring
5.2. Caffeine and Genotoxicity in Offspring
5.3. Effects of Prenatal Caffeine Exposure on Reproductive Development
5.4. Caffeine and Offspring Metabolic Alterations
5.5. Caffeine and Disorders of the Respiratory and Cardiovascular Systems
Disorder/Substances | In Vitro or In Vivo Model | Mode of Action | References | |
---|---|---|---|---|
Intrauterine Growth Restriction | ||||
Caffeine (120 mg/kg × day) separately or combined with sodium ferulate (50 mg/kg × day) | Pregnant mice from GD 9 to GD 18 | ↓ | histone acetylation | Ge et al. [26] |
inhibition of P-gp expression via active- tion of RYR/JNK/YB-1/P300 pathway | ||||
Caffeine (30 mg/kg × day (low dose) and 120 mg/kg × day (high dose)) | Pregnant Wistar rats from GD 9 to GD 20 | ↓ | histone acetylation | |
inhibition of P-gp expression via activetion of RYR/JNK/YB-1/P300 pathway | ||||
Caffeine (0, 0.1, 1, 10, and 10 μM) for 48 h | Primary human trophoblasts and BeWo cells supplemented with 10% fetal bovine serum and 0.1% penicillin/streptomycin at 37 °C in a 5% CO2 humidified incubator | ↑ | RYR1 and RYR3 mRNA expression levels | |
Caffeine (120 mg/kg × day) | Pregnant Wistar rats from GD9 to GD20 | ↓ | fetal bodyweights | Chen et al. [27] |
catch-up growth after birth | ||||
Liver Developmental Dysfunctions and Diseases in Offspring | ||||
Caffeine (30, 60, and 120 mg/kg × day) | Pregnant Wistar rats | inhibition of GR/C/EBPα/IGF-1R signaling | He et al. [28] | |
Caffeine (30, 60, and 120 mg/kg × day) | Pregnant Wistar rats from GD 9 to GD 20 | ↑ | expression levels of hepatic GR, | Hu et al. [32] |
↓ | C/EBPα, FASN, and SREBP1c | |||
↑ | SIRT1 expression | |||
levels of H3K14ac and H3K27ac in the SREBP1c and FASN gene promoters | ||||
Caffeine (60 and 120 mg/kg × day) | Pregnant Wistar rats from GD 9 to GD 20 | β-oxidation inhibition and lipid accumulation in the liver caused by inhibition of cathepsin D expression in hepatocytes lysosomal degradation dysfunction and autophagy flux blockade caused by upregulation of miR-665 | Zhang et al. [33] | |
Bone and Articular Abnormalities in Offspring | ||||
Caffeine (30, 60, and 120 mg/kg × day) | Pregnant rats from GD 9 to 20 | ↓ | expression of CTGF by miR375 | He et al. [34] |
FAK inhibition and adverse H-type blood vessel formation | ||||
↓ | mRNA expression of Col 1, Osterix, RUNX2, and Osteocalcin genes | |||
Caffeine (120 mg/kg × day) | Pregnant rats from GD 9 to 20 | H3K9ac and expression levels of 11β-HSD2 | Xiao et al. [36] | |
promotion of GR in BMSCs | ||||
↓ | recruitment of HDAC11 | |||
Caffeine (120 mg/kg × day) | Pregnant rats from GD 9 to 20 | ↓ | H3K9 acetylation and expression of the TGFβ signaling pathway | Zhao et al. [37] |
Caffeine (12 mg/100 g × day) | Pregnant rats on GD from 9 to 20, BMSCs were treated with exogenous corticosterone during osteogenic induction | ↑ | GR and ACE gene expression | Wen et al. [35] |
↓ | BGLAP, ALP, and BSP gene expression | |||
↑ | hypomethylation of the ACE promoter | |||
angiotensin 2 content | ||||
Caffeine (120mg/kg × day) | Pregnant rats from GD 9 to 20 | mediation of intrauterine dysplasia of articular cartilage by the GC-IGF1-GLUT1 axis mediation of increased accumulation of AGEs and matrix degradation by the GC-IGF-1-GLUT1 axis | Qing-Xian et al. [38] | |
Changes in Sex Glands in Offspring | ||||
Caffeine (26, 45, 100, and 150 mg/kg doses of caffeine via drinking water) | Pregnant rats | ↓ | total volume of the ovaries | Yadegari Dehnav et al. [41] |
↓ | number of primary and secondary follicles | |||
↓ | diameter of ovarian follicles | |||
↓ | volume of the oocyte | |||
↓ | zona pellucida thickness | |||
Caffeine (30 and 120mg/kg × day) | Pregnant Wistar rats from GD 9 to GD 20 | ↓ | testicular IGF-1 expression | Pei et al. [42] |
↓ | H3K14ac level in the IGF-1 promoter region | |||
body weight | ||||
↓ | inhibition of testosterone synthetic function | |||
30 mg/kg × day: | ||||
↑ | steroidogenic enzyme expression | |||
Genotoxicity in Offspring | ||||
Caffeine (0.3 or 1.0 mg/mL) during copulation (7 days), pregnancy (21 days), and lactation (21 days) | Swiss female mice (60 days old) | DNA repair deficiency via CREB inactivation | Lummertz Magenis et al. [29] | |
