Evaluating Prevalence of Preterm Postnatal Growth Faltering Using Fenton 2013 and INTERGROWTH-21st Growth Charts with Logistic and Machine Learning Models
Abstract
:1. Introduction
2. Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Glass, H.C.; Costarino, A.T.; Stayer, S.A.; Brett, C.M.; Cladis, F.; Davis, P.J. Outcomes for Extremely Premature Infants. Anesth. Analg. 2015, 120, 1337–1351. [Google Scholar] [CrossRef] [PubMed]
- Litt, J.S.; Hintz, S.R. Quality Improvement for NICU Graduates: Feasible, Relevant, Impactful. Semin. Fetal Neonatal Med. 2021, 26, 101205. [Google Scholar] [CrossRef] [PubMed]
- Bonnar, K.; Fraser, D. Extrauterine Growth Restriction in Low Birth Weight Infants. Neonatal Netw. 2019, 38, 27–33. [Google Scholar] [CrossRef]
- Poindexter, B.B.; Cormack, B.E.; Bloomfield, F.H. Approaches to Growth Faltering. In World Review of Nutrition and Dietetics; Koletzko, B., Cheah, F.-C., Domellöf, M., Poindexter, B.B., Vain, N., Van Goudoever, J.B., Eds.; S. Karger AG: Basel, Switzerland, 2021; Volume 122, pp. 312–324. ISBN 978-3-318-06646-3. [Google Scholar]
- De Rose, D.U.; Cota, F.; Gallini, F.; Bottoni, A.; Fabrizio, G.C.; Ricci, D.; Romeo, D.M.; Mercuri, E.; Vento, G.; Maggio, L. Extra-Uterine Growth Restriction in Preterm Infants: Neurodevelopmental Outcomes According to Different Definitions. Eur. J. Paediatr. Neurol. 2021, 33, 135–145. [Google Scholar] [CrossRef]
- Ong, K.K.; Kennedy, K.; Castañeda-Gutiérrez, E.; Forsyth, S.; Godfrey, K.M.; Koletzko, B.; Latulippe, M.E.; Ozanne, S.E.; Rueda, R.; Schoemaker, M.H.; et al. Postnatal Growth in Preterm Infants and Later Health Outcomes: A Systematic Review. Acta Paediatr. 2015, 104, 974–986. [Google Scholar] [CrossRef]
- Ordóñez-Díaz, M.D.; Pérez-Navero, J.L.; Flores-Rojas, K.; Olza-Meneses, J.; Muñoz-Villanueva, M.C.; Aguilera-García, C.M.; Gil-Campos, M. Prematurity With Extrauterine Growth Restriction Increases the Risk of Higher Levels of Glucose, Low-Grade of Inflammation and Hypertension in Prepubertal Children. Front. Pediatr. 2020, 8, 180. [Google Scholar] [CrossRef]
- Palomino-Fernández, L.; Pastor-Villaescusa, B.; Velasco, I.; Rico, M.D.L.C.; Roa, J.; Gil, Á.; Gil-Campos, M. Metabolic and Low-Grade Inflammation Risk in Young Adults with a History of Extrauterine Growth Restriction. Nutrients 2024, 16, 1608. [Google Scholar] [CrossRef]
- Shah, P.S.; Wong, K.Y.; Merko, S.; Bishara, R.; Dunn, M.; Asztalos, E.; Darling, P.B. Postnatal Growth Failure in Preterm Infants: Ascertainment and Relation to Long-Term Outcome. J. Perinat. Med. 2006, 34, 484–489. [Google Scholar] [CrossRef]
- Zozaya, C.; Díaz, C.; Saenz de Pipaón, M. How Should We Define Postnatal Growth Restriction in Preterm Infants? Neonatology 2018, 114, 177–180. [Google Scholar] [CrossRef]
- Clark, R.H.; Olsen, I.E.; Spitzer, A.R. Assessment of Neonatal Growth in Prematurely Born Infants. Clin. Perinatol. 2014, 41, 295–307. [Google Scholar] [CrossRef]
- Asbury, M.R.; Unger, S.; Kiss, A.; Ng, D.V.Y.; Luk, Y.; Bando, N.; Bishara, R.; Tomlinson, C.; O’Connor, D.L.; GTA-DoMINO Feeding Group. Optimizing the Growth of Very-Low-Birth-Weight Infants Requires Targeting Both Nutritional and Nonnutritional Modifiable Factors Specific to Stage of Hospitalization. Am. J. Clin. Nutr. 2019, 110, 1384–1394. [Google Scholar] [CrossRef] [PubMed]
- Embleton, N.E.; Pang, N.; Cooke, R.J. Postnatal Malnutrition and Growth Retardation: An Inevitable Consequence of Current Recommendations in Preterm Infants? Pediatrics 2001, 107, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Figueras-Aloy, J.; Palet-Trujols, C.; Matas-Barceló, I.; Botet-Mussons, F.; Carbonell-Estrany, X. Extrauterine Growth Restriction in Very Preterm Infant: Etiology, Diagnosis, and 2-Year Follow-Up. Eur. J. Pediatr. 2020, 179, 1469–1479. [Google Scholar] [CrossRef]
