The Association Between the Mediterranean Diet and Fatty Acids in Red Blood Cells of Spanish Adolescents
Abstract
1. Introduction
2. Methods
2.1. Nutritional, Sociodemographic and Lifestyle Data
2.2. Laboratory Protocol for Fatty Acids Analysis
2.3. Principal Component Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AdA | Adrenic acid |
ALA | Alpha-linolenic acid |
BMI | Body mass index |
DHA | Docosahexaenoic acid |
DPA | Docosapentaenoic acid |
DPA omega-6 | Docosapentaenoic omega-6 |
EPA | Eicosapentaenoic acid |
FA | Fatty acids |
FDR | False discovery rate |
GLA | Gamma-linolenic acid |
INMA | Spanish birth cohort of the Childhood and Environment |
LA | Linoleic acid |
MedDiet | Mediterranean diet |
PC | Principal component |
PCA | Principal component analysis |
PUFAs | Polyunsaturated fatty acids |
RBC | Red blood cells |
SFA | Saturated fatty acid |
WSS | Walnuts Smart Snack Dietary Intervention Trial |
References
- Noubiap, J.J.; Nyaga, U.F. Cardiovascular disease prevention should start in early life. BMC Glob. Public Health 2023, 1, 14. [Google Scholar] [CrossRef]
- Kieling, C.; Buchweitz, C.; Caye, A.; Silvani, J.; Ameis, S.H.; Brunoni, A.R.; Cost, K.T.; Courtney, D.B.; Georgiades, K.; Merikangas, K.R.; et al. Worldwide Prevalence and Disability From Mental Disorders Across Childhood and Adolescence: Evidence From the Global Burden of Disease Study. JAMA Psychiatry 2024, 81, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Norris, S.A.; Frongillo, E.A.; Black, M.M.; Dong, Y.; Fall, C.; Lampl, M.; Liese, A.D.; Naguib, M.; Prentice, A.; Rochat, T.; et al. Nutrition in adolescent growth and development. Lancet 2022, 399, 172–184. [Google Scholar] [CrossRef] [PubMed]
- López-Gil, J.F.; García-Hermoso, A.; Martínez-González, M.Á.; Rodríguez-Artalejo, F. Mediterranean Diet and Cardiometabolic Biomarkers in Children and Adolescents: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2024, 7, e2421976. [Google Scholar] [CrossRef]
- Mongan, D.; Healy, C.; Jones, H.J.; Zammit, S.; Cannon, M.; Cotter, D.R. Plasma polyunsaturated fatty acids and mental disorders in adolescence and early adulthood: Cross-sectional and longitudinal associations in a general population cohort. Transl Psychiatry 2021, 11, 321. [Google Scholar] [CrossRef]
- Yubero-Serrano, E.M.; Lopez-Moreno, J.; Gomez-Delgado, F.; Lopez-Miranda, J. Extra virgin olive oil: More than a healthy fat. Eur. J. Clin. Nutr. 2019, 72, 8–17. [Google Scholar] [CrossRef]
- Willett, W.C.; Sacks, F.; Trichopoulou, A.; Drescher, G.; Ferro-Luzzi, A.; Helsing, E.; Trichopoulos, D. Mediterranean diet pyramid: A cultural model for healthy eating. Am. J. Clin. Nutr. 1995, 61, 1402S–1406S. [Google Scholar] [CrossRef]
- Guasch-Ferré, M.; Willett, W.C. The Mediterranean diet and health: A comprehensive overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef]
- Román, G.C.; Jackson, R.E.; Gadhia, R.; Román, A.N.; Reis, J. Mediterranean diet: The role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease. Rev. Neurol. 2019, 175, 724–741. [Google Scholar] [CrossRef]
- Camprodon-Boadas, P.; Gil-Dominguez, A.; De la Serna, E.; Sugranyes, G.; Lázaro, I.; Baeza, I. Mediterranean Diet and Mental Health in Children and Adolescents: A Systematic Review. Nutr. Rev. 2025, 83, e343–e355. [Google Scholar] [CrossRef]
- Kaur, N.; Chugh, V.; Gupta, A.K. Essential fatty acids as functional components of foods- A review. J. Food Sci. Technol. 2014, 51, 2289–2303. [Google Scholar] [CrossRef] [PubMed]