Cardiovascular Disorders in Offspring | ||||
Caffeine (30, 60, and 120 μg/mL) and BPA (35 μg/mL) for 48 h | Mouse embryos with a yolk sac placenta | alteration of mRNA levels of anti-oxidative, apoptotic, and hypoxic genes abnormal vasculogenesis apoptotic cell death | Gwon et al. [43] | |
Metabolic Profile Changes in Offspring | ||||
Caffeine (120 mg/kg × day) | Pregnant Wistar rats from GD9 to GD20 | ↓ | serum PAF level in female fetuses | Chen et al. [27] |
↑ | serum PAF level of male offspring | |||
↓ | levels of fetal serum phospholipids, bile acid, sphingosine-1-phosphate, and cortexolone in female offspring | |||
abnormal renal function in offspring | ||||
Caffeine (210 mg × day, at a volume of 4.2 mL, administered subcutaneously) | Multiparous (3.6 ± 0.32 births; weight: 200–280 kg) Yorkshire-Landrace sows on GD from 113 to 114 | antagonistic actions of caffeine at the adenosine A1 and A2A receptors at the respiratory center | Sánchez-Salcedo et al. [31] | |
Dysfunction of Aged Cerebral Arteries in Offspring | ||||
Caffeine (20 mg/kg, 2 × day) | Pregnant Sprague-Dawley rats on GD from 3.5 to 19.5 | ↓ | down-regulation of the PKA | Li et al. [30] |
↓ | down-regulation of the RYR | |||
↓ | down-regulation of the large-conductance Ca2+-activated K+ pathway | |||
Respiratory Dysfunctions in Offspring | ||||
Caffeine (96 mg/k × day) | Pregnant Wistar rats from GD9 to GD20 | ↑ | levels of IL-4 and IL-17A | Liu et al. [44] |
↓ | levels of IFN-γ and TNF-α | |||
↑ | Th2/Th1 cells ratio and Th17/Tregs cells ratio | |||
↓ | A2AR-PKA signaling | |||
↑ | Beclin1-LC3II autophagy | |||
↑ | Bcl10 degradation | |||
↓ | A20 expression | |||
inhibition of CD4+ thymopoesis | ||||
Neurodevelopmental Changes in Offspring | ||||
Caffeine (1.0 or 0.3 mg/mL during copulation (7 days), pregnancy (21 days), and lactation (21 days) | Swiss female mice (60 days old) | changes in Ape-1, BAX, and Bcl-2 in the female offspring hippocampus at 30 days of life | Magenis et al. [39] (abstract only) | |
Caffeine dissolved in water (0.3g/L) before conception, during pregnancy, and during the lactation period | Wistar rats and GAERS Offspring on PN30 subjected to 70 mg/kg of PTZ | ↓ | c-Fos protein expression | Yavuz et al. [40] |
6. Clinical Studies on Caffeine Exposure During Pregnancy—An Update from the Last 5 Years
6.1. Impact of Caffeine Consumption on Maternal Pregnancy Complications
6.1.1. Maternal Caffeine Intake and Risk of Gestational Diabetes Mellitus
6.1.2. Maternal Caffeine Intake and Risk of Hypertensive Disorders of Pregnancy
6.1.3. Maternal Caffeine Intake and Risk of Anemia During Pregnancy
6.2. Caffeine Consumption and Adverse Pregnancy and Labor Outcomes
6.2.1. Maternal Caffeine Intake and Risk of Preterm Birth
6.2.2. Maternal Caffeine Intake and Risk of Recurrent Pregnancy Loss
6.2.3. Maternal Caffeine Intake and Risk of Labor Dystocia
6.3. Epigenetic and Microbiome Effects of Prenatal Caffeine Exposure
6.3.1. Epigenetic Effects of Prenatal Caffeine Exposure
6.3.2. Prenatal Caffeine Exposure and Offspring Gut Microbiome
6.4. Impact of Prenatal Caffeine Exposure on Child Development and Health
6.4.1. Effects on Fetal Growth and Birth Outcomes
6.4.2. Caffeine and Early Neurodevelopmental Outcomes
6.4.3. Risk of Neurological and Neurodevelopmental Disorders
6.4.4. Risk of Childhood Neoplasms
6.4.5. Impact of Prenatal Caffeine Exposure on Offspring Fertility
6.4.6. Metabolic Health and Obesity Risk in Children
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
T11β-HSD2 | 11β-hydroxysteroid dehydrogenase 2 |
A20 | tumor Necrosis Factor Alpha-Induced Protein 3 |
A2AR | A2 adenosine receptor |
ACE | angiotensin-converting enzyme |
ADHD | attention-deficit hyperactivity disorder |
AGE | advanced glycation end products |
ALP | alkaline phosphatase |
Ape-1 | apurinic endonuclease 1 |
BAX | Bcl-2 Associated X-protein |
Bcl10 | B-cell lymphoma-10 protein |
Bcl-2 | B-cell lymphoma-2 protein |
Beclin1–LC3II | Bcl-2 interacting cell death executor protein 1-Microtubule-associated protein 1A/1B-light chain 3, lapidated form |