- Klevebro, S.; Lundgren, P.; Hammar, U.; Smith, L.E.; Bottai, M.; Domellöf, M.; Löfqvist, C.; Hallberg, B.; Hellström, A. Cohort Study of Growth Patterns by Gestational Age in Preterm Infants Developing Morbidity. BMJ Open 2016, 6, e012872. [Google Scholar] [CrossRef]
- Lima, P.A.T.; de Carvalho, M.; da Costa, A.C.C.; Moreira, M.E.L. Variables Associated with Extra Uterine Growth Restriction in Very Low Birth Weight Infants. J. Pediatr. 2014, 90, 22–27. [Google Scholar] [CrossRef]
- Koletzko, B.; Cheah, F.-C.; Domellöf, M.; Poindexter, B.B.; Vain, N.; Van Goudoever, J.B. (Eds.) Nutritional Care of Preterm Infants: Scientific Basis and Practical Guidelines; World Review of Nutrition and Dietetics; S. Karger AG: Basel, Switzerland, 2021; Volume 122, ISBN 978-3-318-06646-3. [Google Scholar]
- Su, B.-H. Optimizing Nutrition in Preterm Infants. Pediatr. Neonatol. 2014, 55, 5–13. [Google Scholar] [CrossRef]
- Clark, R.H.; Thomas, P.; Peabody, J. Extrauterine Growth Restriction Remains a Serious Problem in Prematurely Born Neonates. Pediatrics 2003, 111, 986–990. [Google Scholar] [CrossRef]
- Fenton, T.R.; Cormack, B.; Goldberg, D.; Nasser, R.; Alshaikh, B.; Eliasziw, M.; Hay, W.W.; Hoyos, A.; Anderson, D.; Bloomfield, F.; et al. “Extrauterine Growth Restriction” and “Postnatal Growth Failure” Are Misnomers for Preterm Infants. J. Perinatol. 2020, 40, 704–714. [Google Scholar] [CrossRef]
- Embleton, N.D.; Moltu, S.J.; Lapillonne, A.; van den Akker, C.H.P.; Carnielli, V.; Fusch, C.; Gerasimidis, K.; van Goudoever, J.B.; Haiden, N.; Iacobelli, S.; et al. Enteral Nutrition in Preterm Infants (2022): A Position Paper from the ESPGHAN Committee on Nutrition and Invited Experts. J. Pediatr. Gastroenterol. Nutr. 2022, 76, 248–268. [Google Scholar] [CrossRef]
- González-García, L.; Mantecón-Fernández, L.; Suárez-Rodríguez, M.; Arias-Llorente, R.; Lareu-Vidal, S.; Ibáñez-Fernández, A.; Caunedo-Jiménez, M.; González-López, C.; Fernández-Morán, E.; Fernández-Colomer, B.; et al. Postnatal Growth Faltering: Growth and Height Improvement at Two Years in Children with Very Low Birth Weight between 2002–2017. Children 2022, 9, 1800. [Google Scholar] [CrossRef]
- Nyakotey, D.A.; Clarke, A.M.; Cormack, B.E.; Bloomfield, F.H.; Harding, J.E. Postnatal Growth and Neurodevelopment at 2 Years’ Corrected Age in Extremely Low Birthweight Infants. Pediatr. Res. 2024, 96, 436–449. [Google Scholar] [CrossRef] [PubMed]
- Silveira, R.C.; Procianoy, R.S. Preterm Newborn’s Postnatal Growth Patterns: How to Evaluate Them. J. De Pediatr. 2019, 95, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Fenton, T.R.; Kim, J.H. A Systematic Review and Meta-Analysis to Revise the Fenton Growth Chart for Preterm Infants. BMC Pediatr. 2013, 13, 59. [Google Scholar] [CrossRef]
- Villar, J.; Giuliani, F.; Barros, F.; Roggero, P.; Coronado Zarco, I.A.; Rego, M.A.S.; Ochieng, R.; Gianni, M.L.; Rao, S.; Lambert, A.; et al. Monitoring the Postnatal Growth of Preterm Infants: A Paradigm Change. Pediatrics 2018, 141, e20172467. [Google Scholar] [CrossRef]
- Papageorghiou, A.T.; Kennedy, S.H.; Salomon, L.J.; Altman, D.G.; Ohuma, E.O.; Stones, W.; Gravett, M.G.; Barros, F.C.; Victora, C.; Purwar, M.; et al. The INTERGROWTH-21st Fetal Growth Standards: Toward the Global Integration of Pregnancy and Pediatric Care. Am. J. Obstet. Gynecol. 2018, 218, S630–S640. [Google Scholar] [CrossRef]
- Villar, J.; Giuliani, F.; Fenton, T.R.; Ohuma, E.O.; Ismail, L.C.; Kennedy, S.H. INTERGROWTH-21st Very Preterm Size at Birth Reference Charts. Lancet 2016, 387, 844–845. [Google Scholar] [CrossRef]
- Greer, F.R.; Olsen, I.E. How Fast Should the Preterm Infant Grow? Curr. Pediatr. Rep. 2013, 1, 240–246. [Google Scholar] [CrossRef]
- Peila, C.; Spada, E.; Giuliani, F.; Maiocco, G.; Raia, M.; Cresi, F.; Bertino, E.; Coscia, A. Extrauterine Growth Restriction: Definitions and Predictability of Outcomes in a Cohort of Very Low Birth Weight Infants or Preterm Neonates. Nutrients 2020, 12, 1224. [Google Scholar] [CrossRef]
