Soy and Isoflavones: Revisiting Their Potential Links to Breast Cancer Risk
Abstract
1. Introduction
2. Isoflavones and Breast Cancer In Vitro
2.1. Different Types of Breast Cancers
2.2. Methodological Limits of In Vitro Studies
2.2.1. Doses Tested
2.2.2. Forms and Cocktails
2.3. Summary of Isoflavone Effects In Vitro on Breast Cancer Cells
3. Soy or Isoflavones and Breast Cancers in Animals
3.1. Toxicological Studies
3.1.1. Official Toxicological Studies
- Continuous exposure from conception through the 2 years, designated F(1)C;
- Exposure from conception through PND 140 (20 weeks), followed by a control diet until 2 years, designated F(1)T140;
- Exposure from conception through weaning (PND 21), followed by a control diet until 2 years, designated F(3)T21. The animals of this group were a third generation of animals exposed to genistein from F0 pregnancy and issued from the multigenerational reproductive toxicology study of NTP USA [61].
3.1.2. Studies Involving Tumorigenic Substances
3.2. Humanized Rodent Models
3.3. Other Animal Models
3.3.1. Sow, Gilts, and Piglets
3.3.2. Non-Human Primates
3.4. Summary of Animal Experiments
4. Soy or Isoflavones and Breast Cancers in Clinical Trials
4.1. Clinical Effect of Isoflavones on Breast of Pre-Menopausal Women
4.2. Clinical Effects of Isoflavones on Breasts of Post-Menopausal Women
4.3. Clinical Effects of Isoflavones on Estrogen-Positive Breast Tumors
5. Soy or Isoflavones and Breast Cancer in Population Studies
5.1. Limits of Population Studies
5.2. Case–Control Studies Involving Soy and Isoflavones
5.3. Observation Studies on Soy
5.4. Population Studies Conducted Specifically on Isoflavones
5.4.1. Isoflavones in the Urine
5.4.2. Isoflavones in Serum or Plasma
6. Discussion
6.1. In Vitro Data
6.2. Animal Data
6.2.1. Toxicological Studies
6.2.2. Cancers Induced In Vivo
6.2.3. Humanized Models
6.2.4. Other Models
6.3. Data from Intervention Studies in Women
6.4. Data from Case–Control Studies
6.5. Data from Cohort Studies
7. Conclusions
Funding
Conflicts of Interest
References
- WHO. Breast Cancer. 2025. Available online: https://www.who.int/fr/news-room/fact-sheets/detail/breast-cancer#cms (accessed on 13 May 2025).
- Das, A.; Lavanya, K.J.; Nandini; Kaur, K.; Jaitak, V. Effectiveness of Selective Estrogen Receptor Modulators in BC Therapy: An Update. Curr. Med. Chem. 2023, 30, 3287–3314. [Google Scholar] [CrossRef]
- Doucet, M.; De Berti, M.; Arbion, F.; Goupille, C.; Body, G.; Ouldamer, L. The impact of the new histological classification of BC with the introduction of HER2 low status. J. Gynecol. Obstet. Hum. Reprod. 2025, 54, 102928. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.; Lyu, M.; Chan, C.H.; Sun, M.; Yang, X.; Qiao, S.; Chen, Z.; Yu, S.; Ren, M.; et al. Classifications of triple-negative breast cancer: Insights and current therapeutic approaches. Cell Biosci. 2025, 15, 13. [Google Scholar] [CrossRef]
- Méndez-Luna, D.; Martínez-Archundia, M.; Maroun, R.C.; Ceballos-Reyes, G.; Fragoso-Vázquez, M.J.; González-Juárez, D.E.; Correa-Basurto, J. Deciphering the GPER/GPR30-agonist and antagonists interactions using molecular modeling studies, molecular dynamics, and docking simulations. J. Biomol. Struct. Dyn. 2015, 33, 2161–2172. [Google Scholar] [CrossRef]
- Mitra, S.; Dash, R. Natural Products for the Management and Prevention of Breast Cancer. Evid. Based Complement. Altern. Med. 2018, 2018, 8324696. [Google Scholar] [CrossRef]
- Mierziak, J.; Kostyn, K.; Kulma, A. Flavonoids as important molecules of plant interactions with the environment. Molecules 2014, 19, 16240–16265. [Google Scholar] [CrossRef] [PubMed]
- Bennetau-Pelissero, C. Plant Proteins from Legumes. In Bioactive Molecules in Food; Mérillon, J.M., Ramawat, K., Eds.; Reference Series in Phytochemistry; Springer: Cham, Switzerland, 2018; pp. 1–43. [Google Scholar] [CrossRef]
- Gómez, J.D.; Vital, C.E.; Oliveira, M.G.A.; Ramos, H.J.O. Broad range flavonoid profiling by LC/MS of soybean genotypes contrasting for resistance to Anticarsia gemmatalis (Lepidoptera: Noctuidae). PLoS ONE 2018, 13, e0205010. [Google Scholar] [CrossRef]
- Canivenc-Lavier, M.C.; Bennetau-Pelissero, C. Phytoestrogens and Health Effects. Nutrients 2023, 15, 317–361. [Google Scholar] [CrossRef] [PubMed]
- Bennetau-Pelissero, C. Risks and benefits of phytoestrogens: Where are we now? Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.I.; Tseng, H.T.; Hsieh, C.C. Evaluating the impact of soy compounds on BC using the data mining approach. Food Funct. 2020, 11, 4561–4570. [Google Scholar] [CrossRef]
- Zheng, J.; Zhu, T.; Li, F.; Wu, H.; Jiang, S.; Shivappa, N.; Hébert, J.R.; Li, X.; Li, Y.; Wang, H. Diet Quality and Mortality among Chinese Adults: Findings from the China Health and Nutrition Survey. Nutrients. 2023, 16, 94. [Google Scholar] [CrossRef]
- Li, M.J.; Yin, Y.C.; Wang, J.; Jiang, Y.F. Green tea compounds in BC prevention and treatment. World J. Clin. Oncol. 2014, 5, 520–528. [Google Scholar] [CrossRef]
- Thompson, A.S.; Tresserra-Rimbau, A.; Karavasiloglou, N.; Jennings, A.; Cantwell, M.; Hill, C.; Perez-Cornago, A.; Bondonno, N.P.; Murphy, N.; Rohrmann, S.; et al. Association of Healthful Plant-based Diet Adherence with Risk of Mortality and Major Chronic Diseases Among Adults in the UK. JAMA Netw. Open 2023, 6, e234714. [Google Scholar] [CrossRef]
- Bensaada, S.; Peruzzi, G.; Cubizolles, L.; Denayrolles, M.; Bennetau-Pelissero, C. Traditional and Domestic Cooking Dramatically Reduce Estrogenic Isoflavones in Soy Foods. Foods 2024, 13, 999. [Google Scholar] [CrossRef] [PubMed]
- Otaki, N.; Kimira, M.; Katsumata, S.; Uehara, M.; Watanabe, S.; Suzuki, K. Distribution and major sources of flavonoid intakes in the middle-aged Japanese women. J. Clin. Biochem. Nutr. 2009, 44, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Hirose, K.; Imaeda, N.; Tokudome, Y.; Goto, C.; Wakai, K.; Matsuo, K.; Ito, H.; Toyama, T.; Iwata, H.; Tokudome, S.; et al. Soybean products and reduction of BC risk: A case-control study in Japan. Br. J. Cancer 2005, 93, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Iggo, R.; MacGrogan, G. Classification of BC Through the Perspective of Cell Identity Models. Adv. Exp. Med. Biol. 2025, 1464, 185–207. [Google Scholar] [CrossRef]
- Kuiper, G.G.; Lemmen, J.G.; Carlsson, B.; Corton, J.C.; Safe, S.H.; van der Saag, P.T.; van der Burg, B.; Gustafsson, J.A. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 1998, 139, 4252–4263. [Google Scholar] [CrossRef]
- Arnal, J.F.; Lenfant, F.; Metivier, R.; Flouriot, G.; Henrion, D.; Adlanmerini, M.; Fontaine, C.; Gourdy, P.; Chambon, P.; Katzenellenbogen, B.; et al. Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications. Physiol. Rev. 2017, 97, 1045–1087. [Google Scholar] [CrossRef]
- Chantalat, E.; Boudou, F.; Laurell, H.; Palierne, G.; Houtman, R.; Melchers, D.; Rochaix, P.; Filleron, T.; Stella, A.; Burlet-Schiltz, O.; et al. The AF-1-deficient estrogen receptor ERalpha46 isoform is frequently expressed in human breast tumors. BC Res. 2016, 18, 123. [Google Scholar] [CrossRef]
- Raica, M.; Jung, I.; Cîmpean, A.M.; Suciu, C.; Mureşan, A.M. From conventional pathologic diagnosis to the molecular classification of breast carcinoma: Are we ready for the change? Rom. J. Morphol. Embryol. 2009, 50, 5–13. [Google Scholar]
- Rosati, R.; Oppat, K.; Huang, Y.; Kim, S.; Ratnam, M. Clinical association of progesterone receptor isoform A with BC metastasis consistent with its unique mechanistic role in preclinical models. BMC Cancer 2020, 20, 512. [Google Scholar] [CrossRef]
- Liu, C.; Sun, L.; Niu, N.; Hou, P.; Chen, G.; Wang, H.; Zhang, Z.; Jiang, X.; Xu, Q.; Zhao, Y.; et al. Molecular classification of hormone receptor-positive /HER2-positive BC reveals potential neoadjuvant therapeutic strategies. Signal Transduct. Target. Ther. 2025, 10, 97. [Google Scholar] [CrossRef] [PubMed]
- Molina Calistro, L.; Arancibia, Y.; Olivera, M.A.; Domke, S.; Torres, R.F. Interaction of GPER-1 with the endocrine signaling axis in breast cancer. Front. Endocrinol. 2025, 16, 1494411. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Cheng, H.; Ding, Z.; Wang, Z.; Zhou, L.; Zhao, P.; Tan, S.; Xu, X.; Huang, X.; Liu, M.; et al. GPER mediates decreased chemosensitivity via regulation of ABCG2 expression and localization in tamoxifen-resistant BC cells. Mol. Cell Endocrinol. 2020, 506, 110762. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.; Seo, H.; Lee, S.H.; Park, Y. Receptor mediated biological activities of phytoestrogens. Int. J. Biol. Macromol. 2024, 278 Pt 2, 134320. [Google Scholar] [CrossRef] [PubMed]
- Ariyani, W.; Miyazaki, W.; Amano, I.; Hanamura, K.; Shirao, T.; Koibuchi, N. Soy Isoflavones Accelerate Glial Cell Migration via GPER-Mediated Signal Transduction Pathway. Front. Endocrinol. 2020, 11, 554941. [Google Scholar] [CrossRef]
- Shinkaruk, S.; Durand, M.; Lamothe, V.; Carpaye, A.; Martinet, A.; Chantre, P.; Vergne, S.; Nogues, X.; Moore, N.; Bennetau-Pelissero, C. Bioavailability of glycitein relatively to other soy Isoflavones in healthy young Caucasian men. Food Chem. 2012, 135, 1104–1111. [Google Scholar] [CrossRef]
- Soukup, S.T.; Al-Maharik, N.; Botting, N.; Kulling, S.E. Quantification of soy Isoflavones and their conjugative metabolites in plasma and urine: An automated and validated UHPLC-MS/MS method for use in large-scale studies. Anal. Bioanal. Chem. 2014, 406, 6007–6020. [Google Scholar] [CrossRef]
- Bolca, S.; Urpi-Sarda, M.; Blondeel, P.; Roche, N.; Vanhaecke, L.; Possemiers, S.; Al-Maharik, N.; Botting, N.; De Keukeleire, D.; Bracke, M.; et al. Disposition of soy isoflavones in normal human breast tissue. Am. J. Clin. Nutr. 2010, 91, 976–984. [Google Scholar] [CrossRef]
- Ávila-Gálvez, M.Á.; González-Sarrías, A.; Martínez-Díaz, F.; Abellán, B.; Martínez-Torrano, A.J.; Fernández-López, A.J.; Giménez-Bastida, J.A.; Espín, J.C. Disposition of Dietary Polyphenols in BC Patients’ Tumors, and Their Associated Anticancer Activity: The Particular Case of Curcumin. Mol. Nutr. Food Res. 2021, 65, e2100163. [Google Scholar] [CrossRef]
- Pawlicka, M.A.; Zmorzyński, S.; Popek-Marciniec, S.; Filip, A.A. The Effects of Genistein at Different Concentrations on MCF-7 BC Cells and BJ Dermal Fibroblasts. Int. J. Mol. Sci. 2022, 23, 12360. [Google Scholar] [CrossRef]
- Uifălean, A.; Schneider, S.; Ionescu, C.; Lalk, M.; Iuga, C.A. Soy Isoflavones and BC Cell Lines: Molecular Mechanisms and Future Perspectives. Molecules 2015, 21, 13. [Google Scholar] [CrossRef]
- Clark, J.W.; Santos-Moore, A.; Stevenson, L.E.; Frackelton, A.R., Jr. Effects of tyrosine kinase inhibitors on the proliferation of human BC cell lines and proteins important in the ras signaling pathway. Int. J. Cancer 1996, 65, 186–191. [Google Scholar] [CrossRef]
- Takamura-Enya, T.; Ishihara, J.; Tahara, S.; Goto, S.; Totsuka, Y.; Sugimura, T.; Wakabayashi, K. Analysis of estrogenic activity of foodstuffs and cigarette smoke condensates using a yeast estrogen screening method. Food Chem. Toxicol. 2003, 41, 543–550. [Google Scholar] [CrossRef]