- Saber, N.; Teymoori, F.; Kazemi Jahromi, M.; Mokhtari, E.; Norouzzadeh, M.; Farhadnejad, H.; Mirmiran, P.; Azizi, F. From adolescence to adulthood: Mediterranean diet adherence and cardiometabolic health in a prospective cohort study. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Pottala, J.V.; Talley, J.A.; Churchill, S.W.; Lynch, D.A.; von Schacky, C.; Harris, W.S. Red blood cell fatty acids are associated with depression in a case-control study of adolescents. Prostaglandins Leukot. Essent. Fatty Acids 2012, 86, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Yan, Y.; Li, J.; Yang, B.; Zhao, X.; Wan, Y.; Zheng, J.-S.; Mi, J.; Li, D. Relationship between erythrocyte phospholipid fatty acid composition and obesity in children and adolescents. J. Clin. Lipidol. 2019, 13, 70–79.e1. [Google Scholar] [CrossRef]
- Chatzinikolaou, P.N.; Margaritelis, N.V.; Paschalis, V.; Theodorou, A.A.; Vrabas, I.S.; Kyparos, A.; D’Alessandro, A.; Nikolaidis, M.G. Erythrocyte metabolism. Acta Physiol. 2024, 240, e14081. [Google Scholar] [CrossRef]
- Harris, W.S.; Pottala, J.V.; Varvel, S.A.; Borowski, J.J.; Ward, J.N.; McConnell, J.P. Erythrocyte omega-3 fatty acids increase and linoleic acid decreases with age: Observations from 160,000 patients. Prostaglandins Leukot. Essent. Fat. Acids 2013, 88, 257–263. [Google Scholar] [CrossRef]
- Pinar-Martí, A.; Fernández-Barrés, S.; Gignac, F.; Persavento, C.; Delgado, A.; Romaguera, D.; Lázaro, I.; Ros, E.; López-Vicente, M.; Salas-Salvadó, J.; et al. Red blood cell omega-3 fatty acids and attention scores in healthy adolescents. Eur. Child Adolesc. Psychiatry 2023, 32, 2187–2195. [Google Scholar] [CrossRef]
- Frensham, L.J.; Bryan, J.; Parletta, N. Influences of micronutrient and omega-3 fatty acid supplementation on cognition, learning, and behavior: Methodological considerations and implications for children and adolescents in developed societies. Nutr. Rev. 2012, 70, 594–610. [Google Scholar] [CrossRef]
- Julvez, J.; Gignac, F.; Fernández-Barrés, S.; Romaguera, D.; Sala-Vila, A.; Ranzani, O.T.; Persavento, C.; Delgado, A.; Carol, A.; Torrent, J.; et al. Walnuts, Long-Chain Polyunsaturated Fatty Acids, and Adolescent Brain Development: Protocol for the Walnuts Smart Snack Dietary Intervention Trial. Front. Pediatr. 2021, 9, 593847. [Google Scholar] [CrossRef]
- Ribas-Fitó, N.; Ramón, R.; Ballester, F.; Grimalt, J.; Marco, A.; Olea, N.; Posada, M.; Rebagliato, M.; Tardón, A.; Torrent, M.; et al. Child health and the environment: The INMA Spanish Study. Paediatr. Perinat. Epidemiol. 2006, 20, 403–410. [Google Scholar] [CrossRef]
- Serra Majem, L.L.; Ribas Barba, L.; Ngo de la Cruz, J.; Ortega Anta, R.M.; Pérez Rodrigo, C.; Aranceta Bartrina, J. Alimentación, jóvenes y dieta mediterránea en España. In Desarrollo del KIDMED, Índice de Calidad de la Dieta Mediterránea en la Infancia y la Adolescencia; Serra Majem, L., Aranceta Bartrina, J., Eds.; Aliment Infant y Juv Estud enKid 1a Edición; Masson: Barcelona, Spain, 2002; pp. 51–59. [Google Scholar]
- de Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- Cofán, M.; Covas, M.-I.; Estruch, R.; Harris, W.S.; Lamuela-Raventós, R.M.; Pintó, X.; Pérez-Heras, A.M.; Ros, E.; Sala-Vila, A. Determinants of the omega-3 index in a Mediterranean population at increased risk for CHD. Br. J. Nutr. 2011, 106, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Lázaro, I.; Grau-Rivera, O.; Suárez-Calvet, M.; Fauria, K.; Minguillón, C.; Shekari, M.; Falcón, C.; García-Prat, M.; Huguet, J.; Molinuevo, J.L.; et al. Omega-3 blood biomarkers relate to brain glucose uptake in individuals at risk of Alzheimer’s disease dementia. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2024, 16, e12596. [Google Scholar] [CrossRef] [PubMed]
- Guevarra, E. Nutriverse/Zscorer: Zscorer v0.3.1. In Zenodo 2019. Available online: https://zenodo.org/records/3510075 (accessed on 1 December 2024).