- González-García, L.; García-López, E.; Fernández-Colomer, B.; Mantecón-Fernández, L.; Lareu-Vidal, S.; Suárez-Rodríguez, M.; Arias-Llorente, R.P.; Solís-Sánchez, G. Extrauterine Growth Restriction in Very Low Birth Weight Infants: Concordance Between Fenton 2013 and INTERGROWTH-21st Growth Charts. Front. Pediatr. 2021, 9, 690788. [Google Scholar] [CrossRef]
- El Rafei, R.; Maier, R.F.; Jarreau, P.H.; Norman, M.; Barros, H.; Van Reempts, P.; Van Heijst, A.; Pedersen, P.; Cuttini, M.; Johnson, S.; et al. Postnatal Growth Restriction and Neurodevelopment at 5 Years of Age: A European Extremely Preterm Birth Cohort Study. Arch. Dis. Child. Fetal Neonatal Ed. 2023, 108, 492–498. [Google Scholar] [CrossRef]
- Maiocco, G.; Migliaretti, G.; Cresi, F.; Peila, C.; Deantoni, S.; Trapani, B.; Giuliani, F.; Bertino, E.; Coscia, A. Evaluation of Extrauterine Head Growth From 14-21 Days to Discharge With Longitudinal Intergrowth-21st Charts: A New Approach to Identify Very Preterm Infants at Risk of Long-Term Neurodevelopmental Impairment. Front. Pediatr. 2020, 8, 572930. [Google Scholar] [CrossRef] [PubMed]
- Strobel, K.M.; Wood, T.R.; Valentine, G.C.; German, K.R.; Gogcu, S.; Hendrixson, D.T.; Kolnik, S.E.; Law, J.B.; Mayock, D.E.; Comstock, B.A.; et al. Contemporary Definitions of Infant Growth Failure and Neurodevelopmental and Behavioral Outcomes in Extremely Premature Infants at Two Years of Age. J. Perinatol. 2024, 44, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Engle, W.A.; American Academy of Pediatrics Committee on Fetus and Newborn. Age Terminology during the Perinatal Period. Pediatrics 2004, 114, 1362–1364. [Google Scholar] [CrossRef]
- Villar, J.; Giuliani, F.; Bhutta, Z.A.; Bertino, E.; Ohuma, E.O.; Ismail, L.C.; Barros, F.C.; Altman, D.G.; Victora, C.; Noble, J.A.; et al. Postnatal Growth Standards for Preterm Infants: The Preterm Postnatal Follow-up Study of the INTERGROWTH-21(St) Project. Lancet Glob. Health 2015, 3, e681–e691. [Google Scholar] [CrossRef]
- Agostoni, C.; Buonocore, G.; Carnielli, V.P.; De Curtis, M.; Darmaun, D.; Decsi, T.; Domellöf, M.; Embleton, N.D.; Fusch, C.; Genzel-Boroviczeny, O.; et al. Enteral Nutrient Supply for Preterm Infants: Commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 85–91. [Google Scholar] [CrossRef]
- Van Goudoever, J.B.; Carnielli, V.; Darmaun, D.; de Pipaon, M.S.; Braegger, C.; Bronsky, J.; Cai, W.; Campoy, C.; Carnielli, V.; Darmaun, D.; et al. ESPGHAN/ESPEN/ESPR/CSPEN Guidelines on Pediatric Parenteral Nutrition: Amino Acids. Clin. Nutr. 2018, 37, 2315–2323. [Google Scholar] [CrossRef]
- Iacobelli, S.; Bonsante, F.; Gouyon, J.B. Fluid and Electrolyte Intake during the First Week of Life in Preterm Infants Receiving Parenteral Nutrition According Current Guidelines. Minerva Pediatr. 2010, 62, 203–204. [Google Scholar]
- Lapillonne, A.; Mis, N.F.; Goulet, O.; van den Akker, C.H.P.; Wu, J.; Koletzko, B.; Braegger, C.; Bronsky, J.; Cai, W.; Campoy, C.; et al. ESPGHAN/ESPEN/ESPR/CSPEN Guidelines on Pediatric Parenteral Nutrition: Lipids. Clin. Nutr. 2018, 37, 2324–2336. [Google Scholar] [CrossRef]
- Mesotten, D.; Joosten, K.; van Kempen, A.; Verbruggen, S.; Braegger, C.; Bronsky, J.; Cai, W.; Campoy, C.; Carnielli, V.; Darmaun, D.; et al. ESPGHAN/ESPEN/ESPR/CSPEN Guidelines on Pediatric Parenteral Nutrition: Carbohydrates. Clin. Nutr. 2018, 37, 2337–2343. [Google Scholar] [CrossRef]
- Thébaud, B.; Goss, K.N.; Laughon, M.; Whitsett, J.A.; Abman, S.H.; Steinhorn, R.H.; Aschner, J.L.; Davis, P.G.; McGrath-Morrow, S.A.; Soll, R.F.; et al. Bronchopulmonary Dysplasia. Nat. Rev. Dis. Primers 2019, 5, 78. [Google Scholar] [CrossRef]
- Erickson, G.; Dobson, N.R.; Hunt, C.E. Immature Control of Breathing and Apnea of Prematurity: The Known and Unknown. J. Perinatol. 2021, 41, 2111–2123. [Google Scholar] [CrossRef] [PubMed]