BGLAP | bone gamma-carboxyglutamate protein |
BMSCs | bone marrow mesenchymal stem cells |
BSP | bone sialoprotein |
C/EBPα | CCAAT enhancer-binding protein α |
CD4+T | cluster of differentiation 4 Positive T Lymphocytes |
Col 1 | collagen type 1 |
CTGF | connective tissue growth factor |
FAK | focal adhesion kinase |
FASN | fatty acid synthetase |
GAERS | genetic absence epilepsy rats from Strasbourg |
GC | glucocorticoid |
GD | gestational day |
GDM | gestational diabetes mellitus |
GH | gestational hypertension |
GLUT1 | glucose transporter 1 |
GR | glucocorticoid receptor |
H3K14ac | histone H3 acetylated 14 lysine |
H3K27ac | histone H3 acetylated 27 lysine |
HDAC11 | histone deacetylase 11 |
IFN-γ | interferon gamma |
IGF-1 | insulin-like growth factor 1 |
IL | interleukin |
PAF | platelet-activating factor |
PKA | protein Kinase A |
PTZ | pentylenetetrazole |
RPL | recurrent pregnancy loss |
RYR | ryanodine Receptor |
SGA | small for gestational age |
SREBP1c | sterol Regulatory Element-Binding Protein 1c |
TGFβ | transforming Growth Factor beta |
TNF-α | tumor Necrosis Factor alpha |
References
- Qian, J.; Chen, Q.; Ward, S.M.; Duan, E.; Zhang, Y. Impacts of Caffeine during Pregnancy. Trends Endocrinol. Metab. 2020, 31, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.S.; Shiva, S.; Manikantan, S.; Ramakrishna, S. Pharmacology of caffeine and its effects on the human body. Eur. J. Med. Chem. Rep. 2024, 10, 100138. [Google Scholar] [CrossRef]
- Saraiva, S.M.; Jacinto, T.A.; Gonçalves, A.C.; Gaspar, D.; Silva, L.R. Overview of Caffeine Effects on Human Health and Emerging Delivery Strategies. Pharmaceuticals 2023, 16, 1067. [Google Scholar] [CrossRef] [PubMed]
- ACOG Committee. Opinion No. 462: Moderate caffeine consumption during pregnancy. Obstet. Gynecol. 2010, 116, 467–468. [Google Scholar] [CrossRef]
- Saimaiti, A.; Zhou, D.D.; Li, J.; Xiong, R.-G.; Gan, R.-Y.; Huang, S.-Y.; Shang, A.; Zhao, C.-N.; Li, H.-Y.; Li, H.-B. Dietary sources, health benefits, and risks of caffeine. Crit. Rev. Food Sci. Nutr. 2023, 63, 9648–9666. [Google Scholar] [CrossRef]
- Rohweder, R.; de Oliveira Schmalfuss, T.; Dos Santos Borniger, D.; Ferreira, C.Z.; Zanardini, M.K.; Lopes, G.P.T.F.; Barbosa, C.P.; Moreira, T.D.; Schuler-Faccini, L.; Sanseverino, M.T.V.; et al. Caffeine intake during pregnancy and adverse outcomes: An integrative review. Reprod. Toxicol. 2024, 123, 108518. [Google Scholar] [CrossRef]
- Kobayashi, S.; Sata, F.; Murata, K.; Saijo, Y.; Araki, A.; Miyashita, C.; Itoh, S.; Minatoya, M.; Yamazaki, K.; Bamai, Y.A.; et al. Dose-dependent associations between prenatal caffeine consumption and small for gestational age, preterm birth, and reduced birthweight in the Japan Environment and Children’s Study. Paediatr. Perinat. Epidemiol. 2019, 33, 185–194. [Google Scholar] [CrossRef]
- Kukkonen, A.; Hantunen, S.; Voutilainen, A.; Ruusunen, A.; Backman, K.; Kirjavainen, P.V.; Ylilauri, M.; Voutilainen, R.; Pasanen, M.; Keski-Nisula, L. Maternal caffeine intake during pregnancy and the risk of delivering a small for gestational age baby: Kuopio Birth Cohort. Arch. Gynecol. Obstet. 2024, 310, 359–368. [Google Scholar] [CrossRef]
- Gleason, J.L.; Sundaram, R.; Mitro, S.D.; Hinkle, S.N.; Gilman, S.E.; Zhang, C.; Newman, R.B.; Hunt, K.J.; Skupski, D.W.; Grobman, W.A.; et al. Association of Maternal Caffeine Consumption During Pregnancy With Child Growth. JAMA Netw. Open 2022, 5, e2239609. [Google Scholar] [CrossRef]
- Gleason, J.L.; Tekola-Ayele, F.; Sundaram, R.; Hinkle, S.N.; Vafai, Y.; Louis, G.M.B.; Gerlanc, N.; Amyx, M.; Bever, A.M.; Smarr, M.M.; et al. Association Between Maternal Caffeine Consumption and Metabolism and Neonatal Anthropometry. JAMA Netw. Open 2021, 4, e213238. [Google Scholar] [CrossRef]
- Manuck, T.A.; Lai, Y.; Ru, H.; Glover, A.V.; Rager, J.E.; Fry, R.C.; Lu, K. Metabolites from midtrimester plasma of pregnant patients at high risk for preterm birth. Am. J. Obstet. Gynecol. MFM 2021, 3, 100393. [Google Scholar] [CrossRef]
- Coppola, P.; Kerwash, E.; Cole, S. Use of Physiologically Based Pharmacokinetic Modeling for Hepatically Cleared Drugs in Pregnancy: Regulatory Perspective. J. Clin. Pharmacol. 2023, 63, S62–S80. [Google Scholar] [CrossRef]