- Kassambara, A.; Mundt, F. CRAN-Package Factoextra 2020. Available online: https://cran.r-project.org/web/packages/factoextra/index.html (accessed on 1 December 2024).
- Revelle, W. CRAN-Package Psych 2014. Available online: https://doi.org/10.32614/CRAN.package.psych (accessed on 1 December 2024).
- Schwingshackl, L.; Morze, J.; Hoffmann, G. Mediterranean diet and health status: Active ingredients and pharmacological mechanisms. Br. J. Pharmacol. 2020, 177, 1241–1257. [Google Scholar] [CrossRef]
- Mariamenatu, A.H.; Abdu, E.M. Overconsumption of Omega-6 Polyunsaturated Fatty Acids (PUFAs) versus Deficiency of Omega-3 PUFAs in Modern-Day Diets: The Disturbing Factor for Their “Balanced Antagonistic Metabolic Functions” in the Human Body. J. Lipids 2021, 2021, 8848161. [Google Scholar] [CrossRef] [PubMed]
- Syrén, M.-L.; Turolo, S.; de Marco, E.A.; De Cosmi, V.; Risé, P.; Marangoni, F.; Minoli, D.G.; Manzoni, G.; Agostoni, C. Whole blood fatty acid profile of young subjects and adherence to the Mediterranean diet: An observational cohort study. Lipids Health Dis. 2022, 21, 23. [Google Scholar] [CrossRef]
- Bartha, V.; Exner, L.; Basrai, M.; Bischoff, S.C.; Schweikert, D.; Adolph, M.; Bruckner, T.; Grueninger, D.; Klein, D.; Meller, C.; et al. Changes in serum omega fatty acids on a Mediterranean diet intervention in patients with gingivitis: An exploratory study. J. Periodontal Res. 2022, 57, 1198–1209. [Google Scholar] [CrossRef]
- Ortega, R.M. Importance of functional foods in the Mediterranean diet. Public Health Nutr. 2006, 9, 1136–1140. [Google Scholar] [CrossRef]
- Aparicio-Ugarriza, R.; Cuenca-García, M.; Gonzalez-Gross, M.; Julián, C.; Bel-Serrat, S.; Moreno, L.A.; Breidenassel, C.; Kersting, M.; Arouca, A.B.; Michels, N.; et al. Relative validation of the adapted Mediterranean Diet Score for Adolescents by comparison with nutritional biomarkers and nutrient and food intakes: The Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study. Public Health Nutr. 2019, 22, 2381–2397. [Google Scholar] [CrossRef]
- Huang, Z.; Ma, K.; Yin, X.; Li, Z.; Chen, M.; Duan, Y.; Li, L.; Hu, Y. The associations of fatty acids related dietary patterns with overweight and obesity among Chinese children. J. Health Popul. Nutr. 2024, 43, 54. [Google Scholar] [CrossRef]
- Mantzioris, E.; Muhlhausler, B.S.; Villani, A. Impact of the Mediterranean Dietary pattern on n-3 fatty acid tissue levels–A systematic review. Prostaglandins Leukot. Essent. Fat. Acids 2022, 176, 102387. [Google Scholar] [CrossRef]