- Eichenwald, E.C.; Committee on Fetus and Newborn, American Academy of Pediatrics. Apnea of Prematurity. Pediatrics 2016, 137, e20153757. [Google Scholar] [CrossRef]
- McGovern, M.; Giannoni, E.; Kuester, H.; Turner, M.A.; van den Hoogen, A.; Bliss, J.M.; Koenig, J.M.; Keij, F.M.; Mazela, J.; Finnegan, R.; et al. Challenges in Developing a Consensus Definition of Neonatal Sepsis. Pediatr. Res. 2020, 88, 14–26. [Google Scholar] [CrossRef]
- Hamrick, S.E.G.; Sallmon, H.; Rose, A.T.; Porras, D.; Shelton, E.L.; Reese, J.; Hansmann, G. Patent Ductus Arteriosus of the Preterm Infant. Pediatrics 2020, 146, e20201209. [Google Scholar] [CrossRef]
- Berman, L.; Moss, R.L. Necrotizing Enterocolitis: An Update. Semin. Fetal Neonatal Med. 2011, 16, 145–150. [Google Scholar] [CrossRef]
- Robinson, J.R.; Rellinger, E.J.; Hatch, L.D.; Weitkamp, J.-H.; Speck, K.E.; Danko, M.; Blakely, M.L. Surgical Necrotizing Enterocolitis. Semin. Perinatol. 2017, 41, 70–79. [Google Scholar] [CrossRef]
- Howarth, C.; Banerjee, J.; Aladangady, N. Red Blood Cell Transfusion in Preterm Infants: Current Evidence and Controversies. Neonatology 2018, 114, 7–16. [Google Scholar] [CrossRef]
- Saito-Benz, M.; Flanagan, P.; Berry, M.J. Management of Anaemia in Pre-Term Infants. Br. J. Haematol. 2020, 188, 354–366. [Google Scholar] [CrossRef]
- Chiang, M.F.; Quinn, G.E.; Fielder, A.R.; Ostmo, S.R.; Paul Chan, R.V.; Berrocal, A.; Binenbaum, G.; Blair, M.; Peter Campbell, J.; Capone, A.; et al. International Classification of Retinopathy of Prematurity, Third Edition. Ophthalmology 2021, 128, e51–e68. [Google Scholar] [CrossRef]
- Jefferies, A.L.; Canadian Paediatric Society, Fetus and Newborn Committee. Retinopathy of Prematurity: An Update on Screening and Management. Paediatr. Child. Health 2016, 21, 101–108. [Google Scholar] [CrossRef]
- Agut, T.; Alarcon, A.; Cabañas, F.; Bartocci, M.; Martinez-Biarge, M.; Horsch, S. Preterm White Matter Injury: Ultrasound Diagnosis and Classification. Pediatr. Res. 2020, 87, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Egesa, W.I.; Odoch, S.; Odong, R.J.; Nakalema, G.; Asiimwe, D.; Ekuk, E.; Twesigemukama, S.; Turyasiima, M.; Lokengama, R.K.; Waibi, W.M.; et al. Germinal Matrix-Intraventricular Hemorrhage: A Tale of Preterm Infants. Int. J. Pediatr. 2021, 2021, 6622598. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. arXiv 2016, arXiv:1603.02754. [Google Scholar]
- Panteris, E.; Deda, O.; Papazoglou, A.S.; Karagiannidis, E.; Liapikos, T.; Begou, O.; Meikopoulos, T.; Mouskeftara, T.; Sofidis, G.; Sianos, G.; et al. Machine Learning Algorithm to Predict Obstructive Coronary Artery Disease: Insights from the CorLipid Trial. Metabolites 2022, 12, 816. [Google Scholar] [CrossRef]
- Sneath, P.H.; Sokal, R.R. Numerical Taxonomy. Nature 1962, 193, 855–860. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A K-Means Clustering Algorithm. J. R. Stat. Society. Ser. C (Appl. Stat.) 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Campello, R.J.G.B.; Moulavi, D.; Sander, J. Density-Based Clustering Based on Hierarchical Density Estimates. In Advances in Knowledge Discovery and Data Mining, Proceedings of the 17th Pacific-Asia Conference, PAKDD 2013, Gold Coast, Australia, 14–17 April 2013; Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 160–172. [Google Scholar]
- McInnes, L.; Healy, J.; Astels, S. Hdbscan: Hierarchical Density Based Clustering. J. Open Source Softw. 2017, 2, 205. [Google Scholar] [CrossRef]
- Reddy, K.V.; Sharma, D.; Vardhelli, V.; Bashir, T.; Deshbotla, S.K.; Murki, S. Comparison of Fenton 2013 Growth Curves and Intergrowth-21 Growth Standards to Assess the Incidence of Intrauterine Growth Restriction and Extrauterine Growth Restriction in Preterm Neonates ≤32 Weeks. J. Matern.-Fetal Neonatal Med. 2021, 34, 2634–2641. [Google Scholar] [CrossRef]