- Yu, T.; Campbell, S.C.; Stockmann, C.; Tak, C.; Schoen, K.; Clark, E.A.S.; Varner, M.W.; Spigarelli, M.G.; Sherwin, C.M.T. Pregnancy-induced changes in the pharmacokinetics of caffeine and its metabolites. J. Clin. Pharmacol. 2016, 56, 590–596. [Google Scholar] [CrossRef]
- Polinski, K.J.; Purdue-Smithe, A.; Robinson, S.L.; Zhao, S.K.; Schliep, K.C.; Silver, R.M.; Guan, W.; Schisterman, E.F.; Mumford, S.L.; Yeung, E.H. Maternal caffeine intake and DNA methylation in newborn cord blood. Am. J. Clin. Nutr. 2022, 115, 482–491. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, M.; He, Y.; Si, Y.; Shi, Y.; Jiang, K.; Shen, J.; Hong, J.; Ni, S. The association between caffeine exposure during pregnancy and risk of gestational hypertension/preeclampsia: A meta-analysis and systematical review. J. Obstet. Gynaecol. Res. 2022, 48, 3045–3055. [Google Scholar] [CrossRef]
- Purdue-Smithe, A.C.; Kim, K.; Schliep, K.C.; DeVilbiss, E.A.; Hinkle, S.N.; Ye, A.; Perkins, N.J.; Sjaarda, L.A.; Silver, R.M.; Schisterman, E.F.; et al. Preconception caffeine metabolites, caffeinated beverage intake, and fecundability. Am. J. Clin. Nutr. 2022, 115, 1227–1236. [Google Scholar] [CrossRef] [PubMed]
- Ritter, J.; Flower, R.J.; Henderson, G.; Loke, Y.K.; MacEwan, D.; Rang, H.P. Psychoactive drugs. In Rang and Dale’s Pharmacology, 9th ed.; Elsevier: Amsterdam, The Netherlands, 2019; p. 629. [Google Scholar]
- Grzegorzewski, J.; Bartsch, F.; Köller, A.; König, M. Pharmacokinetics of Caffeine: A Systematic Analysis of Reported Data for Application in Metabolic Phenotyping and Liver Function Testing. Front. Pharmacol. 2021, 12, 752826. [Google Scholar] [CrossRef]
- Government of Canada. Caffeine in Foods. 2022. Available online: https://www.canada.ca/en/health-canada/services/food-nutrition/food-safety/food-additives/caffeine-foods.html (accessed on 8 May 2025).
- EFSA. Scientific Opinion on the Safety of Caffeine. 2015. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/4102 (accessed on 8 May 2025).
- Food Standards Agency. FSA and FSS Issue Guidance on Caffeine in Food Supplements. 2024. Available online: https://www.food.gov.uk/news-alerts/news/fsa-and-fss-issue-guidance-on-caffeine-in-food-supplements (accessed on 8 May 2025).
- W.H.O. Restricting Caffeine Intake During Pregnancy. 2023. Available online: https://www.who.int/tools/elena/interventions/caffeine-pregnancy (accessed on 8 May 2025).
- Marshall, N.E.; Abrams, B.; Barbour, L.A.; Catalano, P.; Christian, P.; Friedman, J.E.; Hay, W.W.; Hernandez, T.L.; Krebs, N.F.; Oken, E.; et al. The importance of nutrition in pregnancy and lactation: Lifelong consequences. Am. J. Obstet. Gynecol. 2022, 226, 607–632. [Google Scholar] [CrossRef] [PubMed]
- Mousa, A.; Naqash, A.; Lim, S. Macronutrient and Micronutrient Intake during Pregnancy: An Overview of Recent Evidence. Nutrients 2019, 11, 443. [Google Scholar] [CrossRef] [PubMed]
- Rocha, P.L.A.; Lima, A.L.C.; Saunders, B.; Reis, C.E.G. Development of a Caffeine Content Table for Foods, Drinks, Medications and Supplements Typically Consumed by the Brazilian Population. Nutrients 2022, 14, 4417. [Google Scholar] [CrossRef]
- Ge, C.; Xu, D.; Yu, P.; Fang, M.; Guo, J.; Qiao, Y.; Chen, S.; Zhang, Y.; Wang, H. P-gp expression inhibition mediates placental glucocorticoid barrier opening and fetal weight loss. BMC Med. 2021, 19, 311. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Zhang, Q.; Ai, C.; Huang, S.; Zhang, H.; Guo, X.; Wang, W.; Hua, W.; Bi, H.; Wang, H. Serum metabolic profile characteristics of offspring rats before and after birth caused by prenatal caffeine exposure. Toxicology 2019, 427, 152302. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Wen, Y.; Hu, S.; Wang, G.; Hu, W.; Magdalou, J.; Chen, L.; Wang, H. Prenatal caffeine exposure induces liver developmental dysfunction in offspring rats. J. Endocrinol. 2019, 242, 211–226. [Google Scholar] [CrossRef] [PubMed]
