Myristic Acid Remodels Sphingolipid Metabolism via Dual Pathways: Canonical d18-Sphingolipid Regulation and Non-Canonical d16-Sphingolipid Synthesis
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation and Treatment of Cell Cultures
2.3. Lipid Extraction
2.4. LC-MS/MS Profiling
2.5. Real-Time PCR with Quantitative Analysis
2.6. Statistical Analysis
3. Results
3.1. Myristic Acid Reprograms Canonical d18-Sphingolipid Metabolism
3.2. Myristic Acid Suppresses SPTLC2 mRNA Expression and Directs C14:0-CoA into d18:1-Cer/HexCer
3.3. Myristic Acid Drives the Non-Canonical d16-Sphingolipid Biosynthesis
3.4. Myristic Acid Increases Total Cer but Inhibits Total Glycosphingolipids and Sphingomyelins
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MA | myristic acid |
SL | sphingolipid |
Cer | ceramide |
HexCer | hexosylceramide |
SM | sphingomyelin |
C14:0-CoA | myristoyl-CoA |
GSL | glycosphingolipid |
S1P | sphingoid base-1-phosphate |
SPT | serine palmitoyltransferase |
C16:0-CoA | palmitoyl-CoA |
CERSs | ceramide synthases |
DHCer | dihydroceramide |
DEGS | desaturase enzyme |
MRM | multiple reaction monitoring |
GluCer | glucosylceramide |
LacCer | lactosylceramide |
LOD | limit of detection |
LLOQ | lower limit of quantification |
ACS | acyl-CoA synthetase |
ELOVL | elongases of very long chain fatty acids |
DHHexCer | dihydrohexosylceramide |
DHLacCer | dihydrolactosylceramide |
KDSR | ketosphinganine reductase |
Sa1P | sphinganine-1-phosphate |
UGCG | UDP-glucose ceramide glucosyltransferase |
GBA | glucosylceramidase Beta |
GLT | galactosyltransferase |
SPHKs | sphingosine kinases |
SGPP1 | S1P phosphatase |
SGPL1 | S1P lyase 1 |
CERT | ceramide transporter |
SMPD | sphingomyelin phosphodiesterase |
SGMS | sphingomyelin synthase |
References
- Arghavani, H.; Bilodeau, J.F.; Rudkowska, I. Association Between Circulating Fatty Acids and Blood Pressure: A Review. Curr. Nutr. Rep. 2025, 14, 15. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Wu, F.; Zhuang, P.; Liu, X.; Li, Y.; Zhang, Y.; Jiao, J. Dietary intake of saturated fatty acids and the risk of incident diabetes: Associations by isocaloric substitutions in a nationwide Chinese cohort. Eur. J. Nutr. 2025, 64, 181. [Google Scholar] [CrossRef] [PubMed]
- Giglione, C.; Meinnel, T. Mapping the myristoylome through a complete understanding of protein myristoylation biochemistry. Prog. Lipid Res. 2022, 85, 101139. [Google Scholar] [CrossRef] [PubMed]
- Rioux, V.; Catheline, D.; Bouriel, M.; Legrand, P. Dietary myristic acid at physiologically relevant levels increases the tissue content of C20:5 n-3 and C20:3 n-6 in the rat. Reprod. Nutr. Dev. 2005, 45, 599–612. [Google Scholar] [CrossRef]
- Schlott, A.C.; Holder, A.A.; Tate, E.W. N-Myristoylation as a Drug Target in Malaria: Exploring the Role of N-Myristoyltransferase Substrates in the Inhibitor Mode of Action. ACS Infect. Dis. 2018, 4, 449–457. [Google Scholar] [CrossRef]