- Ribas, S.A.; Paravidino, V.B.; Soares, F.V.M. Comparison of Growth Curves in Very Low Birth Weight Preterm Infants after Hospital Discharge. Eur. J. Pediatr. 2022, 181, 149–157. [Google Scholar] [CrossRef]
- Yazici, A.; Buyuktiryaki, M.; Sari, F.N.; Akin, M.S.; Ertekin, O.; Alyamac Dizdar, E. Comparison of Different Growth Curves in the Assessment of Extrauterine Growth Restriction in Very Low Birth Weight Preterm Infants. Arch. Pediatr. 2023, 30, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Bagga, N.; Panigrahy, N.; Maheswari, A. Extra-Uterine Growth Restriction in Preterm Infants. Newborn 2022, 1, 67–73. [Google Scholar]
- El Rafei, R.; Jarreau, P.-H.; Norman, M.; Maier, R.F.; Barros, H.; Reempts, P.V.; Pedersen, P.; Cuttini, M.; Zeitlin, J.; EPICE Research Group. Variation Very Preterm Extrauterine Growth in a European Multicountry Cohort. Arch. Dis. Child. Fetal Neonatal Ed. 2021, 106, 316–323. [Google Scholar] [CrossRef]
- Starc, M.; Giangreco, M.; Centomo, G.; Travan, L.; Bua, J. Extrauterine Growth Restriction in Very Low Birth Weight Infants According to Different Growth Charts: A Retrospective 10 Years Observational Study. PLoS ONE 2023, 18, e0283367. [Google Scholar] [CrossRef]
- Kakatsaki, I.; Papanikolaou, S.; Roumeliotaki, T.; Anagnostatou, N.H.; Lygerou, I.; Hatzidaki, E. The Prevalence of Small for Gestational Age and Extrauterine Growth Restriction among Extremely and Very Preterm Neonates, Using Different Growth Curves, and Its Association with Clinical and Nutritional Factors. Nutrients 2023, 15, 3290. [Google Scholar] [CrossRef]
- Fenton, T.R.; Samycia, L.; Elmrayed, S.; Nasser, R.; Alshaikh, B. Growth Patterns by Birth Size of Preterm Children Born at 24-29 Gestational Weeks for the First 3 Years. Paediatr. Perinat. Epidemiol. 2024, 38, 560–569. [Google Scholar] [CrossRef]
- Molony, C.L.; Hiscock, R.; Kaufman, J.; Keenan, E.; Hastie, R.; Brownfoot, F.C. Growth Trajectory of Preterm Small-for-Gestational-Age Neonates. J. Matern.-Fetal Neonatal Med. 2022, 35, 8400–8406. [Google Scholar] [CrossRef]
- Vinther, J.L.; Cadman, T.; Avraam, D.; Ekstrøm, C.T.; Sørensen, T.I.A.; Elhakeem, A.; Santos, A.C.; Pinot de Moira, A.; Heude, B.; Iñiguez, C.; et al. Gestational Age at Birth and Body Size from Infancy through Adolescence: An Individual Participant Data Meta-Analysis on 253,810 Singletons in 16 Birth Cohort Studies. PLoS Med. 2023, 20, e1004036. [Google Scholar] [CrossRef]
- Andraweera, P.H.; Condon, B.; Collett, G.; Gentilcore, S.; Lassi, Z.S. Cardiovascular Risk Factors in Those Born Preterm—Systematic Review and Meta-Analysis. J. Dev. Orig. Health Dis. 2021, 12, 539–554. [Google Scholar] [CrossRef]
- Elmrayed, S.; Metcalfe, A.; Brenner, D.; Wollny, K.; Fenton, T.R. Are Small-for-Gestational-Age Preterm Infants at Increased Risk of Overweight? Statistical Pitfalls in Overadjusting for Body Size Measures. J. Perinatol. 2021, 41, 1845–1851. [Google Scholar] [CrossRef]
- Klevebro, S.; Westin, V.; Stoltz Sjöström, E.; Norman, M.; Domellöf, M.; Edstedt Bonamy, A.-K.; Hallberg, B. Early Energy and Protein Intakes and Associations with Growth, BPD, and ROP in Extremely Preterm Infants. Clin. Nutr. 2019, 38, 1289–1295. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lin, X.-Z.; Shen, W.; Wu, F.; Mao, J.; Liu, L.; Chang, Y.-M.; Zhang, R.; Ye, X.-Z.; Qiu, Y.-P.; et al. Risk Factors of Extrauterine Growth Restriction in Very Preterm Infants with Bronchopulmonary Dysplasia: A Multi-Center Study in China. BMC Pediatr. 2022, 22, 363. [Google Scholar] [CrossRef] [PubMed]
- Flannery, D.D.; Jensen, E.A.; Tomlinson, L.A.; Yu, Y.; Ying, G.-S.; Binenbaum, G. Poor Postnatal Weight Growth Is a Late Finding after Sepsis in Very Preterm Infants. Arch. Dis. Child. Fetal Neonatal Ed. 2021, 106, 298–304. [Google Scholar] [CrossRef]