- Lummertz Magenis, M.; Souza De Marcos, P.; Paganini Damiani, A.; da Silva, A.R.C.; Longaretti, L.M.; Franca, I.B.; Da Silva, J.; Boeck, C.R.; de Andrade, V.M. Genotoxic effects of caffeine in female mice exposed during pregnancy and lactation period and their offspring. J. Environ. Sci. Health Part C 2023, 41, 36–60. [Google Scholar] [CrossRef]
- Li, N.; Shi, R.; Tang, J.; Zhang, W.; Liu, B.; Chen, X.; Gao, Q.; Li, X.; Sun, M.; Xu, Z. Prenatal caffeine exposure induces down-regulation of the protein kinase A/ryanodine receptor/large-conductance Ca2+-activated K+ pathway in the cerebral arteries of old offspring rats. J. Hypertens. 2020, 38, 679–691. [Google Scholar] [CrossRef]
- Sánchez-Salcedo, J.A.; Orozco-Gregorio, H.; González-Lozano, M.; Roldán-Santiago, P.; González-Hernández, M.; Ballesteros-Rodea, G.; Bonilla-Jaime, H. Caffeine administered to pregnant sows improves piglet vitality, gas exchange and body weight gain. Anim. Reprod. Sci. 2019, 208, 106120. [Google Scholar] [CrossRef]
- Hu, S.; Xia, L.; Luo, H.; Xu, Y.; Yu, H.; Xu, D.; Wang, H. Prenatal caffeine exposure increases the susceptibility to non-alcoholic fatty liver disease in female offspring rats via activation of GR-C/EBPα-SIRT1 pathway. Toxicology 2019, 417, 23–34. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, D.; Huang, H.; Lu, X.; Shi, H.; Liu, K.; Guo, X.; Zhang, R.; Wang, H. Cathepsin D mediates prenatal caffeine exposure-caused NAFLD susceptibility in male rat offspring by regulating autophagy. Free Radic. Biol. Med. 2023, 208, 684–699. [Google Scholar] [CrossRef]
- He, H.; Luo, H.; Liu, L.; Shangguan, Y.; Xie, X.; Wen, Y.; Wang, H.; Chen, L. Prenatal caffeine exposure caused H-type blood vessel-related long bone dysplasia via miR375/CTGF signaling. FASEB J. 2021, 35, e21370. [Google Scholar] [CrossRef]
- Wen, Y.; Shangguan, Y.; Pan, Z.; Hu, H.; Magdalou, J.; Chen, L.; Wang, H. Activation of local bone RAS by maternal excessive glucocorticoid participated in the fetal programing of adult osteopenia induced by prenatal caffeine exposure. Toxicol. Appl. Pharmacol. 2019, 363, 1–10. [Google Scholar] [CrossRef]
- Xiao, H.; Wu, Z.; Li, B.; Shangguan, Y.; Stoltz, J.; Magdalou, J.; Chen, L.; Wang, H. The low-expression programming of 11β-HSD2 mediates osteoporosis susceptibility induced by prenatal caffeine exposure in male offspring rats. Br. J. Pharmacol. 2020, 177, 4683–4700. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Qin, J.; Pei, L.; He, Z.; Luo, H.; Magdalou, J.; Chen, L.; Wang, H. Articular damages in multi-generational female offspring due to prenatal caffeine exposure correlates with H3K9 deacetylation of TGFβ signaling pathway. Toxicology 2020, 442, 152533. [Google Scholar] [CrossRef]
- Qing-Xian, L.; Lin-Long, W.; Yi-Zhong, W.; Liang, L.; Hui, H.; Liao-Bin, C.; Hui, W. Programming changes in GLUT1 mediated the accumulation of AGEs and matrix degradation in the articular cartilage of female adult rats after prenatal caffeine exposure. Pharmacol. Res. 2020, 151, 104555. [Google Scholar] [CrossRef]
- Magenis, M.L.; Damiani, A.P.; Franca, I.B.; de Marcos, P.S.; Effting, P.S.; Muller, A.P.; Silveira, G.d.B.; Correa, M.E.A.B.; Medeiros, E.B.; Silveira, P.C.L.; et al. Behavioral, genetic and biochemical changes in the brain of the offspring of female mice treated with caffeine during pregnancy and lactation. Reprod. Toxicol. 2022, 112, 119–135. [Google Scholar] [CrossRef]
- Yavuz, M.; Albayrak, N.; Özgür, M.; Oğlu, M.G.I.; Çavdar, S.; Onat, F. The effect of prenatal and postnatal caffeine exposure on pentylentetrazole induced seizures in the non-epileptic and epileptic offsprings. Neurosci. Lett. 2019, 713, 134504. [Google Scholar] [CrossRef]
- Yadegari Dehnavi, M.; Mirjalili, A.; Dortaj, H.; Sarcheshmeh, A.A.; Mehrjerdi, F.Z. The effects of caffeine on ovarian tissue in rats. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2021, 394, 307–315. [Google Scholar] [CrossRef]
- Pei, L.-G.; Zhang, Q.; Yuan, C.; Liu, M.; Zou, Y.-F.; Lv, F.; Luo, D.-J.; Zhong, S.; Wang, H. The GC-IGF1 axis-mediated testicular dysplasia caused by prenatal caffeine exposure. J. Endocrinol. 2019, 242, M17–M32. [Google Scholar] [CrossRef] [PubMed]