- Kummrow, E.; Hussain, M.M.; Pan, M.; Marsh, J.B.; Fisher, E.A. Myristic acid increases dense lipoprotein secretion by inhibiting apoB degradation and triglyceride recruitment. J. Lipid Res. 2002, 43, 2155–2163. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, Y.; Chen, X.; Zhou, Z.; Qin, W.; Gan, Y.; He, J.; Ma, J.; Chen, G.; Shang, Q.; et al. Myristic acid beneficially modulates intervertebral disc degeneration by preventing endplate osteochondral remodeling and vertebral osteoporosis in naturally aged mice. Front. Pharmacol. 2025, 16, 1517221. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Wang, Y.; Cui, H.; Zhao, G.; Guo, Y.; Wen, J. Effect of myristic acid supplementation on triglyceride synthesis and related genes in the pectoral muscles of broiler chickens. Poult. Sci. 2024, 103, 104038. [Google Scholar] [CrossRef]
- Fattore, E.; Bosetti, C.; Brighenti, F.; Agostoni, C.; Fattore, G. Palm oil and blood lipid-related markers of cardiovascular disease: A systematic review and meta-analysis of dietary intervention trials. Am. J. Clin. Nutr. 2014, 99, 1331–1350. [Google Scholar] [CrossRef]
- Temme, E.H.; Mensink, R.P.; Hornstra, G. Effects of medium chain fatty acids (MCFA), myristic acid, and oleic acid on serum lipoproteins in healthy subjects. J. Lipid Res. 1997, 38, 1746–1754. [Google Scholar] [CrossRef]
- Russo, S.B.; Baicu, C.F.; Van Laer, A.; Geng, T.; Kasiganesan, H.; Zile, M.R.; Cowart, L.A. Ceramide synthase 5 mediates lipid-induced autophagy and hypertrophy in cardiomyocytes. J. Clin. Investig. 2012, 122, 3919–3930. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Snider, J.M.; Olakkengil, N.; Lambert, J.M.; Anderson, A.K.; Ross-Evans, J.S.; Cowart, L.A.; Snider, A.J. Myristate-induced endoplasmic reticulum stress requires ceramide synthases 5/6 and generation of C14-ceramide in intestinal epithelial cells. FASEB J. 2018, 32, 5724–5736. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.P.; He, Y.; Yang, J.; Wei, X.; Fan, Y.L.; Zhang, G.G.; Zhu, Y.D.; Li, Z.Q.; Liao, H.X.; Qin, D.J.; et al. Blockade of NMT1 enzymatic activity inhibits N-myristoylation of VILIP3 protein and suppresses liver cancer progression. Signal Transduct. Target. Ther. 2023, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Masetto Antunes, M.; Godoy, G.; Curi, R.; Vergílio Visentainer, J.; Barbosa Bazotte, R. The Myristic Acid: Docosahexaenoic Acid Ratio Versus the n-6 Polyunsaturated Fatty Acid: N-3 Polyunsaturated Fatty Acid Ratio as Nonalcoholic Fatty Liver Disease Biomarkers. Metab. Syndr. Relat. Disord. 2022, 20, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Peng, C.; Ai, Y.; Wang, H.; Xiao, X.; Li, J. Docosahexaenoic Acid Ameliorates Fructose-Induced Hepatic Steatosis Involving ER Stress Response in Primary Mouse Hepatocytes. Nutrients 2016, 8, 55. [Google Scholar] [CrossRef]
- Wang, H.; Xu, X.; Wang, J.; Qiao, Y. The role of N-myristoyltransferase 1 in tumour development. Ann. Med. 2023, 55, 1422–1430. [Google Scholar] [CrossRef]
- Kuo, A.; Hla, T. Regulation of cellular and systemic sphingolipid homeostasis. Nat. Rev. Mol. Cell Biol. 2024, 25, 802–821. [Google Scholar] [CrossRef]