- Hellström, A.; Ley, D.; Hansen-Pupp, I.; Hallberg, B.; Löfqvist, C.; van Marter, L.; van Weissenbruch, M.; Ramenghi, L.A.; Beardsall, K.; Dunger, D.; et al. Insulin-like Growth Factor 1 Has Multisystem Effects on Foetal and Preterm Infant Development. Acta Paediatr. 2016, 105, 576–586. [Google Scholar] [CrossRef]
- Makker, K.; Ji, Y.; Hong, X.; Wang, X. Antenatal and Neonatal Factors Contributing to Extra Uterine Growth Failure (EUGR) among Preterm Infants in Boston Birth Cohort (BBC). J. Perinatol. 2021, 41, 1025–1032. [Google Scholar] [CrossRef]
- Stevens, T.P.; Shields, E.; Campbell, D.; Combs, A.; Horgan, M.; La Gamma, E.F.; Xiong, K.; Kacica, M. Variation in Enteral Feeding Practices and Growth Outcomes among Very Premature Infants: A Report from the New York State Perinatal Quality Collaborative. Am. J. Perinatol. 2016, 33, 9–19. [Google Scholar] [CrossRef]
- Assad, M.; Jerome, M.; Olyaei, A.; Nizich, S.; Hedges, M.; Gosselin, K.; Scottoline, B. Dilemmas in Establishing Preterm Enteral Feeding: Where Do We Start and How Fast Do We Go? J. Perinatol. 2023, 43, 1194–1199. [Google Scholar] [CrossRef]
- Thoene, M.; Anderson-Berry, A. Early Enteral Feeding in Preterm Infants: A Narrative Review of the Nutritional, Metabolic, and Developmental Benefits. Nutrients 2021, 13, 2289. [Google Scholar] [CrossRef]
- Griffin, I.J.; Tancredi, D.J.; Bertino, E.; Lee, H.C.; Profit, J. Postnatal Growth Failure in Very Low Birthweight Infants Born between 2005 and 2012. Arch. Dis. Child. Fetal Neonatal Ed. 2016, 101, F50–F55. [Google Scholar] [CrossRef]
- Am, B.; Me, K.; S, F.; Bp, M. Standardized Parenteral Nutrition for the Transition Phase in Preterm Infants: A Bag That Fits. Nutrients 2018, 10, 170. [Google Scholar] [CrossRef]
- Miller, M.; Vaidya, R.; Rastogi, D.; Bhutada, A.; Rastogi, S. From Parenteral to Enteral Nutrition: A Nutrition-Based Approach for Evaluating Postnatal Growth Failure in Preterm Infants. JPEN J. Parenter. Enter. Nutr. 2014, 38, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.J.; Kim, D.; Park, S.H.; Han, J.H.; Lim, J.; Shin, J.E.; Eun, H.S.; Lee, S.M.; Park, M.S. Prediction of Postnatal Growth Failure in Very Low Birth Weight Infants Using a Machine Learning Model. Diagnostics 2023, 13, 3627. [Google Scholar] [CrossRef] [PubMed]
- Han, J.H.; Yoon, S.J.; Lee, H.S.; Park, G.; Lim, J.; Shin, J.E.; Eun, H.S.; Park, M.S.; Lee, S.M. Application of Machine Learning Approaches to Predict Postnatal Growth Failure in Very Low Birth Weight Infants. Yonsei Med. J. 2022, 63, 640–647. [Google Scholar] [CrossRef]
- Anne, R.P.; Vardhelli, V.; Murki, S.; Deshabhotla, S.K.; Oleti, T.P. Comparison of Fenton, INTERGROWTH-21st, and Population-Based Growth Charts in Predicting Outcomes of Very Preterm Small-for-Gestational-Age Neonates. Indian. J. Pediatr. 2022, 89, 1034–1036. [Google Scholar] [CrossRef]
- Lan, S.; Fu, H.; Zhang, C.; Chen, Y.; Pan, L.; Song, S.; Wang, Y.; Hong, L. Comparison of Intergrowth-21st and Fenton Growth Standards to Evaluate and Predict the Postnatal Growth in Eastern Chinese Preterm Infants. Front. Pediatr. 2023, 11, 1259744. [Google Scholar] [CrossRef]
- Cho, K.H.; Kim, E.S.; Kim, J.W.; Yun, C.-H.; Jang, J.-W.; Kasani, P.H.; Jo, H.S. Comparative Effectiveness of Explainable Machine Learning Approaches for Extrauterine Growth Restriction Classification in Preterm Infants Using Longitudinal Data. Front. Med. 2023, 10, 1166743. [Google Scholar] [CrossRef]
- Lucaccioni, L.; Iughetti, L.; Berardi, A.; Predieri, B. Challenges in the Growth and Development of Newborns with Extra-Uterine Growth Restriction. Expert. Rev. Endocrinol. Metab. 2022, 17, 415–423. [Google Scholar] [CrossRef]
- Pampanini, V.; Boiani, A.; De Marchis, C.; Giacomozzi, C.; Navas, R.; Agostino, R.; Dini, F.; Ghirri, P.; Cianfarani, S. Preterm Infants with Severe Extrauterine Growth Retardation (EUGR) Are at High Risk of Growth Impairment during Childhood. Eur. J. Pediatr. 2015, 174, 33–41. [Google Scholar] [CrossRef]