- Turchini, G.M.; Francis, D.S.; De Silva, S.S. A Whole Body, In Vivo, Fatty Acid Balance Method to Quantify PUFA Metabolism (Desaturation, Elongation and Beta-oxidation). Lipids 2007, 42, 1065–1071. [Google Scholar] [CrossRef]
- Kaur, G.; Cameron-Smith, D.; Garg, M.; Sinclair, A.J. Docosapentaenoic acid (22:5n-3): A review of its biological effects. Prog. Lipid Res. 2011, 50, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Tong, W.; Ruan, Y.; Sinclair, A.J.; Li, D. Different metabolism of EPA, DPA and DHA in humans: A double-blind cross-over study. Prostaglandins Leukot. Essent. Fat. Acids 2020, 158, 102033. [Google Scholar] [CrossRef] [PubMed]
- Punia, S.; Sandhu, K.S.; Siroha, A.K.; Dhull, S.B. Omega 3-metabolism, absorption, bioavailability and health benefits—A review. PharmaNutrition 2019, 10, 100162. [Google Scholar] [CrossRef]
- Szczuko, M.; Kikut, J.; Komorniak, N.; Bilicki, J.; Celewicz, Z.; Ziętek, M. The Role of Arachidonic and Linoleic Acid Derivatives in Pathological Pregnancies and the Human Reproduction Process. Int. J. Mol. Sci. 2020, 21, 9628. [Google Scholar] [CrossRef]
- Decsi, T.; Kennedy, K. Sex-specific differences in essential fatty acid metabolism. Am. J. Clin. Nutr. 2011, 94, S1914–S1919. [Google Scholar] [CrossRef] [PubMed]
- Kontele, I.; Panagiotakos, D.; Yannakoulia, M.; Vassilakou, T. Socio-Demographic Determinants of Mediterranean Diet Adherence: Results of the EU-National Health Interview Survey (EHIS-3). J. Hum. Nutr. Diet. Off. J. Br. Diet. Assoc. 2025, 38, e70023. [Google Scholar] [CrossRef]
- Di Nucci, A.; Silano, M.; Cardamone, E. Adherence to Mediterranean Diet and Health Outcomes in Adolescents: An Umbrella Review. Nutr. Rev. 2025, 83, e1329–e1342. [Google Scholar] [CrossRef]
- O’Sullivan, T.A.; Ambrosini, G.L.; Mori, T.A.; Beilin, L.J.; Oddy, W.H. Omega-3 Index Correlates with Healthier Food Consumption in Adolescents and with Reduced Cardiovascular Disease Risk Factors in Adolescent Boys. Lipids 2011, 46, 59–67. [Google Scholar] [CrossRef]
- Gonçalinho, G.H.; Sampaio, G.R.; Soares-Freitas, R.A.; Damasceno, N.R. Omega-3 Fatty Acids in Erythrocyte Membranes as Predictors of Lower Cardiovascular Risk in Adults without Previous Cardiovascular Events. Nutrients 2021, 13, 1919. [Google Scholar] [CrossRef]
- Pottala, J.V.; Yaffe, K.; Robinson, J.G.; Espeland, M.A.; Wallace, R.; Harris, W.S. Higher RBC EPA + DHA corresponds with larger total brain and hippocampal volumes. Neurology 2014, 82, 435–442. [Google Scholar] [CrossRef]
- Glickman, M.E.; Rao, S.R.; Schultz, M.R. False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. J. Clin. Epidemiol. 2014, 67, 850–857. [Google Scholar] [CrossRef]