- Gwon, L.W.; Park, S.G.; Lin, C.; Lee, B.J.; Nam, S.-Y. The effects of caffeine and bisphenol A singularly or in combination on cultured mouse embryos and yolk sac placenta. Reprod. Toxicol. 2020, 91, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-X.; Yan, H.-Y.; Qu, W.; Wen, X.; Hou, L.-F.; Zhao, W.-H.; Ping, J. Inhibition of thymocyte autophagy-associated CD4+T thymopoiesis is involved in asthma susceptibility in mice exposed to caffeine prenatally. Arch. Toxicol. 2019, 93, 1323–1335. [Google Scholar] [CrossRef]
- Hinkle, S.N.; Gleason, J.L.; Yisahak, S.F.; Zhao, S.K.; Mumford, S.L.; Sundaram, R.; Grewal, J.; Grantz, K.L.; Zhang, C. Assessment of Caffeine Consumption and Maternal Cardiometabolic Pregnancy Complications. JAMA Netw. Open 2021, 4, e2133401. [Google Scholar] [CrossRef]
- Gudeta, T.A.; Regassa, T.M.; Belay, A.S. Magnitude and factors associated with anemia among pregnant women attending antenatal care in Bench Maji, Keffa and Sheka zones of public hospitals, Southwest, Ethiopia, 2018: A cross-sectional study. PLoS ONE 2019, 14, e0225148. [Google Scholar] [CrossRef]
- Kukkonen, A.; Hantunen, S.; Voutilainen, A.; Ruusunen, A.; Uusitalo, L.; Backman, K.; Voutilainen, R.; Pasanen, M.; Kirjavainen, P.V.; Keski-Nisula, L. Maternal caffeine, coffee and cola drink intake and the risk of gestational diabetes—Kuopio Birth Cohort. Prim. Care Diabetes 2024, 18, 362–367. [Google Scholar] [CrossRef]
- Moon, J.H.; Jang, H.C. Gestational Diabetes Mellitus: Diagnostic Approaches and Maternal-Offspring Complications. Diabetes Metab. J. 2022, 46, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Ryan, K.; McGrath, L.; Brookfield, K. Hypertension Management in Pregnancy. Annu. Rev. Med. 2025, 76, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Gibore, N.S.; Ngowi, A.F.; Munyogwa, M.J.; Ali, M.M. Dietary Habits Associated with Anemia in Pregnant Women Attending Antenatal Care Services. Curr. Dev. Nutr. 2021, 5, nzaa178. [Google Scholar] [CrossRef]
- Dimitriadis, E.; Menkhorst, E.; Saito, S.; Kutteh, W.H.; Brosens, J.J. Recurrent pregnancy loss. Nat. Rev. Dis. Primers 2020, 6, 98. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.Y.B.; Cherian, G.; Kermack, A.J.; Bailey, S.; Macklon, N.; Sunkara, S.K.; Cheong, Y. Systematic review and meta-analysis of female lifestyle factors and risk of recurrent pregnancy loss. Sci. Rep. 2021, 11, 7081. [Google Scholar] [CrossRef]
- Jochumsen, S.; Hegaard, H.K.; Rode, L.; Jørgensen, K.J.; Nathan, N.O. Maternal factors associated with labor dystocia in low-risk nulliparous women. A systematic review and meta-analysis. Sex. Reprod. Healthc. 2023, 36, 100855. [Google Scholar] [CrossRef]
- Schellhas, L.; Monasso, G.S.; Felix, J.F.; Jaddoe, V.W.; Huang, P.; Fernández-Barrés, S.; Vrijheid, M.; Pesce, G.; Annesi-Maesano, I.; Page, C.M.; et al. Maternal Caffeine Consumption During Pregnancy and Offspring Cord Blood DNA Methylation: An Epigenome-Wide Association Study Meta-Analysis. Epigenomics 2023, 15, 1179–1193. [Google Scholar] [CrossRef]
- Laue, H.E.; Shen, Y.; Bloomquist, T.R.; Wu, H.; Brennan, K.J.M.; Cassoulet, R.; Wilkie, E.; Gillet, V.; Desautels, A.-S.; Abdelouahab, N.; et al. In Utero Exposure to Caffeine and Acetaminophen, the Gut Microbiome, and Neurodevelopmental Outcomes: A Prospective Birth Cohort Study. Int. J. Environ. Res. Public Health 2022, 19, 9357. [Google Scholar] [CrossRef]
- Nishihara, S.; Kobayashi, S.; Ikeda-Araki, A.; Miyashita, C.; Itoh, S.; Yamazaki, K.; Bamai, Y.A.; Tamura, N.; Masuda, H.; Itoh, M.; et al. Association between maternal caffeine intake during pregnancy and child development at 6 and 12 months: The Japan Environment and Children’s Study. Early Hum. Dev. 2022, 171, 105607. [Google Scholar] [CrossRef]