- González-López, C.; Solís-Sánchez, G.; Lareu-Vidal, S.; Mantecón-Fernández, L.; Ibáñez-Fernández, A.; Rubio-Granda, A.; Suárez-Rodríguez, M. Variability in Definitions and Criteria of Extrauterine Growth Restriction and Its Association with Neurodevelopmental Outcomes in Preterm Infants: A Narrative Review. Nutrients 2024, 16, 968. [Google Scholar] [CrossRef]
- Cordova, E.G.; Belfort, M.B. Updates on Assessment and Monitoring of the Postnatal Growth of Preterm Infants. Neoreviews 2020, 21, e98–e108. [Google Scholar] [CrossRef]
- Anderson, P.J.; Burnett, A. Assessing Developmental Delay in Early Childhood—Concerns with the Bayley-III Scales. Clin. Neuropsychol. 2017, 31, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Lowe, J.; Bann, C.M.; Dempsey, A.G.; Fuller, J.; Taylor, H.G.; Gustafson, K.E.; Watson, V.E.; Vohr, B.R.; Das, A.; Shankaran, S.; et al. Do Bayley-III Composite Scores at 18-22 Months Corrected Age Predict Full-Scale IQ at 6-7 Years in Children Born Extremely Preterm? J. Pediatr. 2023, 263, 113700. [Google Scholar] [CrossRef] [PubMed]
Characteristic | N (%) | Mean (SD) |
---|---|---|
Infant sex | ||
Male | 350 (53.8%) | |
Female | 300 (46.2%) | |
Gestational age at birth (weeks) | 650 (100%) | 30.4 (1.9) |
Prematurity | ||
<28 weeks | 80 (12.3%) | |
28–316/7 weeks | 379 (58.3%) | |
32–326/7 weeks | 191 (29.4%) | |
Birth weight (grams) | 650 (100%) | 1475.9 (399.4) |
Multiple pregnancy | ||
No | 361 (55.6%) | |
Yes | 288 (44.4%) | |
Type of delivery | ||
Caesarean | 574 (88.3%) | |
Vaginal | 76 (11.7%) | |
Postmenstrual age at discharge (weeks) | 650 (100%) | 37.1 (2.7) |
Weight at discharge (grams) | 650 (100%) | 2405.5 (386.2) |
PGF by Fenton 2013 | ||
Normal (ΔZ weight ≥ −1) | 273 (42.4%) | |
Non-severe PGF (−2 ≤ ΔZ weight < −1) | 277 (43.0%) | |
Severe PGF (ΔZ weight < −2) | 94 (14.6%) | |
PGF by INTERGROWTH-21st | ||
Normal (ΔZ weight ≥ −1) | 420 (65.2%) | |
Non-severe PGF (−2 ≤ ΔZ weight < −1) | 158 (24.5%) | |
Severe PGF (ΔZ weight < −2) | 66 (10.3%) |
Fenton 2013 * | INTERGROWTH-21st * | |||||||
---|---|---|---|---|---|---|---|---|
Normal | Non-Severe PGF | Severe PGF | p-Value | Normal | Non-Severe PGF | Severe PGF | p-Value | |
N (%) | N (%) | N (%) | N (%) | N (%) | N (%) | |||
Male | 135 (39.1%) | 159 (46.1%) | 51 (14.8%) | 0.173 | 202 (58.6%) | 104 (30.1%) | 39 (11.3%) | <0.001 |
Female | 138 (46.2%) | 118 (39.5%) | 43 (14.4%) | 218 (72.9%) | 54 (18.1%) | 27 (9.0%) | ||
Gestational age at birth | 31.3 (2.0) | 31.0 (2.3) | 28.0 (3.0) | <0.001 | 31.1 (2.0) | 30.3 (2.6) | 28.0 (3.0) | <0.001 |
<28 weeks | 21 (26.9%) | 19 (24.4%) | 38 (48.7%) | <0.001 | 28 (35.9%) | 20 (25.6%) | 30 (38.5%) | <0.001 |
28–316/7 weeks | 157 (41.6%) | 171 (45.4%) | 49 (13.0%) | 245 (65.0%) | 99 (26.3%) | 33 (8.8%) | ||
32–326/7 weeks | 95 (50.3%) | 87 (46.0%) | 7 (3.7%) | 147 (77.8%) | 39 (20.6%) | 3 (1.6%) | ||
Birth weight (grams) | 1530 (500) | 1560 (540) | 1160 (580) | <0.001 | 1565 (547.5) | 1480 (530) | 1150 (510) | <0.001 |
SGA | ||||||||
No | 248 (41.0%) | 266 (44.0%) | 91 (15.0%) | 0.018 | 374 (63.6%) | 152 (25.9%) | 62 (10.5%) | 0.018 |
Yes | 25 (64.1%) | 11 (28.2%) | 3 (7.7%) | 46 (82.2%) | 6 (10.7%) | 4 (7.1%) | ||
Type of delivery | ||||||||
Caesarean | 249 (43.8%) | 243 (42.8%) | 76 (13.4%) | 0.026 | 373 (65.7%) | 143 (25.2%) | 52 (9.2%) | 0.037 |
Vaginal | 24 (31.6%) | 34 (44.7%) | 18 (23.7%) | 47 (61.8%) | 15 (19.7%) | 14 (18.4%) | ||
Multiple pregnancy | ||||||||
No | 136 (38.2%) | 157 (44.1%) | 63 (17.7%) | 0.014 | 223 (62.6%) | 87 (24.4%) | 46 (12.9%) | 0.043 |
Yes | 136 (47.4%) | 120 (41.8%) | 31 (10.8%) | 196 (68.3%) | 71 (24.7%) | 20 (7.0%) | ||
Median (IQR) | Median (IQR) | Median (IQR) | Median (IQR) | Median (IQR) | Median (IQR) | |||