- Fewell, Z.; Davey Smith, G.; Sterne, J.A.C. The Impact of Residual and Unmeasured Confounding in Epidemiologic Studies: A Simulation Study. Am. J. Epidemiol. 2007, 166, 646–655. [Google Scholar] [CrossRef]
Characteristic | N | KIDMED | p-Value a | |
---|---|---|---|---|
“Poor to Average Adherence” N = 428 | “Good Adherence” N = 201 | |||
KIDMED score | 629 | 5.04 (1.69) | 8.85 (0.97) | |
Sex, n (%) | 629 | 0.006 | ||
Male | 203 (47%) | 119 (59%) | ||
Female | 225 (53%) | 82 (41%) | ||
Age (years) | 590 | 14.69 (1.10) | 14.28 (1.22) | <0.001 |
Height (cm) | 627 | 164.73 (8.30) | 164.67 (9.59) | 0.970 |
Weight (kg) | 625 | 58.79 (13.36) | 56.77 (13.69) | 0.139 |
BMI z-score | 586 | 0.39 (1.12) | 0.30 (1.08) | 0.340 |
Maternal education, n (%) | 590 | <0.001 | ||
No-university | 217 (55%) | 77 (40%) | ||
University | 179 (45%) | 117 (60%) | ||
Maternal social class | 559 | 0.035 | ||
High and upper-middle | 119 (31%) | 77 (43%) | ||
Middle | 192 (51%) | 79 (44%) | ||
Working | 67 (18%) | 25 (14%) | ||
Cohort, n (%) | 629 | <0.001 | ||
INMA | 247 (58%) | 77 (38%) | ||
WSS | 181 (42%) | 124 (62%) | ||
Physical activity, n (%) | 625 | <0.001 | ||
Sedentary to low | 120 (28%) | 27 (14%) | ||
Moderate | 110 (26%) | 42 (21%) | ||
Active to quite active | 196 (46%) | 130 (65%) |
Characteristic | KIDMED | p-Value a | |
---|---|---|---|
“Poor-to-Average Adherence” N = 428 | “Good Adherence” N = 201 | ||
KIDMED score | 5.04 (1.69) | 8.85 (0.97) | |
C14:0 | 0.99 (0.85) | 1.17 (1.01) | 0.003 |
C16:0 | 19.63 (1.29) | 19.92 (1.19) | 0.004 |
C16:1 n-7 | 0.34 (0.17) | 0.29 (0.16) | <0.001 |
C18:0 | 18.38 (1.14) | 17.96 (1.28) | <0.001 |
All-trans C18:1 | 0.66 (0.46) | 0.86 (0.46) | <0.001 |
C18:1 n-9 cis | 14.84 (1.70) | 15.43 (1.79) | <0.001 |
C18:2 n-6 cis | 12.39 (1.43) | 12.39 (1.62) | 0.904 |
C18:3 n-6 | 0.10 (0.07) | 0.13 (0.08) | <0.001 |
C18:3 n-3 | 0.10 (0.05) | 0.11 (0.08) | 0.074 |
C20:0 | 0.21 (0.05) | 0.21 (0.05) | 0.035 |
C20:1 n-9 | 0.32 (0.07) | 0.30 (0.07) | 0.002 |
C20:2 n-6 | 0.35 (0.08) | 0.32 (0.12) | <0.001 |
C20:3 n-6 | 1.71 (0.37) | 1.75 (0.39) | 0.175 |
C20:4 n-6 | 17.97 (2.15) | 16.91 (2.26) | <0.001 |
C20:5 n-3 | 0.35 (0.16) | 0.39 (0.17) | 0.004 |
C22:0 | 0.27 (0.12) | 0.31 (0.12) | <0.001 |
C22:4 n-6 | 3.48 (0.61) | 3.27 (0.60) | <0.001 |
C22:5 n-6 | 0.62 (0.14) | 0.60 (0.15) | 0.163 |
C22:5 n-3 | 1.40 (0.23) | 1.43 (0.25) | 0.204 |
C22:6 n-3 | 3.93 (0.91) | 4.19 (0.86) | 0.001 |
C24:0 | 0.61 (0.24) | 0.69 (0.29) | 0.001 |
C24:1 n-9 | 0.56 (0.28) | 0.67 (0.31) | <0.001 |
Characteristic | N | Coefficient a | 95% CI a | p-Value |
---|---|---|---|---|
C16:0 | ||||
Poor-to-average adherence | 368 | Ref. | ||
Good adherence | 184 | 0.18 | 0.01, 0.35 | 0.041 |