- Hu, Z.; Duan, J. 1-Deoxysphingolipids and Their Analogs in Foods: The Occurrence and Potential Impact on Human Health. J. Nutr. Sci. Vitaminol. 2022, 68, S146–S148. [Google Scholar] [CrossRef]
- Hornemann, T.; Penno, A.; Rütti, M.F.; Ernst, D.; Kivrak-Pfiffner, F.; Rohrer, L.; von Eckardstein, A. The SPTLC3 subunit of serine palmitoyltransferase generates short chain sphingoid bases. J. Biol. Chem. 2009, 284, 26322–26330. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, Y.; Wang, X.; Deng, Y.; Wang, X.; Li, S.; Ding, X.; Duan, J. Accumulation of Fatty Acylated Fusarium Toxin 2-Amino-14, 16-dimethyloctadecan-3-ol, a Class of Novel 1-Deoxysphingolipid Analogues, during Food Storage. J. Agric. Food Chem. 2022, 70, 5151–5158. [Google Scholar] [CrossRef]
- Mo, S.; Hu, Z.; Zhu, H.; Yu, B.; Chen, X.; Chen, Y.; Merrill, A.H., Jr.; Duan, J. The Emerging Mycotoxin 2-Amino-14, 16-Dimethyloctadecan-3-ol (AOD) Alters Transcriptional Regulation and Sphingolipid Metabolism and Undergoes N-Acylation by HepG2 Cells. Toxins 2025, 17, 413. [Google Scholar] [CrossRef]
- Zhu, H.; You, Y.; Yu, B.; Deng, Z.; Liu, M.; Hu, Z.; Duan, J. Loss of the ceramide synthase HYL-2 from Caenorhabditis elegans impairs stress responses and alters sphingolipid composition. J. Biol. Chem. 2024, 300, 107320. [Google Scholar] [CrossRef]
- Shaner, R.L.; Allegood, J.C.; Park, H.; Wang, E.; Kelly, S.; Haynes, C.A.; Sullards, M.C.; Merrill, A.H., Jr. Quantitative analysis of sphingolipids for lipidomics using triple quadrupole and quadrupole linear ion trap mass spectrometers. J. Lipid Res. 2009, 50, 1692–1707. [Google Scholar] [CrossRef]
- Hughes, T.A.; Heimberg, M.; Wang, X.; Wilcox, H.; Hughes, S.M.; Tolley, E.A.; Desiderio, D.M.; Dalton, J.T. Comparative lipoprotein metabolism of myristate, palmitate, and stearate in normolipidemic men. Metabolism 1996, 45, 1108–1118. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaka, T.; Shimano, H. Elovl6: A new player in fatty acid metabolism and insulin sensitivity. J. Mol. Med. 2009, 87, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Lone, M.A.; Hülsmeier, A.J.; Saied, E.M.; Karsai, G.; Arenz, C.; von Eckardstein, A.; Hornemann, T. Subunit composition of the mammalian serine-palmitoyltransferase defines the spectrum of straight and methyl-branched long-chain bases. Proc. Natl. Acad. Sci. USA 2020, 117, 15591–15598. [Google Scholar] [CrossRef]
- Watanabe, T.; Suzuki, A.; Ohira, S.; Go, S.; Ishizuka, Y.; Moriya, T.; Miyaji, Y.; Nakatsuka, T.; Hirata, K.; Nagai, A.; et al. The Urinary Bladder is Rich in Glycosphingolipids Composed of Phytoceramides. J. Lipid Res. 2022, 63, 100303. [Google Scholar] [CrossRef]
- Gengatharan, J.M.; Handzlik, M.K.; Chih, Z.Y.; Ruchhoeft, M.L.; Secrest, P.; Ashley, E.L.; Green, C.R.; Wallace, M.; Gordts, P.; Metallo, C.M. Altered sphingolipid biosynthetic flux and lipoprotein trafficking contribute to trans-fat-induced atherosclerosis. Cell Metab. 2025, 37, 274–290.e279. [Google Scholar] [CrossRef]