- Bennetau-Pelissero, C.; Latonnelle, K.; Lamothe, V.; Shinkaruk-Poix, S.; Kaushik, S.J. Screening for oestrogenic activity of plant and food extracts using in vitro trout hepatocyte cultures. Phytochem. Anal. 2004, 15, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Bodinet, C.; Freudenstein, J. Influence of marketed herbal menopause preparations on MCF-7 cell proliferation. Menopause 2004, 11, 281–289. [Google Scholar] [CrossRef]
- Vergne, S.; Bennetau-Pelissero, C.; Lamothe, V.; Chantre, P.; Potier, M.; Asselineau, J.; Perez, P.; Durand, M.; Moore, N.; Sauvant, P. Higher bioavailability of isoflavones after a single ingestion of a soya-based supplement than a soya-based food in young healthy males. Br. J. Nutr. 2008, 99, 333–344. [Google Scholar] [CrossRef]
- Pelissero, C.; Flouriot, G.; Foucher, J.L.; Bennetau, B.; Dunoguès, J.; Le Gac, F.; Sumpter, J.P. Vitellogenin synthesis in cultured hepatocytes; an in vitro test for the estrogenic potency of chemicals. J. Steroid Biochem. Mol. Biol. 1993, 44, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Bursztyka, J.; Perdu, E.; Pettersson, K.; Pongratz, I.; Fernández-Cabrera, M.; Olea, N.; Debrauwer, L.; Zalko, D.; Cravedi, J.P. Biotransformation of genistein and bisphenol A in cell lines used for screening endocrine disruptors. Toxicol. Vitr. 2008, 22, 1595–1604. [Google Scholar] [CrossRef]
- van Die, M.D.; Bone, K.M.; Visvanathan, K.; Kyrø, C.; Aune, D.; Ee, C.; Paller, C.J. Phytonutrients and outcomes following breast cancer: A systematic review and meta-analysis of observational studies. JNCI Cancer Spectr. 2024, 8, pkad104. [Google Scholar] [CrossRef] [PubMed]
- Fioravanti, L.; Cappelletti, V.; Miodini, P.; Ronchi, E.; Brivio, M.; Di Fronzo, G. Genistein in the control of BC cell growth: Insights into the mechanism of action in vitro. Cancer Lett. 1998, 130, 143–152. [Google Scholar] [CrossRef]
- Rahman, S.A.; Grant, L.K.; Gooley, J.J.; Rajaratnam, S.M.W.; Czeisler, C.A.; Lockley, S.W. Endogenous Circadian Regulation of Female Reproductive Hormones. J. Clin. Endocrinol. Metab. 2019, 104, 6049–6059. [Google Scholar] [CrossRef] [PubMed]
- Vergne, S.; Titier, K.; Bernard, V.; Asselineau, J.; Durand, M.; Lamothe, V.; Potier, M.; Perez, P.; Demotes-Mainard, J.; Chantre, P.; et al. Bioavailability and urinary excretion of isoflavones in humans: Effects of soy-based supplements formulation and equol production. J. Pharm. Biomed. Anal. 2007, 43, 1488–1494. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, F.H.; Li, Y. Mechanisms of cancer chemoprevention by soy isoflavone genistein. Cancer Metastasis Rev. 2002, 21, 265–280. [Google Scholar] [CrossRef]
- Li, Z.; Li, J.; Mo, B.; Hu, C.; Liu, H.; Qi, H.; Wang, X.; Xu, J. Genistein induces cell apoptosis in MDA-MB-231 BC cells via the mitogen-activated protein kinase pathway. Toxicol. Vitr. 2008, 22, 1749–1753. [Google Scholar] [CrossRef]
- Xie, Q.; Bai, Q.; Zou, L.Y.; Zhang, Q.Y.; Zhou, Y.; Chang, H.; Yi, L.; Zhu, J.D.; Mi, M.T. Genistein inhibits DNA methylation and increases expression of tumor suppressor genes in human BC cells. Genes Chromosomes Cancer 2014, 53, 422–431. [Google Scholar] [CrossRef]
- Onoda, A.; Ueno, T.; Uchiyama, S.; Hayashi, S.; Kato, K.; Wake, N. Effects of S-equol and natural S-equol supplement (SE5-OH) on the growth of MCF-7 in vitro and as tumors implanted into ovariectomized athymic mice. Food Chem. Toxicol. 2011, 49, 2279–2284. [Google Scholar] [CrossRef]
- Maggiolini, M.; Vivacqua, A.; Fasanella, G.; Recchia, A.G.; Sisci, D.; Pezzi, V.; Montanaro, D.; Musti, A.M.; Picard, D.; Andò, S. The G protein-coupled receptor GPR30 mediates c-fos up-regulation by 17beta-estradiol and phytoestrogens in BC cells. J. Biol. Chem. 2004, 279, 27008–27016. [Google Scholar] [CrossRef]
- Schmitt, E.; Dekant, W.; Stopper, H. Assaying the estrogenicity of phytoestrogens in cells of different estrogen sensitive tissues. Toxicol. Vitr. 2001, 15, 433–439. [Google Scholar] [CrossRef]
- Choi, E.J.; Kim, G.H. Antiproliferative activity of daidzein and genistein may be related to ERalpha/c-erbB-2 expression in human BC cells. Mol. Med. Rep. 2013, 7, 781–784. [Google Scholar] [CrossRef]
- Dampier, K.; Hudson, E.A.; Howells, L.M.; Manson, M.M.; Walker, R.A.; Gescher, A. Differences between human breast cell lines in susceptibility towards growth inhibition by genistein. Br. J. Cancer 2001, 85, 618–624. [Google Scholar] [CrossRef]
- Tonetti, D.A.; Zhang, Y.; Zhao, H.; Lim, S.B.; Constantinou, A.I. The effect of the phytoestrogens genistein, daidzein, and equol on the growth of tamoxifen-resistant T47D/PKC alpha. Nutr. Cancer 2007, 58, 222–229. [Google Scholar] [CrossRef]
- Yuan, B.; Wang, L.; Jin, Y.; Zhen, H.; Xu, P.; Xu, Y.; Li, C.; Xu, H. Role of metabolism in the effects of genistein and its phase II conjugates on the growth of human breast cell lines. AAPS J. 2012, 14, 329–344. [Google Scholar] [CrossRef]
- Xing, J.; Chen, X.; Zhong, D. Absorption and enterohepatic circulation of baicalin in rats. Life Sci. 2005, 78, 140–146. [Google Scholar] [CrossRef]
- Gu, L.; House, S.E.; Prior, R.L.; Fang, N.; Ronis, M.J.; Clarkson, T.B.; Wilson, M.E.; Badger, T.M. Metabolic phenotype of isoflavones differ among female rats, pigs, monkeys, and women. J. Nutr. 2006, 136, 1215–1221. [Google Scholar] [CrossRef]
- Soukup, S.T.; Helppi, J.; Müller, D.R.; Zierau, O.; Watzl, B.; Vollmer, G.; Diel, P.; Bub, A.; Kulling, S.E. Phase II metabolism of the soy Isoflavones genistein and daidzein in humans, rats and mice: A cross-species and sex comparison. Arch. Toxicol. 2016, 90, 1335–1347. [Google Scholar] [CrossRef] [PubMed]
- National Toxicology Program. Toxicology and carcinogenesis studies of genistein (Cas No. 446-72-0) in Sprague-Dawley rats (feed study). Natl. Toxicol. Program Tech. Rep. Ser. 2008, 545, 1–240. [Google Scholar]
- National Toxicology Program. Multigenerational reproductive study of genistein (Cas No. 446-72-0) in Sprague-Dawley rats (feed study). Natl. Toxicol. Program Tech. Rep. Ser. 2008, 539, 1–266. [Google Scholar]
- Fritz, W.A.; Coward, L.; Wang, J.; Lamartiniere, C.A. Dietary genistein: Perinatal mammary cancer prevention, bioavailability and toxicity testing in the rat. Carcinogenesis 1998, 19, 2151–2158. [Google Scholar] [CrossRef] [PubMed]
- Appelt, L.C.; Reicks, M.M. Soy induces phase II enzymes but does not inhibit dimethylbenz[a]anthracene-induced carcinogenesis in female rats. J. Nutr. 1999, 129, 1820–1826. [Google Scholar] [CrossRef]
- Constantinou, A.I.; Lantvit, D.; Hawthorne, M.; Xu, X.; van Breemen, R.B.; Pezzuto, J.M. Chemopreventive effects of soy protein and purified soy isoflavones on DMBA-induced mammary tumors in female Sprague-Dawley rats. Nutr. Cancer 2001, 41, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Lamartiniere, C.A.; Cotroneo, M.S.; Fritz, W.A.; Wang, J.; Mentor-Marcel, R.; Elgavish, A. Genistein chemoprevention: Timing and mechanisms of action in murine mammary and prostate. J. Nutr. 2002, 132, 552S–558S. [Google Scholar] [CrossRef]
- Pugalendhi, P.; Manoharan, S. Chemopreventive potential of genistein and daidzein in combination during 7,12-dimethylbenz[a]anthracene (DMBA) induced mammary carcinogenesis in Sprague-Dawley rats. Pak. J. Biol. Sci. 2010, 13, 279–286. [Google Scholar] [CrossRef]
- Brown, N.M.; Belles, C.A.; Lindley, S.L.; Zimmer-Nechemias, L.; Witte, D.P.; Kim, M.O.; Setchell, K.D. Mammary gland differentiation by early life exposure to enantiomers of the soy isoflavone metabolite equol. Food Chem. Toxicol. 2010, 48, 3042–3050. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, T.S.; Purup, S.; Wärri, A.; Godschalk, R.W.; Hilakivi-Clarke, L. Effects of maternal exposure to cow’s milk high or low in isoflavones on carcinogen-induced mammary tumorigenesis among rat offspring. Cancer Prev. Res. 2011, 4, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Hakkak, R.; Shaaf, S.; Jo, C.H.; Macleod, S.; Korourian, S. Effects of high-isoflavone soy diet vs. casein protein diet and obesity on DMBA-induced mammary tumor development. Oncol. Lett. 2011, 2, 29–36. [Google Scholar] [CrossRef]
- Sahin, K.; Tuzcu, M.; Sahin, N.; Akdemir, F.; Ozercan, I.; Bayraktar, S.; Kucuk, O. Inhibitory effects of combination of lycopene and genistein on 7,12- dimethyl benz(a)anthracene-induced BC in rats. Nutr. Cancer 2011, 63, 1279–1286. [Google Scholar] [CrossRef]
- Kakehashi, A.; Tago, Y.; Yoshida, M.; Sokuza, Y.; Wei, M.; Fukushima, S.; Wanibuchi, H. Hormonally active doses of isoflavone aglycones promote mammary and endometrial carcinogenesis and alter the molecular tumor environment in Donryu rats. Toxicol. Sci. 2012, 126, 39–51. [Google Scholar] [CrossRef]
- Phrakonkham, P.; Brouland, J.P.; Saad Hel, S.; Bergès, R.; Pimpie, C.; Pocard, M.; Canivenc-Lavier, M.-C.; Perrot-Applanat, M. Dietary exposure in utero and during lactation to a mixture of genistein and an anti-androgen fungicide in a rat mammary carcinogenesis model. Reprod. Toxicol. 2015, 54, 101–109. [Google Scholar] [CrossRef]
- Zhang, X.; Cook, K.L.; Warri, A.; Cruz, I.M.; Rosim, M.; Riskin, J.; Helferich, W.; Doerge, D.; Clarke, R.; Hilakivi-Clarke, L. Lifetime Genistein Intake Increases the Response of Mammary Tumors to Tamoxifen in Rats. Clin. Cancer Res. 2017, 23, 814–824. [Google Scholar] [CrossRef] [PubMed]
- Banys, K.; Giebultowicz, J.; Sobczak, M.; Wyrebiak, R.; Bielecki, W.; Wrzesien, R.; Bobrowska-Korczak, B. Effect of Genistein Supplementation on the Progression of Neoplasms and the Level of the Modified Nucleosides in Rats with Mammary Cancer. In Vivo 2021, 35, 2059–2072. [Google Scholar] [CrossRef] [PubMed]
- Phrakonkham, P.; Chevalier, J.; Desmetz, C.; Pinnert, M.F.; Bergès, R.; Jover, E.; Davicco, M.J.; Bennetau-Pelissero, C.; Coxam, V.; Artur, Y.; et al. Isoflavonoid-based bone-sparing treatments exert a low activity on reproductive organs and on hepatic metabolism of estradiol in ovariectomized rats. Toxicol. Appl. Pharmacol. 2007, 224, 105–115. [Google Scholar] [CrossRef]
- Chang, H.C.; Churchwell, M.I.; Delclos, K.B.; Newbold, R.R.; Doerge, D.R. Mass spectrometric determination of Genistein tissue distribution in diet-exposed Sprague-Dawley rats. J. Nutr. 2000, 130, 1963–1970. [Google Scholar] [CrossRef]
- Murray, S.A.; Yang, S.; Demicco, E.; Ying, H.; Sherr, D.H.; Hafer, L.J.; Rogers, A.E.; Sonenshein, G.E.; Xiao, Z.X. Increased expression of MDM2, cyclin D1, and p27Kip1 in carcinogen-induced rat mammary tumors. J. Cell Biochem. 2005, 95, 875–884. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Z.; Hill, D.L.; Chen, X.; Wang, H.; Zhang, R. Genistein, a dietary isoflavone, down-regulates the MDM2 oncogene at both transcriptional and posttranslational levels. Cancer Res. 2005, 65, 8200–8208. [Google Scholar] [CrossRef]
- Ueda, M.; Niho, N.; Imai, T.; Shibutani, M.; Mitsumori, K.; Matsui, T.; Hirose, M. Lack of significant effects of genistein on the progression of 7,12-dimethylbenz(a)anthracene-induced mammary tumors in ovariectomized Sprague-Dawley rats. Nutr. Cancer 2003, 47, 141–147. [Google Scholar] [CrossRef]