All-trans C18:1 | ||||
Poor-to-average adherence | 368 | Ref. | ||
Good adherence | 184 | 0.05 | 0.01, 0.09 | 0.016 |
C20:4 n-6 | ||||
Poor-to-average adherence | 368 | Ref. | ||
Good adherence | 184 | −0.19 | −0.30, −0.08 | <0.001 |
C20:5 n-3 | ||||
Poor-to-average adherence | 368 | Ref. | ||
Good adherence | 184 | 0.34 | 0.17, 0.52 | <0.001 |
C22:4 n-6 | ||||
Poor-to-average adherence | 368 | Ref. | ||
Good adherence | 184 | −0.28 | −0.46, −0.11 | 0.002 |
C22:5 n-6 | ||||
Poor-to-average adherence | 368 | Ref. | ||
Good adherence | 184 | −0.22 | −0.40, −0.04 | 0.018 |
C22:6 n-3 | ||||
Poor-to-average adherence | 368 | Ref. | ||
Good adherence | 184 | 0.29 | 0.11, 0.46 | 0.001 |
Characteristic | N | Coefficient a | 95% CI a | p-Value |
---|---|---|---|---|
PC1 very-long chain FAs | ||||
Poor-to-average adherence | 368 | Ref. | ||
Good adherence | 184 | 0.04 | −0.06, 0.14 | 0.442 |
PC2 long-chain omega-6 FAs | ||||
Poor-to-average adherence | 368 | Ref. | ||
Good adherence | 184 | −0.19 | −0.36, −0.03 | 0.020 |
PC3 omega-3 FAs | ||||
Poor-to-average adherence | 368 | Ref. | ||
Good adherence | 184 | 0.32 | 0.14, 0.49 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayala-Aldana, N.; Lafuente, D.; Lázaro, I.; Pinar-Martí, A.; Manidis, A.; Bernardo-Castro, S.; Fernandez-Barres, S.; Healy, D.R.; Vrijheid, M.; Contreras-Rodríguez, O.; et al. The Association Between the Mediterranean Diet and Fatty Acids in Red Blood Cells of Spanish Adolescents. Nutrients 2025, 17, 2888. https://doi.org/10.3390/nu17172888
Ayala-Aldana N, Lafuente D, Lázaro I, Pinar-Martí A, Manidis A, Bernardo-Castro S, Fernandez-Barres S, Healy DR, Vrijheid M, Contreras-Rodríguez O, et al. The Association Between the Mediterranean Diet and Fatty Acids in Red Blood Cells of Spanish Adolescents. Nutrients. 2025; 17(17):2888. https://doi.org/10.3390/nu17172888
Chicago/Turabian StyleAyala-Aldana, Nicolas, David Lafuente, Iolanda Lázaro, Ariadna Pinar-Martí, Alexios Manidis, Sara Bernardo-Castro, Silvia Fernandez-Barres, Darren R. Healy, Martine Vrijheid, Oren Contreras-Rodríguez, and et al. 2025. "The Association Between the Mediterranean Diet and Fatty Acids in Red Blood Cells of Spanish Adolescents" Nutrients 17, no. 17: 2888. https://doi.org/10.3390/nu17172888
APA StyleAyala-Aldana, N., Lafuente, D., Lázaro, I., Pinar-Martí, A., Manidis, A., Bernardo-Castro, S., Fernandez-Barres, S., Healy, D. R., Vrijheid, M., Contreras-Rodríguez, O., Sala-Vila, A., & Julvez, J. (2025). The Association Between the Mediterranean Diet and Fatty Acids in Red Blood Cells of Spanish Adolescents. Nutrients, 17(17), 2888. https://doi.org/10.3390/nu17172888