- York, A.G.; Skadow, M.H.; Oh, J.; Qu, R.; Zhou, Q.D.; Hsieh, W.Y.; Mowel, W.K.; Brewer, J.R.; Kaffe, E.; Williams, K.J.; et al. IL-10 constrains sphingolipid metabolism to limit inflammation. Nature 2024, 627, 628–635. [Google Scholar] [CrossRef]
- Xie, T.; Liu, P.; Wu, X.; Dong, F.; Zhang, Z.; Yue, J.; Mahawar, U.; Farooq, F.; Vohra, H.; Fang, Q.; et al. Ceramide sensing by human SPT-ORMDL complex for establishing sphingolipid homeostasis. Nat. Commun. 2023, 14, 3475. [Google Scholar] [CrossRef]
- Chew, W.S.; Torta, F.; Ji, S.; Choi, H.; Begum, H.; Sim, X.; Khoo, C.M.; Khoo, E.Y.H.; Ong, W.Y.; Van Dam, R.M.; et al. Large-scale lipidomics identifies associations between plasma sphingolipids and T2DM incidence. JCI Insight 2019, 5, e126925. [Google Scholar] [CrossRef] [PubMed]
- Teng, W.; Li, Y.; Du, M.; Lei, X.; Xie, S.; Ren, F. Sulforaphane Prevents Hepatic Insulin Resistance by Blocking Serine Palmitoyltransferase 3-Mediated Ceramide Biosynthesis. Nutrients 2019, 11, 1185. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.Q.; Zhang, X.Z.; Sun, L.L.; Zhang, S.Y.; Liu, B.; Liu, H.Y.; Wang, X.; Jiang, C.T. Omega-3 PUFA ameliorates hyperhomocysteinemia-induced hepatic steatosis in mice by inhibiting hepatic ceramide synthesis. Acta Pharmacol. Sin. 2017, 38, 1601–1610. [Google Scholar] [CrossRef] [PubMed]
- Cinar, R.; Godlewski, G.; Liu, J.; Tam, J.; Jourdan, T.; Mukhopadhyay, B.; Harvey-White, J.; Kunos, G. Hepatic cannabinoid-1 receptors mediate diet-induced insulin resistance by increasing de novo synthesis of long-chain ceramides. Hepatology 2014, 59, 143–153. [Google Scholar] [CrossRef]
- Mirkov, S.; Myers, J.L.; Ramírez, J.; Liu, W. SNPs affecting serum metabolomic traits may regulate gene transcription and lipid accumulation in the liver. Metabolism 2012, 61, 1523–1527. [Google Scholar] [CrossRef]
- Kovilakath, A.; Mauro, A.G.; Valentine, Y.A.; Raucci, F.J.; Jamil, M.; Carter, C.; Thompson, J.; Chen, Q.; Beutner, G.; Yue, Y.; et al. SPTLC3 Is Essential for Complex I Activity and Contributes to Ischemic Cardiomyopathy. Circulation 2024, 150, 622–641. [Google Scholar] [CrossRef]
- Montefusco, D.; Jamil, M.; Canals, D.; Saligrama, S.; Yue, Y.; Allegood, J.; Cowart, L.A. SPTLC3 regulates plasma membrane sphingolipid composition to facilitate hepatic gluconeogenesis. Cell Rep. 2024, 43, 115054. [Google Scholar] [CrossRef]
- Choi, S.; Snider, J.M.; Cariello, C.P.; Lambert, J.M.; Anderson, A.K.; Cowart, L.A.; Snider, A.J. Sphingosine kinase 1 is required for myristate-induced TNFα expression in intestinal epithelial cells. Prostaglandins Other Lipid Mediat. 2020, 149, 106423. [Google Scholar] [CrossRef]
- Glueck, M.; Koch, A.; Brunkhorst, R.; Bouzas, N.F.; Trautmann, S.; Schaefer, L.; Pfeilschifter, W.; Pfeilschifter, J.; Vutukuri, R. The atypical sphingosine 1-phosphate variant, d16:1 S1P, mediates CTGF induction via S1P2 activation in renal cell carcinoma. FEBS J. 2022, 289, 5670–5681. [Google Scholar] [CrossRef]