- Allred, C.D.; Allred, K.F.; Ju, Y.H.; Clausen, L.M.; Doerge, D.R.; Schantz, S.L.; Korol, D.L.; Wallig, M.A.; Helferich, W.G. Dietary genistein results in larger MNU-induced, estrogen-dependent mammary tumors following ovariectomy of Sprague-Dawley rats. Carcinogenesis 2004, 25, 211–218. [Google Scholar] [CrossRef]
- Qin, L.Q.; Xu, J.Y.; Tezuka, H.; Wang, P.Y.; Hoshi, K. Commercial soy milk enhances the development of 7,12-dimethylbenz(a)anthracene-induced mammary tumors in rats. In Vivo 2007, 21, 667–671. [Google Scholar]
- Liu, X.; Suzuki, N.; Santosh Laxmi, Y.R.; Okamoto, Y.; Shibutani, S. Anti-BC potential of daidzein in rodents. Life Sci. 2012, 91, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Zhang, Y.; Yang, T.; Xue, Y.; Wang, P. Isoflavone intake inhibits the development of 7,12-dimethylbenz(a)anthracene(DMBA)-induced mammary tumors in normal and ovariectomized rats. J. Clin. Biochem. Nutr. 2014, 54, 31–38. [Google Scholar] [CrossRef]
- Yanaka, K.; Takebayashi, J.; Matsumoto, T.; Ishimi, Y. Determination of 15 isoflavone isomers in soy foods and supplements by high-performance liquid chromatography. J. Agric. Food Chem. 2012, 60, 4012–4016. [Google Scholar] [CrossRef]
- Gotoh, T.; Yamada, K.; Yin, H.; Ito, A.; Kataoka, T.; Dohi, K. Chemoprevention of N-nitroso-N-methylurea-induced rat mammary carcinogenesis by soy foods or biochanin A. Jpn. J. Cancer Res. 1998, 89, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Choi, K.; Kim, H.; Kim, K.; Lee, M.H.; Lee, J.H.; Kim Rim, J.C. Isoflavone-deprived soy peptide suppresses mammary tumorigenesis by inducing apoptosis. Exp. Mol. Med. 2009, 41, 371–381. [Google Scholar] [CrossRef]
- Jadhav, R.R.; Santucci-Pereira, J.; Wang, Y.V.; Liu, J.; Nguyen, T.D.; Wang, J.; Jenkins, S.; Russo, J.; Huang, T.H.; Jin, V.X.; et al. DNA Methylation Targets Influenced by Bisphenol A and/or Genistein Are Associated with Survival Outcomes in BC Patients. Genes 2017, 8, 144. [Google Scholar] [CrossRef] [PubMed]
- Cotroneo, M.S.; Wang, J.; Fritz, W.A.; Eltoum, I.E.; Lamartiniere, C.A. Genistein action in the prepubertal mammary gland in a chemoprevention model. Carcinogenesis 2002, 23, 1467–1474. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jenkins, S.; Lamartiniere, C.A. Cell proliferation and apoptosis in rat mammary glands following combinational exposure to bisphenol A and genistein. BMC Cancer 2014, 14, 379. [Google Scholar] [CrossRef]
- Bensaada, S.; Raymond, I.; Pellegrin, I.; Viallard, J.F.; Bennetau-Pelissero, C. Validation of ELISAs for Isoflavones and Enterolactone for Phytoestrogen Intake Assessment in the French Population. Nutrients 2023, 15, 967. [Google Scholar] [CrossRef]
- Goh, J.; Niksirat, N.; Campbell, K.L. Exercise training and immune crosstalk in BC microenvironment: Exploring the paradigms of exercise-induced immune modulation and exercise-induced myokines. Am. J. Transl. Res. 2014, 6, 422–438. [Google Scholar]
- Hsieh, C.Y.; Santell, R.C.; Haslam, S.Z.; Helferich, W.G. Estrogenic effects of genistein on the growth of estrogen receptor-positive human BC (MCF-7) cells in vitro and in vivo. Cancer Res. 1998, 58, 3833–3838. [Google Scholar]
- Allred, C.D.; Allred, K.F.; Ju, Y.H.; Virant, S.M.; Helferich, W.G. Soy Diets Containing Varying Amounts of Genistein Stimulate Growth of Estrogen-Dependent (MCF-7) Tumors in a Dose-Dependent Manner. Cancer Res. 2001, 61, 5045–5050. [Google Scholar] [PubMed]
- Allred, C.D.; Ju, Y.H.; Allred, K.F.; Chang, J.; Helferich, W.G. Dietary genistin stimulates growth of estrogen-dependent BC tumors similar to that observed with genistein. Carcinogenesis 2001, 22, 1667–1673. [Google Scholar] [CrossRef]
- Ju, Y.H.; Allred, C.D.; Allred, K.F.; Karko, K.L.; Doerge, D.R.; Helferich, W.G. Physiological concentrations of dietary genistein dose-dependently stimulate growth of estrogen-dependent human BC (MCF-7) tumors implanted in athymic nude mice. J. Nutr. 2001, 131, 2957–2962. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.H.; Doerge, D.R.; Allred, K.F.; Allred, C.D.; Helferich, W.G. Dietary genistein negates the inhibitory effect of tamoxifen on growth of estrogen-dependent human BC (MCF-7) cells implanted in athymic mice. Cancer Res. 2002, 62, 2474–2477. [Google Scholar] [PubMed]
- Allred, C.D.; Allred, K.F.; Ju, Y.H.; Goeppinger, T.S.; Doerge, D.R.; Helferich, W.G. Soy processing influences growth of estrogen-dependent BC tumors. Carcinogenesis 2004, 25, 1649–1657. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.R.; Yu, L.; Mai, Z.; Blackburn, G.L. Combined inhibition of estrogen-dependent human breast carcinoma by soy and tea bioactive components in mice. Int. J. Cancer 2004, 108, 8–14. [Google Scholar] [CrossRef]
- Ju, Y.H.; Fultz, J.; Allred, K.F.; Doerge, D.R.; Helferich, W.G. Effects of dietary daidzein and its metabolite, equol, at physiological concentrations on the growth of estrogen-dependent human BC (MCF-7) tumors implanted in ovariectomized athymic mice. Carcinogenesis 2006, 27, 856–863. [Google Scholar] [CrossRef]
- Ju, Y.H.; Allred, K.F.; Allred, C.D.; Helferich, W.G. Genistein stimulates growth of human BC cells in a novel, postmenopausal animal model, with low plasma estradiol concentrations. Carcinogenesis 2006, 27, 1292–1299. [Google Scholar] [CrossRef]
- Gallo, D.; Ferlini, C.; Fabrizi, M.; Prislei, S.; Scambia, G. Lack of stimulatory activity of a phytoestrogen-containing soy extract on the growth of BC tumors in mice. Carcinogenesis 2006, 27, 1404–1409. [Google Scholar] [CrossRef]
- Ju, Y.H.; Doerge, D.R.; Woodling, K.A.; Hartman, J.A.; Kwak, J.; Helferich, W.G. Dietary genistein negates the inhibitory effect of letrozole on the growth of aromatase-expressing estrogen-dependent human BC cells (MCF-7Ca) in vivo. Carcinogenesis 2008, 29, 2162–2168. [Google Scholar] [CrossRef]
- Jiang, X.; Patterson, N.M.; Ling, Y.; Xie, J.; Helferich, W.G.; Shapiro, D.J. Low concentrations of the soy phytoestrogen genistein induce proteinase inhibitor 9 and block killing of BC cells by immune cells. Endocrinology 2008, 149, 5366–5373. [Google Scholar] [CrossRef]
- Du, M.; Yang, X.; Hartman, J.A.; Cooke, P.S.; Doerge, D.R.; Ju, Y.H.; Helferich, W.G. Low-dose dietary genistein negates the therapeutic effect of tamoxifen in athymic nude mice. Carcinogenesis 2012, 33, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.E.; Ju, Y.H.; Baker, C.; Doerge, D.R.; Helferich, W.G. Long-term exposure to dietary sources of genistein induces estrogen-independence in the human BC (MCF-7) xenograft model. Mol. Nutr. Food Res. 2015, 59, 413–423. [Google Scholar] [CrossRef]
- Jiang, H.; Fan, J.; Cheng, L.; Hu, P.; Liu, R. The anticancer activity of genistein is increased in estrogen receptor beta 1-positive BC cells. OncoTargets Ther. 2018, 11, 8153–8163. [Google Scholar] [CrossRef]
- Song, H.; Hughes, J.R.; Turner, R.T.; Iwaniec, U.T.; Doerge, D.R.; Helferich, W.G. (±)-Equol does not interact with genistein on estrogen-dependent breast tumor growth. Food Chem. Toxicol. 2020, 136, 110979. [Google Scholar] [CrossRef]
- Allred, C.D.; Twaddle, N.C.; Allred, K.F.; Goeppinger, T.S.; Churchwell, M.I.; Ju, Y.H.; Helferich, W.G.; Doerge, D.R. Soy processing affects metabolism and disposition of dietary isoflavones in ovariectomized BALB/c mice. J. Agric. Food Chem. 2005, 53, 8542–8550. [Google Scholar] [CrossRef]
- Santell, R.C.; Kieu, N.; Helferich, W.G. Genistein inhibits growth of estrogen-independent human BC cells in culture but not in athymic mice. J. Nutr. 2000, 130, 1665–1669. [Google Scholar] [CrossRef]
- Kim, H.A.; Jeong, K.S.; Kim, Y.K. Soy extract is more potent than genistein on tumor growth inhibition. Anticancer Res. 2008, 28, 2837–2841. [Google Scholar] [PubMed]
- Li, Y.; Meeran, S.M.; Patel, S.N.; Chen, H.; Hardy, T.M.; Tollefsbol, T.O. Epigenetic reactivation of estrogen receptor-α (ERα) by genistein enhances hormonal therapy sensitivity in ERα-negative breast cancer. Mol. Cancer 2013, 12, 9. [Google Scholar] [CrossRef]
- Wei, W.; Chen, Z.J.; Zhang, K.S.; Yang, X.L.; Wu, Y.M.; Chen, X.H.; Huang, H.B.; Liu, H.L.; Cai, S.H.; Du, J.; et al. The activation of G protein-coupled receptor 30 (GPR30) inhibits proliferation of estrogen receptor-negative BC cells in vitro and in vivo. Cell Death Dis. 2014, 5, e1428. [Google Scholar] [CrossRef] [PubMed]
- Ford, J.A., Jr.; Clark, S.G.; Walters, E.M.; Wheeler, M.B.; Hurley, W.L. Estrogenic effects of genistein on reproductive tissues of ovariectomized gilts. J. Anim. Sci. 2006, 84, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Farmer, C.; Robertson, P.; Gilani, G.S. Effects of dose and route of administration of genistein on isoflavone concentrations in post-weaned and gestating sows. Animal 2013, 7, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Farmer, C.; Palin, M.F.; Gilani, G.S.; Weiler, H.; Vignola, M.; Choudhary, R.K.; Capuco, A.V. Dietary genistein stimulates mammary hyperplasia in gilts. Animal 2010, 4, 454–465. [Google Scholar] [CrossRef]
- Mercer, K.E.; Bhattacharyya, S.; Sharma, N.; Chaudhury, M.; Lin, H.; Yeruva, L.; Ronis, M.J. Infant Formula Feeding Changes the Proliferative Status in Piglet Neonatal Mammary Glands Independently of Estrogen Signaling. J. Nutr. 2020, 150, 730–738. [Google Scholar] [CrossRef]
- McCarver, G.; Bhatia, J.; Chambers, C.; Clarke, R.; Etzel, R.; Foster, W.; Hoyer, P.; Leeder, J.S.; Peters, J.M.; Rissman, E.; et al. NTP-CERHR expert panel report on the developmental toxicity of soy infant formula. Birth Defects Res. B Dev. Reprod. Toxicol. 2011, 92, 421–468. [Google Scholar] [CrossRef]
- Wood, C.E.; Appt, S.E.; Clarkson, T.B.; Franke, A.A.; Lees, C.J.; Doerge, D.R.; Cline, J.M. Effects of high-dose soy isoflavones and equol on reproductive tissues in female cynomolgus monkeys. Biol. Reprod. 2006, 75, 477–486. [Google Scholar] [CrossRef]
- Wood, C.E.; Kaplan, J.R.; Stute, P.; Cline, J.M. Effects of soy on the mammary glands of premenopausal female monkeys. Fertil. Steril. 2006, 85 (Suppl. S1), 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Foth, D.; Cline, J.M. Effects of mammalian and plant estrogens on mammary glands and uteri of macaques. Am. J. Clin. Nutr. 1998, 68 (Suppl. S6), 1413S–1417S. [Google Scholar] [CrossRef]
- Wood, C.E.; Hester, J.M.; Appt, S.E.; Geisinger, K.R.; Cline, J.M. Estrogen effects on epithelial proliferation and benign proliferative lesions in the postmenopausal primate mammary gland. Lab. Investig. 2008, 88, 938–948. [Google Scholar] [CrossRef] [PubMed]
- Schwen, R.J.; Nguyen, L.; Plomley, J.B.; Jackson, R.L. Toxicokinetics and lack of uterotropic effect of orally administered S-equol. Food Chem. Toxicol. 2012, 50, 1741–1748. [Google Scholar] [CrossRef]
- Möller, F.J.; Pemp, D.; Soukup, S.T.; Wende, K.; Zhang, X.; Zierau, O.; Muders, M.H.; Bosland, M.C.; Kulling, S.E.; Lehmann, L.; et al. Soy isoflavone exposure through all life stages accelerates 17β-estradiol-induced mammary tumor onset and growth, yet reduces tumor burden, in ACI rats. Arch. Toxicol. 2016, 90, 1907–1916. [Google Scholar] [CrossRef]
- Santen, R.J. Benign Breast Disease in Women. In Endotext [Internet]; Feingold, K.R., Ahmed, S.F., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: https://pubmed.ncbi.nlm.nih.gov/25905225/ (accessed on 31 July 2025).