- Soltani, S.; Salari-Moghaddam, A.; Saneei, P.; Askari, M.; Larijani, B.; Azadbakht, L.; Esmaillzadeh, A. Maternal caffeine consumption during pregnancy and risk of low birth weight: A dose–response meta-analysis of cohort studies. Crit. Rev. Food Sci. Nutr. 2023, 63, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Jin, F.; Qiao, C. Association of maternal caffeine intake during pregnancy with low birth weight, childhood overweight, and obesity: A meta-analysis of cohort studies. Int. J. Obes. 2021, 45, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Brito Nunes, C.; Huang, P.; Wang, G.; Lundberg, M.; D’uRso, S.; E Wootton, R.; Borges, M.C.; A Lawlor, D.; Warrington, N.M.; Evans, D.M.; et al. Mendelian randomization study of maternal coffee consumption and its influence on birthweight, stillbirth, miscarriage, gestational age and pre-term birth. Int. J. Epidemiol. 2023, 52, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Haan, E.; Sallis, H.M.; Zuccolo, L.; Labrecque, J.; Ystrom, E.; Reichborn-Kjennerud, T.; Andreassen, O.; Havdahl, A.; Munafò, M.R. Prenatal smoking, alcohol and caffeine exposure and maternal-reported attention deficit hyperactivity disorder symptoms in childhood: Triangulation of evidence using negative control and polygenic risk score analyses. Addiction 2022, 117, 1458–1471. [Google Scholar] [CrossRef]
- Williford, E.M.; Howley, M.M.; Fisher, S.C.; Conway, K.M.; Romitti, P.A.; Reeder, M.R.; Olshan, A.F.; Reefhuis, J.; Browne, M.L.; The National Birth Defects Prevention Study. Maternal dietary caffeine consumption and risk of birth defects in the National Birth Defects Prevention Study, 1997–2011. Birth Defects Res. 2023, 115, 921–932. [Google Scholar] [CrossRef]
- Haan, E.; Westmoreland, K.E.; Schellhas, L.; Sallis, H.M.; Taylor, G.; Zuccolo, L.; Munafò, M.R. Prenatal smoking, alcohol and caffeine exposure and offspring externalizing disorders: A systematic review and meta-analysis. Addiction 2022, 117, 2602–2613. [Google Scholar] [CrossRef]
- Christensen, Z.P.; Freedman, E.G.; Foxe, J.J. Caffeine exposure in utero is associated with structural brain alterations and deleterious neurocognitive outcomes in 9–10 year old children. Neuropharmacology 2021, 186, 108479. [Google Scholar] [CrossRef]
- Zhang, R.; Manza, P.; Volkow, N.D. Prenatal caffeine exposure: Association with neurodevelopmental outcomes in 9- to 11-year-old children. J. Child Psychol. Psychiatry 2022, 63, 563–578. [Google Scholar] [CrossRef]
- Patti, M.A.; Li, N.; Eliot, M.; Newschaffer, C.; Yolton, K.; Khoury, J.; Chen, A.; Lanphear, B.P.; Lyall, K.; Hertz-Picciotto, I.; et al. Association between self-reported caffeine intake during pregnancy and social responsiveness scores in childhood: The EARLI and HOME studies. PLoS ONE 2021, 16, e0245079. [Google Scholar] [CrossRef]
- Karalexi, M.A.; Dessypris, N.; Clavel, J.; Metayer, C.; Erdmann, F.; Orsi, L.; Kang, A.Y.; Schüz, J.; Bonaventure, A.; Greenop, K.R.; et al. Coffee and tea consumption during pregnancy and risk of childhood acute myeloid leukemia: A Childhood Leukemia International Consortium (CLIC) study. Cancer Epidemiol. 2019, 62, 101581. [Google Scholar] [CrossRef]
- Hu, Z.; Ye, J.; Shi, S.; Luo, C.; Wang, T.; Liu, Y.; Ye, J.; Sun, X.; Ke, Y.; Hou, C. Maternal smoking, consumption of alcohol, and caffeinated beverages during pregnancy and the risk of childhood brain tumors: A meta-analysis of observational studies. BMC Public Health 2024, 24, 1238. [Google Scholar] [CrossRef]
- Eubanks, A.A.; Nobles, C.J.; Hill, M.J.; DeCherney, A.H.; Kim, K.; Sjaarda, L.A.; Perkins, N.J.; Ye, A.; Zolton, J.R.; Silver, R.M.; et al. Recalled maternal lifestyle behaviors associated with anti-müllerian hormone of adult female offspring. Reprod. Toxicol. 2020, 98, 75–81. [Google Scholar] [CrossRef]
- Voerman, E.; Jaddoe, V.W.; Hulst, M.E.; Oei, E.H.; Gaillard, R. Associations of maternal caffeine intake during pregnancy with abdominal and liver fat deposition in childhood. Pediatr. Obes. 2020, 15, e12607. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Hu, Z.; Kocak, M.; Liu, J.; Fowke, J.H.; Han, J.C.; Kakhniashvili, D.; Lewinn, K.Z.; Bush, N.R.; Mason, W.A.; et al. Associations of prenatal metabolomics profiles with early childhood growth trajectories and obesity risk in African Americans: The CANDLE study. Int. J. Obes. 2021, 45, 1439–1447. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-W.; Murrin, C.M.; Mehegan, J.; Kelleher, C.C.; Phillips, C.M. Maternal, but not paternal or grandparental, caffeine intake is associated with childhood obesity and adiposity: The Lifeways Cross-Generation Cohort Study. Am. J. Clin. Nutr. 2019, 109, 1648–1655. [Google Scholar] [CrossRef] [PubMed]