- Glueck, M.; Lucaciu, A.; Subburayalu, J.; Kestner, R.I.; Pfeilschifter, W.; Vutukuri, R.; Pfeilschifter, J. Atypical sphingosine-1-phosphate metabolites—Biological implications of alkyl chain length. Pflugers Arch. Eur. J. Physiol. 2024, 476, 1833–1843. [Google Scholar] [CrossRef]
- Cacicedo, J.M.; Benjachareowong, S.; Chou, E.; Ruderman, N.B.; Ido, Y. Palmitate-induced apoptosis in cultured bovine retinal pericytes: Roles of NAD(P)H oxidase, oxidant stress, and ceramide. Diabetes 2005, 54, 1838–1845. [Google Scholar] [CrossRef]
- Homaidan, F.R.; El-Sabban, M.E.; Chakroun, I.; El-Sibai, M.; Dbaibo, G.S. IL-1 stimulates ceramide accumulation without inducing apoptosis in intestinal epithelial cells. Mediat. Inflamm. 2002, 11, 39–45. [Google Scholar] [CrossRef]
- Zhu, C.; Huai, Q.; Zhang, X.; Dai, H.; Li, X.; Wang, H. Insights into the roles and pathomechanisms of ceramide and sphigosine-1-phosphate in nonalcoholic fatty liver disease. Int. J. Biol. Sci. 2023, 19, 311–330. [Google Scholar] [CrossRef]
- Hose, M.; Günther, A.; Naser, E.; Schumacher, F.; Schönberger, T.; Falkenstein, J.; Papadamakis, A.; Kleuser, B.; Becker, K.A.; Gulbins, E.; et al. Cell-intrinsic ceramides determine T cell function during melanoma progression. eLife 2022, 11, e83073. [Google Scholar] [CrossRef] [PubMed]
- van Eijk, M.; Aten, J.; Bijl, N.; Ottenhoff, R.; van Roomen, C.P.; Dubbelhuis, P.F.; Seeman, I.; Ghauharali-van der Vlugt, K.; Overkleeft, H.S.; Arbeeny, C.; et al. Reducing glycosphingolipid content in adipose tissue of obese mice restores insulin sensitivity, adipogenesis and reduces inflammation. PLoS ONE 2009, 4, e4723. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bedja, D.; Yan, W.; Lad, V.; Iocco, D.; Sivakumar, N.; Bandaru, V.V.R.; Chatterjee, S. Inhibition of glycosphingolipid synthesis reverses skin inflammation and hair loss in ApoE-/- mice fed western diet. Sci. Rep. 2018, 8, 11463. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, Y.; Zeng, Q.; Hu, Z.; Chen, Y.; Zhan, M.; Wang, Y.; Duan, J. Myristic Acid Remodels Sphingolipid Metabolism via Dual Pathways: Canonical d18-Sphingolipid Regulation and Non-Canonical d16-Sphingolipid Synthesis. Nutrients 2025, 17, 2881. https://doi.org/10.3390/nu17172881
You Y, Zeng Q, Hu Z, Chen Y, Zhan M, Wang Y, Duan J. Myristic Acid Remodels Sphingolipid Metabolism via Dual Pathways: Canonical d18-Sphingolipid Regulation and Non-Canonical d16-Sphingolipid Synthesis. Nutrients. 2025; 17(17):2881. https://doi.org/10.3390/nu17172881
Chicago/Turabian StyleYou, Yunfei, Qinghe Zeng, Zhenying Hu, Yu Chen, Mengmin Zhan, Yanlu Wang, and Jingjing Duan. 2025. "Myristic Acid Remodels Sphingolipid Metabolism via Dual Pathways: Canonical d18-Sphingolipid Regulation and Non-Canonical d16-Sphingolipid Synthesis" Nutrients 17, no. 17: 2881. https://doi.org/10.3390/nu17172881
APA StyleYou, Y., Zeng, Q., Hu, Z., Chen, Y., Zhan, M., Wang, Y., & Duan, J. (2025). Myristic Acid Remodels Sphingolipid Metabolism via Dual Pathways: Canonical d18-Sphingolipid Regulation and Non-Canonical d16-Sphingolipid Synthesis. Nutrients, 17(17), 2881. https://doi.org/10.3390/nu17172881