- Mylonas, I.; Jeschke, U.; Shabani, N.; Kuhn, C.; Kunze, S.; Dian, D.; Friedl, C.; Kupka, M.S.; Friese, K. Steroid receptors ERalpha, ERbeta, PR-A and PR-B are differentially expressed in normal and atrophic human endometrium. Histol. Histopathol. 2007, 22, 169–176. [Google Scholar] [CrossRef]
- Yang, X.R.; Figueroa, J.D.; Hewitt, S.M.; Falk, R.T.; Pfeiffer, R.M.; Lissowska, J.; Peplonska, B.; Brinton, L.A.; Garcia-Closas, M.; Sherman, M.E. Estrogen receptor and progesterone receptor expression in normal terminal duct lobular units surrounding invasive breast cancer. BC Res. Treat. 2013, 137, 837–847. [Google Scholar] [CrossRef]
- Ellmann, S.; Sticht, H.; Thiel, F.; Beckmann, M.W.; Strick, R.; Strissel, P.L. Estrogen and progesterone receptors: From molecular structures to clinical targets. Cell Mol. Life Sci. 2009, 66, 2405–2426. [Google Scholar] [CrossRef] [PubMed]
- Taneja, V. Chapter Fourteen—Sexual dimorphism, aging and immunity. Vitam. Horm. 2021, 115, 367–399. [Google Scholar] [CrossRef] [PubMed]
- Flores, V.A.; Pal, L.; Manson, J.E. Hormone Therapy in Menopause: Concepts, Controversies, and Approach to Treatment. Endocr. Rev. 2021, 42, 720–752. [Google Scholar] [CrossRef]
- Benz, C.C. Impact of aging on the biology of breast cancer. Crit. Rev. Oncol. Hematol. 2008, 66, 65–74. [Google Scholar] [CrossRef]
- Gardini, E.S.; Fiacco, S.; Mernone, L.; Ehlert, U. Sleep and Methylation of Estrogen Receptor Genes, ESR1 and GPER, in Healthy Middle-Aged and Older Women: Findings from the Women 40+ Healthy Aging Study. Nat. Sci. Sleep 2020, 12, 525–536. [Google Scholar] [CrossRef] [PubMed]
- Petrakis, N.L.; Barnes, S.; King, E.B.; Lowenstein, J.; Wiencke, J.; Lee, M.M.; Miike, R.; Kirk, M.; Coward, L. Stimulatory influence of soy protein isolate on breast secretion in pre- and postmenopausal women. Cancer Epidemiol. Biomark. Prev. 1996, 5, 785–794. [Google Scholar]
- McMichael-Phillips, D.F.; Harding, C.; Morton, M.; Roberts, S.A.; Howell, A.; Potten, C.S.; Bundred, N.J. Effects of soy-protein supplementation on epithelial proliferation in the histologically normal human breast. Am. J. Clin. Nutr. 1998, 68 (Suppl. S6), 1431S–1435S. [Google Scholar] [CrossRef]
- Hargreaves, D.F.; Potten, C.S.; Harding, C.; Shaw, L.E.; Morton, M.S.; Roberts, S.A.; Howell, A.; Bundred, N.J. Two-week dietary soy supplementation has an estrogenic effect on normal premenopausal breast. J. Clin. Endocrinol. Metab. 1999, 84, 4017–4024. [Google Scholar] [CrossRef]
- Lu, L.W.; Chen, N.W.; Brunder, D.G.; Nayeem, F.; Nagamani, M.; Nishino, T.K.; Anderson, K.E.; Khamapirad, T. Soy isoflavones decrease fibroglandular breast tissue measured by magnetic resonance imaging in premenopausal women: A 2-year randomized double-blind placebo controlled clinical trial. Clin. Nutr. ESPEN 2022, 52, 158–168. [Google Scholar] [CrossRef]
- Maskarinec, G.; Williams, A.E.; Carlin, L. Mammographic densities in a one-year isoflavone intervention. Eur. J. Cancer Prev. 2003, 12, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Maskarinec, G.; Takata, Y.; Franke, A.A.; Williams, A.E.; Murphy, S.P. A 2-year soy intervention in premenopausal women does not change mammographic densities. J. Nutr. 2004, 134, 3089–3094. [Google Scholar] [CrossRef] [PubMed]
- Finkeldey, L.; Schmitz, E.; Ellinger, S. Effect of the Intake of Isoflavones on Risk Factors of Breast Cancer-A Systematic Review of Randomized Controlled Intervention Studies. Nutrients 2021, 13, 2309. [Google Scholar] [CrossRef]
- Efsa Panel. Risk assessment for peri- and post-menopausal women taking food supplements containing isolated isoflavones. EFSA J. 2015, 13, 4246. [Google Scholar] [CrossRef]
- Colacurci, N.; De Franciscis, P.; Atlante, M.; Mancino, P.; Monti, M.; Volpini, G.; Benvenuti, C. Endometrial, breast and liver safety of soy isoflavones plus Lactobacillus sporogenes in post-menopausal women. Gynecol. Endocrinol. 2013, 29, 209–212. [Google Scholar] [CrossRef]
- Delmanto, A.; Nahas-Neto, J.; Traiman, P.; Uemura, G.; Pessoa, E.C.; Nahas, E.A. Effects of soy isoflavones on mammographic density and breast parenchyma in postmenopausal women: A randomized, double-blind, placebo-controlled clinical trial. Menopause 2013, 20, 1049–1054. [Google Scholar] [CrossRef] [PubMed]
- Verheus, M.; van Gils, C.H.; Kreijkamp-Kaspers, S.; Kok, L.; Peeters, P.H.; Grobbee, D.E.; van der Schouw, Y.T. Soy protein containing isoflavones and mammographic density in a randomized controlled trial in postmenopausal women. Cancer Epidemiol. Biomark. Prev. 2008, 17, 2632–2638. [Google Scholar] [CrossRef]
- Maskarinec, G.; Verheus, M.; Steinberg, F.M.; Amato, P.; Cramer, M.K.; Lewis, R.D.; Murray, M.J.; Young, R.L.; Wong, W.W. Various doses of soy isoflavones do not modify mammographic density in postmenopausal women. J. Nutr. 2009, 139, 981–986. [Google Scholar] [CrossRef]
- Marini, H.; Bitto, A.; Altavilla, D.; Burnett, B.P.; Polito, F.; Di Stefano, V.; Minutoli, L.; Atteritano, M.; Levy, R.M.; D’Anna, R.; et al. Breast safety and efficacy of genistein aglycone for postmenopausal bone loss: A follow-up study. J. Clin. Endocrinol. Metab. 2008, 93, 4787–4796. [Google Scholar] [CrossRef]
- Morabito, N.; Crisafulli, A.; Vergara, C.; Gaudio, A.; Lasco, A.; Frisina, N.; D’Anna, R.; Corrado, F.; Pizzoleo, M.A.; Cincotta, M.; et al. Effects of genistein and hormone-replacement therapy on bone loss in early postmenopausal women: A randomized double-blind placebo-controlled study. J. Bone Min. Res. 2002, 17, 1904–1912. [Google Scholar] [CrossRef]
- Atkinson, C.; Warren, R.M.; Sala, E.; Dowsett, M.; Dunning, A.M.; Healey, C.S.; Runswick, S.; Day, N.E.; Bingham, S.A. Breast Red-clover-derived isoflavones and mammographic breast density: A double-blind, randomized, placebo-controlled trial [ISRCTN42940165]. Cancer Res. 2004, 6, R170–R179. [Google Scholar] [CrossRef]
- Powles, T.J.; Howell, A.; Evans, D.G.; McCloskey, E.V.; Ashley, S.; Greenhalgh, R.; Affen, J.; Flook, L.A.; Tidy, A. Red clover isoflavones are safe and well tolerated in women with a family history of breast cancer. Menopause Int. 2008, 14, 6–12. [Google Scholar] [CrossRef]
- Khan, S.A.; Chatterton, R.T.; Michel, N.; Bryk, M.; Lee, O.; Ivancic, D.; Heinz, R.; Zalles, C.M.; Helenowski, I.B.; Jovanovic, B.D.; et al. Soy isoflavone supplementation for BC risk reduction: A randomized phase II trial. Cancer Prev. Res. 2012, 5, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Wilczek, B.; Warner, M.; Gustafsson, J.A.; Landgren, B.M. Isoflavone treatment for acute menopausal symptoms. Menopause 2007, 14 Pt 1, 468–473. [Google Scholar] [CrossRef]
- Setchell, K.D.; Brown, N.M.; Desai, P.; Zimmer-Nechemias, L.; Wolfe, B.E.; Brashear, W.T.; Kirschner, A.S.; Cassidy, A.; Heubi, J.E. Bioavailability of pure isoflavones in healthy humans and analysis of commercial soy isoflavone supplements. J. Nutr. 2001, 131 (Suppl. S4), 1362S–1375S. [Google Scholar] [CrossRef] [PubMed]
- Shike, M.; Doane, A.S.; Russo, L.; Cabal, R.; Reis-Filho, J.S.; Gerald, W.; Cody, H.; Khanin, R.; Bromberg, J.; Norton, L. The effects of soy supplementation on gene expression in breast cancer: A randomized placebo-controlled study. J. Natl. Cancer Inst. 2014, 106, dju189. [Google Scholar] [CrossRef]
- Brisken, C.; Scabia, V. 90 Years of Progesterone: Progesterone receptor signaling in the normal breast and its implications for cancer. J. Mol. Endocrinol. 2020, 65, T81–T94. [Google Scholar] [CrossRef] [PubMed]
- Russo, J.; Moral, R.; Balogh, G.A.; Mailo, D.; Russo, I.H. The protective role of pregnancy in breast cancer. BC Res. 2005, 7, 131–142. [Google Scholar] [CrossRef]
- Colditz, G.A.; Rosner, B.A.; Chen, W.Y.; Holmes, M.D.; Hankinson, S.E. Risk factors for BC according to estrogen and progesterone receptor status. J. Natl. Cancer Inst. 2004, 96, 218–228. [Google Scholar] [CrossRef]
- Gompel, A. Hormone and breast cancer. Presse Med. 2019, 48, 1085–1091. [Google Scholar] [CrossRef]
- Soto, A.M.; Sonnenschein, C. Endocrine disruptors: DDT, endocrine disruption and breast cancer. Nat. Rev. Endocrinol. 2015, 11, 507–508. [Google Scholar] [CrossRef] [PubMed]
- Hardt, L.; Mahamat-Saleh, Y.; Aune, D.; Schlesinger, S. Plant-Based Diets and Cancer Prognosis: A Review of Recent Research. Curr. Nutr. Rep. 2022, 11, 695–716. [Google Scholar] [CrossRef] [PubMed]
- Pathak, D.R.; Stein, A.D.; He, J.P.; Noel, M.M.; Hembroff, L.; Nelson, D.A.; Vigneau, F.; Shen, T.; Scott, L.J.; Charzewska, J.; et al. Cabbage and Sauerkraut Consumption in Adolescence and Adulthood and BC Risk among US-Resident Polish Migrant Women. Int. J. Environ. Res. Public Health 2021, 18, 10795. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.L.; Jeong, G.H.; Yang, J.W.; Lee, K.H.; Kronbichler, A.; van der Vliet, H.J.; Grosso, G.; Galvano, F.; Aune, D.; Kim, J.Y.; et al. Tea Consumption and Risk of Cancer: An Umbrella Review and Meta-Analysis of Observational Studies. Adv. Nutr. 2020, 11, 1437–1452. [Google Scholar] [CrossRef] [PubMed]
- González-Palacios Torres, C.; Barrios-Rodríguez, R.; Muñoz-Bravo, C.; Toledo, E.; Dierssen, T.; Jiménez-Moleón, J.J. Mediterranean diet and risk of breast cancer: An umbrella review. Clin. Nutr. 2023, 42, 600–608. [Google Scholar] [CrossRef]
- Vahid, F.; Hatami, M.; Sadeghi, M.; Ameri, F.; Faghfoori, Z.; Davoodi, S.H. The association between the Index of Nutritional Quality (INQ) and BC and the evaluation of nutrient intake of BC patients: A case-control study. Nutrition 2018, 45, 11–16. [Google Scholar] [CrossRef]
- Wajszczyk, B.; Charzewska, J.; Godlewski, D.; Zemła, B.; Nowakowska, E.; Kozaczka, M.; Chilimoniuk, M.; Pathak, D.R. Consumption of Dairy Products and the Risk of Developing BC in Polish Women. Nutrients 2021, 13, 4420. [Google Scholar] [CrossRef]
- Jun, S.; Park, H.; Kim, U.J.; Choi, E.J.; Lee, H.A.; Park, B.; Lee, S.Y.; Jee, S.H.; Park, H. Cancer risk based on alcohol consumption levels: A comprehensive systematic review and meta-analysis. Epidemiol. Health 2023, 45, e2023092. [Google Scholar] [CrossRef]
- Conti, B.; Bochaton, A.; Charreire, H.; Kitzis-Bonsang, H.; Desprès, C.; Baffert, S.; Ngô, C. Influence of geographic access and socioeconomic characteristics on BC outcomes: A systematic review. PLoS ONE 2022, 17, e0271319. [Google Scholar] [CrossRef]
- Renehan, A.G.; Tyson, M.; Egger, M.; Heller, R.F.; Zwahlen, M. Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Lancet 2008, 371, 569–578. [Google Scholar] [CrossRef]