Category/Products | Caffeine (mg/100 g or mL) | Category/Products | Caffeine (mg/100 g or mL) |
---|---|---|---|
Coffes | Chocolate | ||
Brewed Coffee, Arábica | 30 | Milk chocolate | 19 |
Powder Coffees | 1165–1444 | Semisweet Chocolate | 70 |
Espresso Coffee | 279 | Dark Chocolate | 114 |
Instant Coffee (soluble), powder | 3344 | Desserts | |
Frappuccino Coffee, Starbucks | 25 | Coffee Pudding | 22 |
Cappuccino Coffee | 32 | Coffee Cake | 35 |
Brewed Coffee, Arábica with milk (80% coffee: 20% milk) | 24 | Coffee Mousse | 67 |
Teas and Infusions | Tiramisu | 9 | |
Green Tea, infused | 20 | Brownie | 18 |
Black Tea, infused | 18 | Drinks | |
Yerba Mate | 24–26 | Cola Soda | 9 |
Iced Tea | 6 | Energy drinks | 30 |
Rooibos Tea (red), infused | 16 | Dietary Supplements | |
Cocoa | Guarana, powder | 3044 | |
Cocoa, powder | 230 | Energy Bar/Gel with caffeine | 167–233 |
Category | Recommended Thresholds & Sources | Clinical Implications & Guidance |
---|---|---|
Indicative Daily Intake Thresholds (mg/day) | Maximum recommended intake: ≤200 mg/day (ACOG, EFSA, FSA). Some sources suggest a daily intake of ≤300 mg (WHO). | Consumption of more than 200 mg/day is consistently associated with increased risks. Metabolism slows significantly (with a half-life of up to 15 h in late pregnancy), thereby improving maternal/fetal exposure. |
Therefore, instead of saying “no more than 200 mg/day,” a new, more pharmacokinetically justified recommendation could be: In pregnancy, caffeine consumption should be avoided or limited to a maximum of one caffeinated beverage every 24–36 h. | ||
Associated Risks with High Intake | Intake >300 mg/day | Linked to increased risk of Small for Gestational Age (SGA), reduced birth weight, preterm birth, and anemia (especially in the third trimester). Intake >300 mg/day linked to gross motor developmental delay in children at 12 months. |
Caffeine Sources (Examples & Content) | Coffee, Tea (Black/Green), Dark Chocolate, Energy Drinks, Guarana (Powder), Cocoa (Powder) | Counsel patients to count all sources, including dark chocolate, soft drinks (such as cola drinks, which are linked to an increased risk of GDM), and supplements (e.g., Guarana—extreme caution is warranted due to its high concentration). |
Trimester-Specific Guidance | Restriction applies throughout pregnancy. | The risk of SGA appears more significant with high intake during the early pregnancy (first trimester), as the organs are undergoing critical development. Continuous high exposure is detrimental across all trimesters. |
Timing Relative to Iron Supplementation | Avoid consumption of caffeine-containing beverages around the time of supplementation. | High caffeine intake is associated with maternal anemia. Coffee and tea are known to impair non-heme iron absorption in the gut. Advise a gap (e.g., 1–2 h) between caffeine and iron supplements to maximize iron status. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Struniewicz, K.M.; Ptaszek, M.M.; Ziółkowska, A.M.; Nitsch-Osuch, A.; Kozłowska, A. Pregnancy and Caffeine Metabolism: Updated Insights and Implications for Maternal–Fetal Health. Nutrients 2025, 17, 3173. https://doi.org/10.3390/nu17193173
Struniewicz KM, Ptaszek MM, Ziółkowska AM, Nitsch-Osuch A, Kozłowska A. Pregnancy and Caffeine Metabolism: Updated Insights and Implications for Maternal–Fetal Health. Nutrients. 2025; 17(19):3173. https://doi.org/10.3390/nu17193173
Chicago/Turabian StyleStruniewicz, Katarzyna Maria, Magdalena Maria Ptaszek, Alicja Marianna Ziółkowska, Aneta Nitsch-Osuch, and Aleksandra Kozłowska. 2025. "Pregnancy and Caffeine Metabolism: Updated Insights and Implications for Maternal–Fetal Health" Nutrients 17, no. 19: 3173. https://doi.org/10.3390/nu17193173
APA StyleStruniewicz, K. M., Ptaszek, M. M., Ziółkowska, A. M., Nitsch-Osuch, A., & Kozłowska, A. (2025). Pregnancy and Caffeine Metabolism: Updated Insights and Implications for Maternal–Fetal Health. Nutrients, 17(19), 3173. https://doi.org/10.3390/nu17193173