Hospitalization (days) | 36 (27–45) | 41.0 (30–55) | 76.5 (63–97) | <0.001 | 36.5 (27–46) | 46.5 (36–61) | 83.5 (69–104) | <0.001 |
Parenteral nutrition (days) | 6 (1–11) | 7 (1–13) | 19 (9–35) | <0.001 | 6 (0–11) | 9 (5–16) | 22,5 (11–36) | <0.001 |
Initiation of enteral nutrition (day of life) | 2 (2–4) | 4 (2–5) | 6 (3–10) | <0.001 | 2 (2–4) | 4 (3–7) | 7 (3–11) | <0.001 |
Full enteral nutrition (day of life) | 9 (6–12) | 12 (8–19) | 25 (16–34) | <0.001 | 9 (6–13) | 16 (11–23) | 27 (18–38) | <0.001 |
Oxygen therapy (days) | 2.0 (0–4) | 3.0 (1–6) | 15.5 (3–38) | <0.001 | 2.0 (0–5) | 4.5 (2–8) | 22.5 (6–44) | <0.001 |
Respiratory support (days) | 3.0 (0–7) | 3.0 (0–8) | 15.0 (3–37) | <0.001 | 2.0 (0–7) | 5.0 (1–13) | 18.0 (5–38) | <0.001 |
Mechanical ventilation (days) | 0.0 (0–1) | 1.0 (0–2) | 4.0 (1–14) | <0.001 | 0.0 (0–1) | 1.0 (0–4) | 5.0 (1–14) | <0.001 |
Non-invasive ventilation (days) | 2.0 (0–6) | 1.0 (0–6) | 7.0 (1–24) | <0.001 | 1.0 (0–6) | 2.0 (0–9) | 9.5 (1–23) | <0.001 |
Factor | Fenton 2013 OR (95% CI) | INTERGROWTH-21st OR (95% CI) |
---|---|---|
Gestational age (weeks) | 0.81 (0.64, 1.03) | 1.01 (0.77, 1.32) |
Hospitalization (days) | 1.04 (1.02, 1.06) | 1.06 (1.03, 1.09) |
Respiratory support(days) | 0.97 (0.93, 1.00) | 0.98 (0.95, 1.02) |
Oxygen therapy(days) | 1.01 (0.98, 1.04) | 0.99 (0.96, 1.02) |
Parenteral nutrition(days) | 1.01 (0.98, 1.05) | 1.01 (0.97, 1.05) |
Enteral nutrition (day of life) | 1.06 (0.98, 1.14) | 1.04 (0.95, 1.13) |
Full enteral nutrition (day of life) | 1.05 (1.01, 1.09) | 1.06 (1.02, 1.10) |
Female sex | 1.06 (0.57, 1.99) | 0.66 (0.30, 1.46) |
Vaginal delivery | 0.88 (0.35, 2.20) | 0.58 (0.20, 1.71) |
Multiple pregnancy | 0.83 (0.43, 1.61) | 0.58 (0.25, 1.36) |
SGA | 0.11 (0.01, 0.92) | 0.10 (0.02, 0.60) |
Bronchopulmonary dysplasia | 0.90 (0.30, 2.66) | 0.39 (0.11, 1.38) |
Late-onset sepsis | 2.14 (1.09, 4.19) | 2.78 (1.28, 6.05) |
Anemia | 1.04 (0.45, 2.40) | 1.88 (0.64, 5.51) |
Factor | Average Significance Mean ± SD |
---|---|
Birth weight (grams) | 0.279 ± 0.016 |
Respiratory support (days) | 0.151 ± 0.021 |
Aminophylline administration (days) | 0.146 ± 0.006 |
Caffeine administration (days) | 0.100 ± 0.014 |
Red blood cell transfusion (count) | 0.069 ± 0.011 |
Oxygen therapy (days) | 0.067 ± 0.010 |
Enteral nutrition initiation (days) | 0.062 ± 0.015 |
Non-invasive ventilation (days) | 0.059 ± 0.019 |
Multiple birth | 0.042 ± 0.007 |
Parenteral nutrition initiation (days) | 0.025 ± 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakatsaki, I.; Anagnostatou, N.H.; Roumeliotaki, T.; Panteris, E.; Liapikos, T.; Papanikolaou, S.; Hatzidaki, E. Evaluating Prevalence of Preterm Postnatal Growth Faltering Using Fenton 2013 and INTERGROWTH-21st Growth Charts with Logistic and Machine Learning Models. Nutrients 2025, 17, 1726. https://doi.org/10.3390/nu17101726
Kakatsaki I, Anagnostatou NH, Roumeliotaki T, Panteris E, Liapikos T, Papanikolaou S, Hatzidaki E. Evaluating Prevalence of Preterm Postnatal Growth Faltering Using Fenton 2013 and INTERGROWTH-21st Growth Charts with Logistic and Machine Learning Models. Nutrients. 2025; 17(10):1726. https://doi.org/10.3390/nu17101726
Chicago/Turabian StyleKakatsaki, Ioanna, Nicolina Hilda Anagnostatou, Theano Roumeliotaki, Eleftherios Panteris, Theodoros Liapikos, Styliani Papanikolaou, and Eleftheria Hatzidaki. 2025. "Evaluating Prevalence of Preterm Postnatal Growth Faltering Using Fenton 2013 and INTERGROWTH-21st Growth Charts with Logistic and Machine Learning Models" Nutrients 17, no. 10: 1726. https://doi.org/10.3390/nu17101726
APA StyleKakatsaki, I., Anagnostatou, N. H., Roumeliotaki, T., Panteris, E., Liapikos, T., Papanikolaou, S., & Hatzidaki, E. (2025). Evaluating Prevalence of Preterm Postnatal Growth Faltering Using Fenton 2013 and INTERGROWTH-21st Growth Charts with Logistic and Machine Learning Models. Nutrients, 17(10), 1726. https://doi.org/10.3390/nu17101726