- Ogbenna, B.T.; He, X.; Wu, A.H.; Le Marchand, L.; Wilkens, L.R.; Butler, J.; Dyer, T.; Cheng, I.; Dallal, C.M. Healthy Lifestyle Index and BC Risk among Postmenopausal Women: The Multiethnic Cohort Study. Cancer Epidemiol. Biomark. Prev. 2025, 34, 875–884. [Google Scholar] [CrossRef]
- Yamamoto, S.; Sobue, T.; Sasaki, S.; Kobayashi, M.; Arai, Y.; Uehara, M.; Adlercreutz, H.; Watanabe, S.; Takahashi, T.; Iitoi, Y.; et al. Validity and reproducibility of a self-administered food-frequency questionnaire to assess isoflavone intake in a japanese population in comparison with dietary records and blood and urine isoflavones. J. Nutr. 2001, 131, 2741–2747. [Google Scholar] [CrossRef] [PubMed]
- Shirabe, R.; Saito, E.; Sawada, N.; Ishihara, J.; Takachi, R.; Abe, S.K.; Shimazu, T.; Yamaji, T.; Goto, A.; Iwasaki, M.; et al. Fermented and nonfermented soy foods and the risk of BC in a Japanese population-based cohort study. Cancer Med. 2021, 10, 757–771. [Google Scholar] [CrossRef] [PubMed]
- Whitton, C.; Ho, J.C.Y.; Tay, Z.; Rebello, S.A.; Lu, Y.; Ong, C.N.; van Dam, R.M. Relative Validity and Reproducibility of a Food Frequency Questionnaire for Assessing Dietary Intakes in a Multi-Ethnic Asian Population Using 24-h Dietary Recalls and Biomarkers. Nutrients 2017, 9, 1059. [Google Scholar] [CrossRef]
- Ozasa, K.; Nakao, M.; Watanabe, Y.; Hayashi, K.; Miki, T.; Mikami, K.; Mori, M.; Sakauchi, F.; Washio, M.; Ito, Y.; et al. Association of serum phytoestrogen concentration and dietary habits in a sample set of the JACC Study. J. Epidemiol. 2005, 15 (Suppl. S2), S196–S202. [Google Scholar] [CrossRef] [PubMed]
- Thanos, J.; Cotterchio, M.; Boucher, B.A.; Kreiger, N.; Thompson, L.U. Adolescent dietary phytoestrogen intake and breast cancer risk (Canada). Cancer Causes Control 2006, 17, 1253–1261. [Google Scholar] [CrossRef]
- Frankenfeld, C.L.; Patterson, R.E.; Kalhorn, T.F.; Skor, H.E.; Howald, W.N.; Lampe, J.W. Validation of a soy food frequency questionnaire with plasma concentrations of isoflavones in US adults. J. Am. Diet. Assoc. 2002, 102, 1407–1413. [Google Scholar] [CrossRef]
- Monnier, L.; Colette, C.; Schlienger, J.-L.; Halimi, S. Meta-analyses in clinical research: Strengths and weaknesses. Med. Mal. Metab. 2020, 14, 239–249. [Google Scholar] [CrossRef]
- Lee, H.P.; Gourley, L.; Duffy, S.W.; Estéve, J.; Lee, J.; Day, N.E. Dietary effects on breast-cancer risk in Singapore. Lancet 1991, 337, 1197–1200. [Google Scholar] [CrossRef]
- Lee, H.P.; Gourley, L.; Duffy, S.W.; Estève, J.; Lee, J.; Day, N.E. Risk factors for BC by age and menopausal status: A case-control study in Singapore. Cancer Causes Control 1992, 3, 313–322. [Google Scholar] [CrossRef]
- Hirose, K.; Tajima, K.; Hamajima, N.; Inoue, M.; Takezaki, T.; Kuroishi, T.; Yoshida, M.; Tokudome, S. A Large-scale, Hospital-based Case-Control Study of Risk Factors of Breast Cancer According to Menopausal Status. Jpn. J. Cancer Res. 1995, 86, 146–154. [Google Scholar] [CrossRef]
- Yuan, J.M.; Wang, Q.S.; Ross, R.K.; Henderson, B.E.; Yu, M.C. Diet and BC in Shanghai and Tianjin, China. Br. J. Cancer 1995, 71, 1353–1358. [Google Scholar] [CrossRef] [PubMed]
- Dai, Q.; Shu, X.O.; Jin, F.; Potter, J.D.; Kushi, L.H.; Teas, J.; Gao, Y.T.; Zheng, W. Population-based case-control study of soyfood intake and BC risk in Shanghai. Br. J. Cancer 2001, 85, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.O.; Jin, F.; Dai, Q.; Wen, W.; Potter, J.D.; Kushi, L.H.; Ruan, Z.; Gao, Y.T.; Zheng, W. Soyfood intake during adolescence and subsequent risk of BC among Chinese women. Cancer Epidemiol. Biomark. Prev. 2001, 10, 483–488.E12. [Google Scholar]
- Hirose, K.; Takezaki, T.; Hamajima, N.; Miura, S.; Tajima, K. Dietary factors protective against BC in Japanese premenopausal and postmenopausal women. Int. J. Cancer 2003, 107, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, M.; Shu, X.O.; Yu, H.; Dai, Q.; Malin, A.S.; Gao, Y.T.; Zheng, W. Insulin-like growth factor-I, soy protein intake, and BC risk. Nutr. Cancer 2004, 50, 8–15. [Google Scholar] [CrossRef]
- Lee, M.M.; Chang, I.Y.; Horng, C.F.; Chang, J.S.; Cheng, S.H.; Huang, A. BC and dietary factors in Taiwanese women. Cancer Causes Control 2005, 16, 929–937. [Google Scholar] [CrossRef]
- Li, W.; Ray, R.M.; Lampe, J.W.; Lin, M.-G.; Gao, D.L.; Wu, C.; Nelson, Z.C.; Fitzgibbons, E.D.; Horner, N.; Hu, Y.W.; et al. Dietary and other risk factors in women having fibrocystic breast conditions with and without concurrent breast cancer: A nested case-control study in Shanghai, China. Int. J. Cancer 2005, 115, 981–993. [Google Scholar] [CrossRef] [PubMed]
- Shannon, J.; Ray, R.; Wu, C.; Nelson, Z.; Gao, D.L.; Li, W.; Hu, W.; Lampe, J.; Horner, N.; Satia, J.; et al. Food and botanical groupings and risk of breast cancer: A case-control study in Shanghai, China. Cancer Epidemiol. Biomark. Prev. 2005, 14, 81–90. [Google Scholar] [CrossRef]
- Do, M.H.; Lee, S.S.; Jung, P.J.; Lee, M.H. Intake of fruits, vegetables, and soy foods in relation to BC risk in Korean women: A case-control study. Nutr. Cancer 2007, 57, 20–27. [Google Scholar] [CrossRef]
- Suzuki, T.; Matsuo, K.; Tsunoda, N.; Hirose, K.; Hiraki, A.; Kawase, T.; Yamashita, T.; Iwata, H.; Tanaka, H.; Tajima, K. Effect of soybean on BC according to receptor status: A case-control study in Japan. Int. J. Cancer 2008, 123, 1674–1680. [Google Scholar] [CrossRef]
- Kim, M.K.; Kim, J.H.; Nam, S.J.; Ryu, S.; Kong, G. Dietary intake of soy protein and tofu in association with BC risk based on a case-control study. Nutr. Cancer 2008, 60, 568–576. [Google Scholar] [CrossRef]
- Wu, A.H.; Yu, M.C.; Tseng, C.C.; Pike, M.C. Epidemiology of soy exposures and BC risk. Br. J. Cancer 2008, 98, 9–14. [Google Scholar] [CrossRef]
- Zhang, C.; Ho, S.C.; Lin, F.; Cheng, S.; Fu, J.; Chen, Y. Soy product and isoflavone intake and BC risk defined by hormone receptor status. Cancer Sci. 2010, 101, 501–507. [Google Scholar] [CrossRef]
- Koh, W.P.; Van Den Berg, D.; Jin, A.; Wang, R.; Yuan, J.-M.; Yu, M.C. Combined effects of MDM2 SNP309 and TP53 R72P polymorphisms, and soy isoflavones on BC risk among Chinese women in Singapore. BC Res. Treat. 2011, 130, 1011–1019. [Google Scholar] [CrossRef]
- Toi, M.; Hirota, S.; Tomotaki, A.; Sato, N.; Hozumi, Y.; Anan, K.; Nagashima, T.; Tokuda, Y.; Masuda, N.; Ohsumi, S.; et al. Probiotic Beverage with Soy Isoflavone Consumption for BC Prevention: A Case-control Study. Curr. Nutr. Food Sci. 2013, 9, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.Y.; Zhou, L.; Jiao, S.C.; Xu, L.Z. Relationship between soy food intake and BC in China. Asian Pac. J. Cancer Prev. 2011, 12, 2837–2840. [Google Scholar]
- Chang, Y.J.; Hou, Y.C.; Chen, L.J.; Wu, J.H.; Wu, C.C.; Chang, Y.J.; Chung, K.P. Is vegetarian diet associated with a lower risk of BC in Taiwanese women? BMC Public Health 2017, 17, 800. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Liu, L.; Zhu, Q.; Zhu, Z.; Zhou, J.; Wei, P.; Wu, M. Adherence to the vegetable-fruit-soy dietary pattern, a reference from mediterranean diet, protects against postmenopausal BC among Chinese women. Front. Nutr. 2022, 9, 800996. [Google Scholar] [CrossRef]
- Wu, A.H.; Ziegler, R.G.; Horn-Ross, P.L.; Nomura, A.M.; West, D.W.; Kolonel, L.N.; Rosenthal, J.F.; Hoover, R.N.; Pike, M.C. Tofu and risk of BC in Asian-Americans. Cancer Epidemiol. Biomark. Prev. 1996, 5, 901–906. [Google Scholar]
- Horn-Ross, P.L.; John, E.M.; Lee, M.; Stewart, S.L.; Koo, J.; Sakoda, L.C.; Shiau, A.C.; Goldstein, J.; Davis, P.; Perez-Stable, E.J. Phytoestrogen consumption and BC risk in a multiethnic population: The Bay Area BC Study. Am. J. Epidemiol. 2001, 154, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.H.; Wan, P.; Hankin, J.; Tseng, C.C.; Yu, M.C.; Pike, M.C. Adolescent and adult soy intake and risk of BC in Asian-Americans. Carcinogenesis 2002, 23, 1491–1496. [Google Scholar] [CrossRef]
- Wu, A.H.; Yu, M.C.; Tseng, C.C.; Hankin, J.; Pike, M.C. Green tea and risk of BC in Asian Americans. Int. J. Cancer 2003, 106, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, M.; Hamada, G.S.; Nishimoto, I.N.; Netto, M.M.; Motola, J., Jr.; Laginha, F.M.; Kasuga, Y.; Yokoyama, S.; Onuma, H.; Nishimura, H.; et al. Dietary isoflavone intake and BC risk in case–control studies in Japanese, Japanese Brazilians, and non-Japanese Brazilians. BC Res. Treat. 2009, 116, 401–411. [Google Scholar] [CrossRef]
- Peterson, J.; Lagiou, P.; Samoli, E.; Lagiou, A.; Katsouyanni, K.; La Vecchia, C.; Dwyer, J.; Trichopoulos, D. Flavonoid intake and BC risk: A case--control study in Greece. Br. J. Cancer 2003, 89, 1255–1259. [Google Scholar] [CrossRef]
- dos Santos Silva, I.; Mangtani, P.; McCormack, V.; Bhakta, D.; McMichael, A.J.; Sevak, L. Phyto-oestrogen intake and BC risk in South Asian women in England: Findings from a population-based case-control study. Cancer Causes Control 2004, 15, 805–818. [Google Scholar] [CrossRef]
- Linseisen, J.; Piller, R.; Hermann, S.; Chang-Claude, J.; German Case-Control Study. Dietary phytoestrogen intake and premenopausal BC risk in a German case-control study. Int. J. Cancer 2004, 110, 284–290. [Google Scholar] [CrossRef]
- Bohlscheid-Thomas, S.; Hoting, I.; Boeing, H.; Wahrendorf, J. Reproducibility and relative validity of food group intake in a food frequency questionnaire developed for the German part of the EPIC project. European Prospective Investigation into Cancer and Nutrition. Int. J. Epidemiol. 1997, 26 (Suppl. S1), S59–S70. [Google Scholar] [CrossRef]
- Cotterchio, M.; Boucher, B.A.; Kreiger, N.; Mills, C.A.; Thompson, L.U. Dietary phytoestrogen intake--lignans and Isofl--and BC risk (Canada). Cancer Causes Control 2008, 19, 259–272. [Google Scholar] [CrossRef]
- Anderson, L.N.; Cotterchio, M.; Boucher, B.A.; Kreiger, N. Phytoestrogen intake from foods, during adolescence and adulthood, and risk of BC by estrogen and progesterone receptor tumor subgroup among Ontario women. Int. J. Cancer 2013, 132, 1683–1692. [Google Scholar] [CrossRef]
- Qin, L.Q.; Xu, J.Y.; Wang, P.Y.; Hoshi, K. Soyfood intake in the prevention of BC risk in women: A meta-analysis of observational epidemiological studies. J. Nutr. Sci. Vitaminol. 2006, 52, 428–436. [Google Scholar] [CrossRef]
- Trock, B.J.; Hilakivi-Clarke, L.; Clarke, R. Meta-analysis of soy intake and BC risk. J. Natl. Cancer Inst. 2006, 98, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.-T.; Jin, F.; Li, J.-G.; Xu, Y.-Y.; Dong, H.T.; Liu, Q.; Xing, P.; Zhu, G.-L.; Xu, H.; Miao, Z.-F. Dietary isoflavones or isoflavone-rich food intake and BC risk: A meta-analysis of prospective cohort studies. Clin. Nutr. 2019, 38, 136–145. [Google Scholar] [CrossRef]
- Shin, S.; Fu, J.; Shin, W.-K.; Huang, D.; Min, S.; Kang, D. Association of food groups and dietary pattern with BC risk: A systematic review and meta-analysis. Clin. Nutr. 2023, 42, 282–297. [Google Scholar] [CrossRef]
- Ho, S.C.; Yeo, W.; Goggins, W.; Kwok, C.; Cheng, A.; Chong, M.; Lee, R.; Cheung, K.L. Pre-diagnosis and early post-diagnosis dietary soy isoflavone intake and survival outcomes: A prospective cohort study of early stage BC survivors. Cancer Treat. Res. Commun. 2021, 27, 100350. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.G.; Murphy, P.A.; Ho, S.C.; Kreiger, N.; Darlington, G.; So, E.K.; Chong, P.Y. Isoflavonoid content of Hong Kong soy foods. J. Agric. Food Chem. 2009, 57, 5386–5390. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Lv, J.; Guo, Y.; Bian, Z.; Gao, M.; Du, H.; Yang, L.; Chen, Y.; Zhang, X.; Wang, T.; et al. Soy intake and BC risk: A prospective study of 300,000 Chinese women and a dose-response meta-analysis. Eur. J. Epidemiol. 2020, 35, 567–578. [Google Scholar] [CrossRef]
- Baglia, M.L.; Zheng, W.; Li, H.; Yang, G.; Gao, J.; Gao, Y.T.; Shu, X.O. The association of soy food consumption with the risk of subtype of breast cancers defined by hormone receptor and HER2 status. Int. J. Cancer 2016, 139, 742–748. [Google Scholar] [CrossRef]
- Wada, K.; Nakamura, K.; Tamai, Y.; Tsuji, M.; Kawachi, T.; Hori, A.; Takeyama, N.; Tanabashi, S.; Matsushita, S.; Tokimitsu, N.; et al. Soy isoflavone intake and BC risk in Japan: From the Takayama study. Int. J. Cancer 2013, 133, 952–960. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Kang, H.B.; Li, B.L.; Zhang, R.M. Positive effects of soy isoflavone food on survival of BC patients in China. Asian Pac. J. Cancer Prev. 2012, 13, 479–482. [Google Scholar] [CrossRef]
- Butler, L.M.; Wu, A.H.; Wang, R.; Koh, W.-P.; Yuan, J.-M.; Yu, M.C. A vegetable-fruit-soy dietary pattern protects against BC among postmenopausal Singapore Chinese women. Am. J. Clin. Nutr. 2010, 91, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.O.; Zheng, Y.; Cai, H.; Gu, K.; Chen, Z.; Zheng, W.; Lu, W. Soy food intake and BC survival. JAMA 2009, 302, 2437–2443. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.A.; Shu, X.O.; Li, H.; Yang, G.; Cai, H.; Wen, W.; Ji, B.T.; Gao, J.; Gao, Y.T.; Zheng, W. Adolescent and adult soy food intake and BC risk: Results from the Shanghai Women’s Health Study. Am. J. Clin. Nutr. 2009, 89, 1920–1926. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.H.; Koh, W.P.; Wang, R.; Lee, H.P.; Yu, M.C. Soy intake and BC risk in Singapore Chinese Health Study. Br. J. Cancer 2008, 99, 196–200. [Google Scholar] [CrossRef]
- Nishio, K.; Niwa, Y.; Toyoshima, H.; Tamakoshi, K.; Kondo, T.; Yatsuya, H.; Yamamoto, A.; Suzuki, S.; Tokudome, S.; Lin, Y.; et al. Consumption of soy foods and the risk of breast cancer: Findings from the Japan Collaborative Cohort (JACC) Study. Cancer Causes Control 2007, 18, 801–808. [Google Scholar] [CrossRef]
- Yamamoto, S.; Sobue, T.; Kobayashi, M.; Sasaki, S.; Tsugane, S. Japan Public Health Center-Based Prospective Study on Cancer Cardiovascular Diseases Group. Soy, isoflavones, and BC risk in Japan. J. Natl. Cancer Inst. 2003, 95, 906–913. [Google Scholar] [CrossRef]
- Key, T.J.; Sharp, G.B.; Appleby, P.N.; Beral, V.; Goodman, M.T.; Soda, M.; Mabuchi, K. Soya foods and BC risk: A prospective study in Hiroshima and Nagasaki, Japan. Br. J. Cancer 1999, 81, 1248–1256. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, M.; Li, Z.; Jiang, H.; Shi, J.; Shi, X.; Liu, S.; Zhao, J.; Kong, L.; Zhang, W.; et al. Intake of Soy, Soy Isoflavones and Soy Protein and Risk of Cancer Incidence and Mortality. Front. Nutr. 2022, 9, 847421. [Google Scholar] [CrossRef]
- Conroy, S.M.; Maskarinec, G.; Park, S.-Y.; Wilkens, L.R.; Henderson, B.E.; Kolonel, L.N. The effects of soy consumption before diagnosis on BC survival: The Multiethnic Cohort Study. Nutr. Cancer 2013, 65, 527–537. [Google Scholar] [CrossRef]
- Nechuta, S.J.; Caan, B.J.; Chen, W.Y.; Lu, W.; Chen, Z.; Kwan, M.L.; Flatt, S.W.; Zheng, Y.; Zheng, W.; Pierce, J.P.; et al. Soy food intake after diagnosis of BC and survival: An in-depth analysis of combined evidence from cohort studies of US and Chinese women. Am. J. Clin. Nutr. 2012, 96, 123–132. [Google Scholar] [CrossRef]
- Caan, B.J.; Natarajan, L.; Parker, B.; Gold, E.B.; Thomson, C.; Newman, V.; Rock, C.L.; Pu, M.; Al-Delaimy, W.; Pierce, J.P. Soy food consumption and BC prognosis. Cancer Epidemiol. Biomark. Prev. 2011, 20, 854–858. [Google Scholar] [CrossRef] [PubMed]
- Fraser, G.E.; Jaceldo-Siegl, K.; Orlich, M.; Mashchak, A.; Sirirat, R.; Knutsen, S. Dairy, soy, and risk of breast cancer: Those confounded milks. Int. J. Epidemiol. 2020, 49, 1526–1537. [Google Scholar] [CrossRef]
- Touillaud, M.; Gelot, A.; Mesrine, S.; Bennetau-Pelissero, C.; Clavel-Chapelon, F.; Arveux, P.; Bonnet, F.; Gunter, M.; Boutron-Ruault, M.-C.; Fournier, A. Use of dietary supplements containing soy isoflavones and BC risk among women aged >50 y: A prospective study. Am. J. Clin. Nutr. 2019, 109, 597–605. [Google Scholar] [CrossRef]
- Zhang, F.F.; Haslam, D.E.; Terry, M.B.; Knight, J.A.; Andrulis, I.L.; Daly, M.B.; Buys, S.S.; John, E.M. Dietary isoflavone intake and all-cause mortality in BC survivors: The BC Family Registry. Cancer 2017, 123, 2070–2079. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, Y.; Maskarinec, G.; Park, S.-Y.; Ettienne, R.; Matsuno, R.K.; Long, C.; Steffen, A.D.; Henderson, B.E.; Kolonel, L.N.; Marchand, L.; et al. Dietary isoflavone intake is not statistically significantly associated with BC risk in the Multiethnic Cohort. Br. J. Nutr. 2014, 112, 976–983. [Google Scholar] [CrossRef]
- Guha, N.; Kwan, M.L.; Quesenberry, C.P., Jr.; Weltzien, E.K.; Castillo, A.L.; Caan, B.J. Soy isoflavones and risk of cancer recurrence in a cohort of BC survivors: The Life After Cancer Epidemiology study. BC Res. Treat. 2009, 118, 395–405. [Google Scholar] [CrossRef]
- Kirk, P.; Patterson, R.E.; Lampe, J. Development of a soy food frequency questionnaire to estimate isoflavone consumption in US adults. J. Am. Diet. Assoc. 1999, 99, 558–563. [Google Scholar] [CrossRef]
- Pillow, P.C.; Duphorne, C.M.; Chang, S.; Contois, J.H.; Strom, S.S.; Spitz, M.R.; Hursting, S.D. Development of a database for assessing dietary phytoestrogen intake. Nutr. Cancer 1999, 33, 3–19. [Google Scholar] [CrossRef]
- Travis, R.C.; Allen, N.E.; Appleby, P.N.; Spencer, E.A.; Roddam, A.W.; Key, T.J. A prospective study of vegetarianism and isoflavone intake in relation to BC risk in British women. Int. J. Cancer 2008, 122, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Horn-Ross, P.L.; Hoggatt, K.J.; West, D.W.; Krone, M.R.; Stewart, S.L.; Anton, H.; Bernstei, C.L.; Deapen, D.; Peel, D.; Pinder, R.; et al. Recent diet and BC risk: The California Teachers Study (USA). Cancer Causes Control 2002, 13, 407–415. [Google Scholar] [CrossRef]
- Zheng, W.; Dai, Q.; Custer, L.J.; Shu, X.O.; Wen, W.Q.; Jin, F.; Franke, A.A. Urinary excretion of isoflavonoids and the risk of breast cancer. Cancer Epidemiol. Biomark. Prev. 1999, 8, 35–40. [Google Scholar]
- Gamache, P.H.; Acworth, I.N. Analysis of phytoestrogens and polyphenols in plasma, tissue, and urine using HPLC with coulometric array detection. Proc. Soc. Exp. Biol. Med. 1998, 217, 274–280. [Google Scholar] [CrossRef]
- Grace, P.B.; Taylor, J.I.; Low, Y.L.; Luben, R.N.; Mulligan, A.A.; Botting, N.P.; Dowsett, M.; Welch, A.A.; Khaw, K.T.; Wareham, N.J.; et al. Phytoestrogen concentrations in serum and spot urine as biomarkers for dietary phytoestrogen intake and their relation to BC risk in European prospective investigation of cancer and nutrition-Norfolk. Cancer Epidemiol. Biomark. Prev. 2004, 13, 698–708. [Google Scholar] [CrossRef]
- Dai, Q.; Franke, A.A.; Jin, F.; Shu, X.O.; Hebert, J.R.; Custer, L.J.; Cheng, J.; Gao, Y.T.; Zheng, W. Urinary excretion of phytoestrogens and risk of BC among Chinese women in Shanghai. Cancer Epidemiol. Biomark. Prev. 2002, 11, 815–821. [Google Scholar]
- Dai, Q.; Franke, A.A.; Yu, H.; Shu, X.O.; Jin, F.; Hebert, J.R.; Custer, L.J.; Gao, Y.T.; Zheng, W. Urinary phytoestrogen excretion and BC risk: Evaluating potential effect modifiers endogenous estrogens and anthropometrics. Cancer Epidemiol. Biomark. Prev. 2003, 12, 497–502. [Google Scholar]
- den Tonkelaar, I.; Keinan-Boker, L.; Veer, P.V.; Arts, C.J.; Adlercreutz, H.; Thijssen, J.H.; Peeters, P.H. Urinary phytoestrogens and postmenopausal BC risk. Cancer Epidemiol. Biomark. Prev. 2001, 10, 223–228. [Google Scholar]
- Ward, H.; Chapelais, G.; Kuhnle, G.G.; Luben, R.; Khaw, K.T.; Bingham, S. European Prospective into Cancer-Norfolk cohort. BC risk in relation to urinary and serum biomarkers of phytoestrogen exposure in the European Prospective into Cancer-Norfolk cohort study. BC Res. 2008, 10, R32. [Google Scholar] [CrossRef]
- Goodman, M.T.; Shvetsov, Y.B.; Wilkens, L.R.; Franke, A.A.; Le Marchand, L.; Kakazu, K.K.; Nomura, A.M.; Henderson, B.E.; Kolonel, L.N. Urinary phytoestrogen excretion and postmenopausal BC risk: The multiethnic cohort study. Cancer Prev. Res. 2009, 2, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Bensaada, S.; Lamothe, V.; Lacoste, M.; Bennetau-Pelissero, C. Endocrine disruptors on and in fruits and vegetables: Estimation of the potential exposure of the French population. Food Chem. 2022, 373 Pt B, 131513. [Google Scholar] [CrossRef]
- Mathey, J.; Lamothe, V.; Coxam, V.; Potier, M.; Sauvant, P.; Bennetau-Pelissero, C. Concentrations of isoflavones in plasma and urine of post-menopausal women chronically ingesting high quantities of soy isoflavones. J. Pharm. Biomed. Anal. 2006, 41, 957–965. [Google Scholar] [CrossRef]
- Lampe, J.W.; Nishino, Y.; Ray, R.M.; Wu, C.; Li, W.; Lin, M.G.; Gao, D.L.; Hu, Y.; Shannon, J.; Stalsberg, H.; et al. Plasma isoflavones and fibrocystic breast conditions and BC among women in Shanghai, China. Cancer Epidemiol. Biomark. Prev. 2007, 16, 2579–2586. [Google Scholar] [CrossRef]
- Iwasaki, M.; Inoue, M.; Otani, T.; Sasazuki, S.; Kurahashi, N.; Miura, T.; Yamamoto, S.; Tsugane, S.; Japan Public Health Center-based prospective study group. Plasma isoflavone level and subsequent risk of BC among Japanese women: A nested case-control study from the Japan Public Health Center-based prospective study group. J. Clin. Oncol. 2008, 26, 1677–1683. [Google Scholar] [CrossRef]
- Verheus, M.; van Gils, C.H.; Keinan-Boker, L.; Grace, P.B.; Bingham, S.A.; Peeters, P.H. Plasma phytoestrogens and subsequent BC risk. J. Clin. Oncol. 2007, 25, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Yoshikata, R.; Myint, K.Z.Y.; Taguchi, J. Comparison of blood and urine concentrations of equol by LC–MS/MS method and factors associated with equol production in 466 Japanese men and women. PLoS ONE 2024, 19, e0288946. [Google Scholar] [CrossRef] [PubMed]
- Uehara, M.; Arai, Y.; Watanabe, S.; Adlercreutz, H. Comparison of plasma and urinary phytoestrogens in Japanese and Finnish women by time-resolved fluoroimmunoassay. Biofactors 2000, 12, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Eustache, F.; Mondon, F.; Canivenc-Lavier, M.C.; Lesaffre, C.; Fulla, Y.; Berges, R.; Cravedi, J.P.; Vaiman, D.; Auger, J. Chronic dietary exposure to a low-dose mixture of genistein and vinclozolin modifies the reproductive axis, testis transcriptome, and fertility. Environ. Health Perspect. 2009, 117, 1272–1279. [Google Scholar] [CrossRef]
- Setchell, K.D. Phytoestrogens: The biochemistry, physiology, and implications for human health of soy isoflavones. Am. J. Clin. Nutr. 1998, 68 (Suppl. S6), 1333S–1346S. [Google Scholar] [CrossRef]
Cell Types | Isoflavone Concentrations | Effects | References |
---|---|---|---|
MCF-7 ER+/PR+/HER2+/GPER+ | Genistein 0.1 µM | Proliferation | [50] |
Equol 0.1 µM | Proliferation | [50] | |
Daidzein 1µM | Proliferation | [50] | |
MDA-MB-231 ER−/PR−/HER2−/GPER+ | Genistein 1 µM | Synthesis of cfos | [51] |
Daidzein 1 µM | Inhibition | [52] | |
Daidzein 0.1 µM | No effect on growth | [52] | |
Equol 1 µM | Inhibition | [52] | |
Equol 0.1 µM | No effect on growth | [52] | |
SKBR3 ER−/PR−/HER2+/GPER+ | Genistein 1 µM | Synthesis of cfos | [51] |
Genistein 1 µM | No proliferation | [53] | |
Daidzein 1 µM | No proliferation | [53] | |
MDA-MB-468 ER−/PR−/HER2−/GPER+ | Genistein 1 µM | No effect on growth | [54] |
T47D ER+/PR+/HER2+/GPER+ Tam-resistant | Genistein 0.1 µM | Proliferation | [55] |
Daidzein 0.1 µM | Proliferation | [55] | |
Equol 0.1 µM | Proliferation | [55] | |
ZR-75.1 ER+/PR+/HER2−/GPER+ | Genistein 1 µM | Slight growth induction | [54] |
Daidzein 1 µM | No effect on growth | [53] |
Ref | Animals | DMBA Treatment | Isoflavones | Isoflavones mg/kg bw/day | Duration of the Study | Tumor Incidence (%) * | Effect | Isoflavone in Plasma (µM) |
---|---|---|---|---|---|---|---|---|
[62] | Sprague Dawley Female rats 7 weeks old | PND50 80 mg/kg bw | Genistein | 2.5 | 38 weeks Isofl G1–PND21 | 53 | Inhibition | 0.04 |
25.0 | 23 | Inhibition | 0.45 | |||||
[63] | Sprague Dawley Female rats 5 weeks old | PND50 50 mg/kg bw | Soy diet | 3 | 18 weeks Isofl PND35–end | 80 | No effect | 0.1 b |
40 | 74 | No effect | 1.5 b | |||||
80 | 57 | No effect | 3 b | |||||
[64] | Sprague Dawley Female rats 5 weeks old | PND50 50 mg/kg bw | Genistein | 20 | 17 weeks Isofl PND43–end | 90 | No effect | 0.9 |
Daidzein | 20 | 100 | Inhibition | 1 | ||||
Gen + Dai | 10 + 10 | 100 | No effect | 1 a | ||||
Soy prot + | 22 + 12 | 95 | Inhibition | 1.37 | ||||
Soy prot − | 0 | 89 | Inhibition | 0 | ||||
[65] | Sprague Dawley Female rats Age unknown | PND50 80 mg/kg bw | Genistein | 2.5 G1–PND21 | 38 weeks | 77 | Inhibition | 0.04 b |
25.0 G1–PND21 | 53 | Inhibition | 0.45 b | |||||
25.0 G1–G21 | 100 | No effect | 0.45 b | |||||
25.0 PND0–21 | 53 | Inhibition | 0.45 b | |||||
[66] | Sprague Dawley Female rats 6 weeks old | 60 mg/kg bw Age unknown | Genistein | 20 | 16 weeks Age unknown | 40 | Inhibition | 0.45 b |
Daidzein | 20 | 50 | 0.6 b | |||||
Gen + Dai | 20 + 20 | 20 | 1 b | |||||
[67] | Sprague Dawley Female rats Age unknown | PND50 80 mg/kg bw | Equol-S | 40 PND0–21 | 20 weeks | 97 | No effect | 0.8 |
22 PND21–35 | 97 | 0.65 | ||||||
Equol-R | 40 PND0–21 | 86 | 0.8 | |||||
22 PND21–35 | 86 | 0.65 | ||||||
[68] | Sprague Dawley Female rats Pregnant GD 11 | Offspring PND50 40 mg/kg bw | Milk ± Isofl to pregnant dams | High: 28 GD11–GD21 | 18 weeks post-DMBA | 75 | Inhibition | 0.12 |
Low: 7 GD11–GD21 | 75 | Inhibition | 0.12 | |||||
[69] | Zucker Female rats Lean 5 weeks old | PND50 65 mg/kg bw | Soy protein | 140 | 15 weeks Isofl PND42–147 | 62 | Inhibition | 3 b |
Zucker Female rats Obese 5 weeks old | 100 | No effect | 3 b | |||||
[70] | Wistar Female rats 6 weeks old | PND55 80 mg/kg bw | Genistein | 2–3 times/w | 20 weeks Isofl PND40–end | 60 | Inhibition | 0.1 c |
Genistein + Lycopene | 2 + 20 3 times/w | 40 | Inhibition | 0.1 c | ||||
[71] | Donryu Female rats 5 weeks old OVX | PND35 50 mg/kg bw | Soy isolate | 15 | 40 weeks Isofl PND35–end | 100 | Activation and estrogenic | Unknown |
Genistein 52% | ||||||||
Daidzein 42% | ||||||||
Glycitein 6% | ||||||||
[72] | Sprague Dawley Female rats 6 weeks old | F1, PND50 100 mg/kg bw | Genistein | 1: GD1–PND21 | 20 weeks | 25 | Inhibition | 0.05 d |
Genistein + Vinclozolin | 1 + 1: GD1–PND21 | 50 | Inhibition | 0.05 d | ||||
[73] | Sprague Dawley Female rats and 10-day-old female pups | PND48 25 mg/kg bw | ± Genistein ± TAM | 44 | 38 weeks Isofl PND15–30 s | 100 | Activation but delayed | 1 e |
[74] | Sprague Dawley Female rats Age unknown | PND60 80 mg/kg bw PND90 40 mg/kg bw | Genistein Nanoparticles | 0.2 | 20 weeks Isofl PND40–end | 100 | Activation | Unknown |
Microparticles | 0.2 | 80 | Activation | Unknown | ||||
Macroparticles | 0.2 | 100 | Activation | Unknown |
Ref | Animals | Carcinogen Treatment | Isoflavones | Isoflavones mg/kg bw/day a | Duration of the Study | Tumor Incidence (%) * | Effect | Isoflavone in Plasma (µM) |
---|---|---|---|---|---|---|---|---|
[65] | Sprague Dawley Female rats Age unknown | DMBA PND50 80 mg/kg bw | Genistein | 37.5/ /25.0 | 38 weeks PND0-21/ /100–end | 33 | Inhibition | 0.45 b |
[79] | Sprague Dawley Female rats Age unknown OVX | DMBA PND50 50 mg/kg bw | Genistein tumors + | 1.5 | 43 weeks Isofl: PND133–385 | 140 | Activation | 0.04 a |
15.0 | 45 | Inhibition | 0.40 a | |||||
genistein tumors − | 1.5 | 165 | Activation | 0.04 a | ||||
15.0 | 170 | Activation | 0.40 a | |||||
[80] | Sprague Dawley Female rats 20 days old | MNU PND21 75 mg/kg bw | Genistein | 75 | Isofl OVX-TD90 | 400 | Activation estrogenic | 3.1 |
[81] | Sprague Dawley Female rats 6 weeks old | DMBA PND50 25 mg/kg bw | Soy milk estimated 178 µg/g b | 18 c | 13 weeks Isofl PND51–end | 100 | Activation | 0.35 a |
[82] | Sprague Dawley Female rats 8 weeks old OVX | DMBA 56 PND 50 mg/kg bw | Genistein Daidzein Equol | 0.73 0.69 or 6.9 0.65 | 3 weeks PND57–end | 100 33–46 30 | No effect Inhibition Inhibition | Unknown |
[83] | Sprague Dawley Female rats 7 weeks old | DMBA 57 PND 10 mg/kg bw | Soy extract Genistein 49.7% Daidzein 5.3% Glycitin 34.5% | Low: 8 Medium: 40 High: 80 | 24 weeks Post-DMBA Isofl PND71–end | 26.7 | Inhibition | 0.4 c |
6.7 | 2.0 c | |||||||
6.7 | 4.0 c | |||||||
Sprague Dawley Female rats 7 weeks old OVX | Low: 7 Medium: 35 High: 70 | 13.3 | Inhibition | 0.4 c | ||||
6.7 | 2.0 c | |||||||
13.3 | 4.0 c | |||||||
[76] | Sprague Dawley Female rats and 10-day-old female pups | DMBA 48 PND 25 mg/kg bw | Genistein PND15-30 | 25 Gen PND55–end | 38 weeks | 100 | Activation but delayed with genistein | 0.45 c |
Genistein + TAM PND15-30 | TAM tumor–end 25 Gen tumor–end | |||||||
Genistein | 25 Gen PND55–end | |||||||
Genistein + TAM | TAM tumor–end 25 Gen tumor–end |
References | Animals | Cell Lines Implanted | Treatment | Dosages mg/kg/day a | Test Duration | Effect | Concentration in Plasma µM |
---|---|---|---|---|---|---|---|
[92] | Females OVX 5 weeks old | MCF-7 | Genistein | 150 | 12 weeks | Proliferation uterotrophy | 2.1 |
[93] | Females OVX 4 weeks old | MCF-7 | Genistein | 2.4 | 10 weeks | No effect | 0.1 |
24 | Proliferation | 0.7 | |||||
48 | Proliferation | 1.4 | |||||
[94] | Females OVX 4 weeks old | MCF-7 | Genistein | 120 | 11 weeks | Same prolif. | 0.44 |
Genistein | 240 | 11 weeks | Same prolif. | 0.51 | |||
[95] | Females Balb/c 4 weeks old OVX | MCF-7 | Genistein | 20 | 22 weeks | No effect | 0.39 |
40 | Proliferation | 1.2 | |||||
80 | Proliferation | 2.8 | |||||
160 | Proliferation | 3.4 | |||||
[96] | Females Balb/c 4 weeks old OVX | MCF-7 | Genistein ± TAM | 160 | 32 weeks | Proliferation ± TAM | 3.9 5.0 |
[97] | Females OVX 4 weeks old | MCF-7 | Soy meal + Isofl | 212 b | 10 weeks | No effect | 3.7 b |
Molasse + Isofl | 215 b | Proliferation | 4.5 b | ||||
Novasoy | 213 b | Proliferation | 5.5 b | ||||
Mixed Isofl | 184 b | Proliferation | 7.5 b | ||||
Genistin | 133 b | Proliferation | 2.0 b | ||||
[98] | Females SCID 5–8 weeks old | MCF-7 | Soy extract | 100 | 8 weeks | Inhibition | Unknown |
Soy extract | 500 | Inhibition | Unknown | ||||
Soy Isofl | 56 | Inhibition | Unknown | ||||
Soy Isofl | 280 | Inhibition | Unknown | ||||
[99] | Females Balb/c 4 weeks old OVX | MCF-7 | Daidzein | 20 | 22 weeks | No effect | 0.3 |
40 | No effect | 0.6 | |||||
80 | Proliferation | 0.9 | |||||
160 | Proliferation | 1.8 | |||||
[100] | Females Balb/c 4 weeks old OVX | MCF-7 | Genistein ± E2 | 80 | 18 weeks | Additive prolif. | 2.8 |
[101] | Females OVX 8 weeks old | MCF-7 | Isofl glyc. 5 days/week | 1.23 | 5 weeks | No effect | 0.2 c |
2.56 | No effect | 0.25 c | |||||
[55] | Females Balb/c 6 weeks old OVX | T47D TAM-resistant | Genistein ± TAM | 32 | 14 weeks | Proliferation ++ | 1.0 |
Daidzein ± TAM | 23 | Proliferation ++ | 0.3 | ||||
Soy diet | Unknown | 10 weeks | Proliferation | Unknown | |||
[102] | Females Balb/c 4 weeks old OVX | MCF-7 | Genistein ± letrozole | 40 | 20 weeks − L 32 weeks + L | Proliferation | 1.5–1 |
80 | Proliferation | 2.8–1.5 | |||||
160 | Proliferation | 4.8–6 | |||||
[103] | Females Balb/c 4 weeks old OVX | MCF-7 | Oral genistein | 80 | 23 weeks | Proliferation | 2.8 c |
Soy flour | 64 | Proliferation | 2.0 c | ||||
[50] | Females Balb/c 4 weeks old OVX | MCF-7 E10 | Genistein | 40 | 25 weeks | No effect | 1.5 c |
Genistein | 80 | No effect | 2.8 c | ||||
S-equol | 40 | No effect | Unknown | ||||
S-equol | 80 | No effect | Unknown | ||||
SE5-OH | 40 | No effect | Unknown | ||||
SE5-OH | 80 | No effect | Unknown | ||||
[104] | Females Balb/c 4 weeks old OVX | MCF-7 | Genistein + TAM | 40 | 35 weeks | No effect | 2.6 c |
Gen + TAM + E2 | 20 | Proliferation | 1.4 c | ||||
Gen + TAM + E2 | 40 | Proliferation | 2.6 c | ||||
Gen + TAM + E2 | 80 | Low prolif | 3.3 c | ||||
[105] | Females Balb/c 4 weeks old OVX | MCF-7 | Genistein | 120 | 15w+/9w−/7w+ | + GEN: prolif. − GEN: regression | 2.1 |
Genistein | 80 | 23w+/11w− | + GEN: prolif. − GEN: no regression | 1.8 | |||
Soy protein | 30 | 32w+/8w− | + GEN: prolif. − GEN: no regression | 0.8 | |||
E2 | Menopausal E2 serum | 19w+/6w−/6w+ | + E2: prolif. − E2: regression | None | |||
[106] | Females Balb/c 4 weeks old | MCF-7 | Genistein | 16 160 | 4 weeks | Prolif. reduced | 0.6 c 6 c |
MCF-7/ERβ | Prolif. reduced | ||||||
MBA-MD-231/ERβ | No effect | ||||||
[107] | Females Balb/c 4 weeks old | MCF-7 | Genistein | 80 | 18 weeks | Proliferation | 2.8 c |
GEN + Eq | 80 + 40 | Proliferation | 2.8 c + 2.2 c | ||||
GEN + Eq | 80 + 80 | Proliferation | 2.8 c + 4.5 c | ||||
GEN + Eq | 80 + 160 | Proliferation | 2.8 c + 6.8 c | ||||
Eq | 40 | 13 weeks | No effect | 2.24 | |||
Eq | 160 | No effect | 6.84 |
References | Animals | Cell Lines Implanted | Treatment | Dosages a mg/kg bw/day | Test Duration | Effects | Concentrations in Plasma (µM) |
---|---|---|---|---|---|---|---|
[109] | Females OVX 5 weeks old | MDA-MB-231 | Genistein | 150 | 9 weeks | Proliferation | 1.6 |
1 + 9 weeks | No effect | 1.6 | |||||
[101] | Females OVX 8 weeks old | MDA-MB-231 | Isofl glycosides 5 days/week | 1.23 | 5 weeks | No effect | 0.2 b |
2.56 | No effect | 0.25 b | |||||
[110] | Females Balb/c 4 weeks old OVX | MDA-MB-231 | Genistein 3 weeks | 150 | 13 weeks | Inhibition | 2.1 b |
Soy extract 3 weeks | Inhibition | Unknown | |||||
[111] | Females 5 weeks old | MDA-MB-231 | Genistein | 50 | 5 weeks | Inhibition | 1.4 b |
[103] | Females Balb/c 4 weeks old | MDA-MB-231 | Genistein | 16 | 4 weeks | No effect | 0.6 b |
References | End Point 1 | Substance Tested 2 | Isoflavones (mg/day) 3 | Number of Subjects Treated/Control | Duration (Months) | Effect |
---|---|---|---|---|---|---|
[140] | MD | SI | 37 | 65/62 | 12 | No |
[141] | MD | SI | 100 | 40/32 | 10 | No |
[142] | MD | SI | 99 | 100/70 | 12 | No |
[143] | MD | SI | 80 | 120/115/123 4 | 24 | No |
[144] | MD | Genistein | 54 | 198/191 | 12 | No |
[145] | MD | Genistein | 54 | 30/30 | 12 | No |
[146] | MD | CI | 43.5 | 102/103 | 12 | No |
[147] | MD | CI | 40 | 39/38 | 12 | No |
[148] | AC | SI | 235 | 49/49 | 6 | No |
[149] | AC | SI | 60 | 26/25 | 3 | No |
N° | Family Factors | N° | Endocrine Factors | N° | Environmental Factors |
---|---|---|---|---|---|
1 | History of benign breast disease | 6 | Age at menarche | 14 | Asian, African, Western, etc., countries |
2 | History of breast cancer | 7 | Age at menopause | 15 | Fruit and vegetable consumption |
3 | Personal history of benign breast disease | 8 | Age at first delivery | 16 | Dietary pattern: Western, Asian, etc. |
4 | Personal history of breast cancer | 9 | Parity | 17 | Cruciferous consumption |
5 | Ethnicity | 10 | Use of hormonal contraception | 18 | Green tea consumption |
11 | Use of hormones for menopause | 19 | Alcohol consumption | ||
12 | Time since menopause | 20 | Physical activity | ||
13 | BMI at menopause | 21 | Smoking status | ||
22 | Endocrine disruptor exposure | ||||
23 | Socioeconomic situation | ||||
24 | Education | ||||
25 | Cooking process for soy food |
Ref | Number of Subjects | Soy Exposure | Doses of Isoflavones | Results | Effect Recorded | Confounding Factors Missed | Reliability |
---|---|---|---|---|---|---|---|
Asian | |||||||
[174] | 109/207 | Soy food 16.8 to 55.1 g/d Soy protein 1.4 to 3.5 g/d | No estimation | After adjustment Q1 vs. Q5 OR (95% CI) | p Soy protein 0.47 (0.24–0.98) | 0.08 Total soy foods 0.39 (0.19–0.77) | 0.02 | Less meat and more PUFAs, β-carotene, and soy proteins ↓ BC risk pre-menopause but not post-menopause. | 1, 3, 12, 15, 17, 18, 19, 20, 21, 22, 23, 25 | Low |
[175] | 200/420 | Quantitative FFQ Soy foods (g/d) T1: <20.3 T2: 20.3–54.9 T3: ≥55 | No estimation | T1 vs. T3 OR (95% CI) | p Soy protein (g) 0.4 (0.2–0.8) | 0.01 Soy/total protein 0.3 (0.1–0.6) | 0.001 Total soy products (g) 0.4 (0.2–0.9) | 0.01 | Soy foods and soy protein ↓ BC risk pre-menopause. | 1, 3, 11, 12, 13, 15, 17, 18, 19, 20, 22, 25 | Low |
[176] | 1186/23,163 607 cases Pre-menop. 445 cases Post-menop. | Bean curd T1: ≤3/month T2: 1–2/week T3: ≥3/week | Not applicable | Bean curd T1 vs. T3 OR (95% CI) pre-menopausal women 0.78 (0.6–1.00) post-menopausal women 0.96 (0.70–1.31) | No significant effect of soy or other vegetables. Ham and sausages ↑ BC risk post-menopause. | 1, 10, 11, 12, 17, 18, 22, 24, 25 | Moderate |
[177] | 834/834 | Soy protein 1.6–12.4 g/d | Not applicable | RR (95% CI) Soy proteins (g) 1.0 (0.7–1.4) Soy protein (%) 1.0 (0.7–1.5) | No effect of soy proteins on BC risk. Fat ↑ BC risk. Fibers, green vegetables, carotenoids, and vit C $ BC risk. | 1, 7, 8, 12, 17, 18, 20, 23, 25 | Moderate |
[178] | 1459/1556 | Total soy food (g/wk) mean ± SD 947.8 ± 889.0 Median (25th, 75th) Percentile 654.5 (350.0, 1249.5) | Isofl (mg/wk) mean ± SD 286.3 ± 276.5 Median (25th, 75th) Percentile 232.4 (130.9, 373.1) | Soy food intake D1 vs. D10 OR (95% CI) | p All subjects 0.66 (0.46–0.95) | 0.28 Subjects on same diet 0.46 (0.28–0.75) | 0.02 | No clear dose–effect relationship between soy intake and BC. Soy food may ↓ the risk of BC, especially the ER+ and PR+ forms. | 12, 17, 18, 22, 23, 25 | Reasonable |
[179] | 1459/1556 | Tofu (g/d,): Q1: <0.44 Q2: 0.44–0.88 Q3: 0.88–1.32 Q4: 1.32–2.2 Q5: >2.2 All soy food (g/d) Q1: <2.20 Q2: 2.2–4.4 Q3: 4.41–6.6 Q4: 6.61–11.0 Q5: >11.0 | Not applicable | Soy food intake in youth and BC risk as adult OR (95% CI) | p Q1: 1.0 as reference, Q2: 0.75 (0.60–0.93) Q3: 0.69 (0.55–0.87) Q4: 0.69 (0.55–0.86) Q5: 0.51 (0.40–0.65) | <0.001. | Soy food intake in youth ↓ BC risk. | 1, 10, 12, 17, 18, 21, 23, 25 | Moderate |
[180] | 2385/19,013 | Q1: 1–3 t/month Q2: 1–2 t/wk Q3: 3–4 t/wk Q4: ≥5 t/wk | Not applicable | Not significant after adjustment | No significant effect of soy intake on BC risk. | 1, 3, 10, 12, 18, 22, 23, 24, 25 | Moderate |
[181] | 357/357 | All women (g/d) T1: <6.96 T2: 6.96–12.21 T3: ≥12.22 Pre-menopause T1: <6.89 T2: 6.89–11.85 T3: ≥11.86 Post-menopause T1: <7.28 T2: 7.28–13.18 T3: ≥13.19 | Estimation from database | Not significant after adjustment | No significant effect of soy protein on BC risk. | 1, 4, 12, 15, 16, 17, 18, 19, 21, 22, 23, 25 | Low |
[182] | 219/250 | FFQ for soy foods (g/wk) Q1: ≤114 Q2: 114–191 Q3: 192–341 Q4: >341 | Not applicable | Women ≤ 40 Not significant Women > 40 Not significant | Fat ↑ BC risk. Vitamin linked to control status. Beef and pork ↑ BC risk. Soy tends to ↑ BC risk, not significant. | 1, 4, 12, 17, 19, 21, 23, 25 | Low |
[183] | 155/1070 | Soy food intake Q1: ≤121 t/y Q2: 122–219 t/y Q3: 220–368 t/y Q4: ≥369 t/y | Not applicable | OR (95% CI) | p Benign fibroadenoma Q2, Q3, Q4 0.8 (0.5–1.3) 0.7 (0.4–1.2) 0.6 (0.3–1.0) | 0.04 Cancerous fibroadenoma Not significant | No significant effect of soy intake on BC risk. | 1, 5, 11, 12, 17, 22, 23, 25 | Moderate |
[18] | 1052/23,163 | Soy food intake (g/100 kcal) Tertile medians Pre-menopause T1: 17.2 T2: 29.7 T3: 47.9 Post-menopause T1: 20.1 T2: 35.3 T3: 56.5 | Estimation from the USDA Database | After adjustment Tofu pre-menopause T2, T3 OR (95% CI) | p 0.44 (0.22–0.90) 0.49 (0.25–0.95) |0.03 Fried tofu post-menopause 1.95 (0.98–3.86) 2.28 (1.15–4.51) | 0.02 | Tofu and estimated Isofl ↓ BC risk in pre-menopause and fried tofu ↑ BC risk in post-menopause. | 1, 3, 10, 11, 12, 17, 18, 22, 23, 24, 25 | Low |
[184] | 378/1070 | Soy food intake via specific FFQ Q1: ≤2.6 t/wk Q2: 2.6–4.4 t/wk Q3: 4.4–7.7 t/wk Q4: ≥7.7 t/wk | Not applicable | Not significant after adjustment | Fruits and vegetables ↓ BC risk. No effect of soy. | 1, 12, 18, 22, 23, 25 | Reasonable |
[185] | 359/708 | Soybeans (g/d) Q1: <0.31 Q2: 0.31–1.62 Q3: 1.62–3.03 Q4: >3.03 Soybean paste (g/d) Q1: <1.82 Q2: 1.82–5.38 Q3: 5.38–9.24 Q4: >9.24 | Not applicable | OR (95% CI) | p Soybeans Q1 vs. Q4 0.67 (0.45–0.91) | 0.02 Soybean paste Q1 vs. Q3 0.69 (0.39–1.09) | 0.04 | No association of total fruits, vegetables, or soy food and BC risk. Grapes, tomatoes, and cooked soybeans ↓ BC risk. | 1, 3, 12, 18, 22, 25 | Reasonable |
[186] | 678/3390 | Soy food (g/d) T1: 1.1–27.4 T2: 27.4–51.2 T3: 51.2–326.3 | Not applicable | OR (95% CI) | p T1 vs. T3 ER+ 0.74 (0.58–0.94) | 0.01 HER2− 0.78 (0.61–0.99) | 0.04 ER+/PR+/HER2− 0.73 (0.54–0.97) | 0.03 | Soy intake ↓ BC risk in ER+, HER2− ER+/PR+/HER2− Tumors. | 1, 3, 10, 12, 15, 17, 18, 22, 23, 24, 25 | Low |
[187] | 362/362 pre-menopause 235/235 post-menopause 127/127 | Soy protein (g/d) Q1: <4.24 Q2: 4.25–6.34 Q3: 6.35–8.09 Q4: 8.10–10.54 Q5: ≥10.55 Tofu intake (g/d) Q1: <7.73 Q2: 7.74–14.39 Q3: 14/4–23.59 Q4: 23.6–49.49 Q5: ≥49.5 Tofu slice (N°) T1: ≤2 t/wk T2: ≤1 t/d T3: >1 t/d | Not applicable | Pre-menopause Total soy protein Q1 vs. Q5 OR (95% CI) | p 0.39 (0.22–0.93) | 0.03 Total tofu Q1 vs. Q5 0.23 (0.11–0.48) | <0.01 Tofu slices T1 vs. T3 0.26 (0.13–0.55) | <0.01 Post-menopause Total soy protein 0.2 (0.06–0.88) | 0.16 | Soy and tofu ↓ BC risk pre- menopause, not post-menopause. | 1, 3, 12, 17, 18, 22, 23, 25 | Low |
[188] | 8 studies: 1: 109/207 2: 1459/1556 3: 501/594 4: 179/209,354 5: 1052/23,163 6: 219/250 7: 378/1070 8: 359/708 | Soy recorded from FFQ 165 foods and beverages expressed in eq tofu | Estimated from FFQ and database Low: ≤5 mg/d Moderate: ≈10 mg/d High: ≥20 mg/d stratification for 10.6 mg/d for 1000 kcal intake | RR (95% CI) Moderate vs. low All studies 0.88 (0.78–0.98) High vs. low All studies 0.71 (0.60–0.85) | Soy ↓ BC risk significantly in Asia. No effect in Western population. No p-values. | 1, 3, 8, 10, 11, 12, 15, 17, 20, 22, 23, 25 | Low |
[189] | 438/438 | Soy protein (g/d) Q1: <0.93 Q2: 0.93–2.33 Q3: 2.33–4.66 Q4: >4.66 | Estimated (mg/d) Q1: <3.26 Q2: 3.26–8.07 Q3: 8.07–16.89 Q4: >16.89 | ORs (95% CI) | p Soy protein Q1 vs. Q4 0.62 (0.40–0.96) | <0.001 Soy Isofl Q1 vs. Q4 0.54 (0.34–0.84) | <0.001 | Soy and estimated Isofl intake ↓ BC risk pre-menopause. Less clear post-menopause. | 1, 12, 17, 18, 22, 25 | Reasonable |
[190] | 403/662 | Semi-quantitative FFQ for Singapore food validated by 24 h dietary inquiries | Estimated Isofl (mg/1000 kcal) G1: <10.6 G2: ≥10.6 | No significant effect of estimated Isofl independently to the genotype identified | Isofl slightly ↓ BC risk with MDM2 SNP309 GG genotype. No effect on other genotypes. | 1, 3, 4, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25 | Low |
[191] | 306/662 | 6 soy foods with tofu and miso 3 periods: 10 to 12 y old 20 y old 10 to 15 y prior to the study | Estimated from Japanese database (mg/d) Q1: <18.76 Q2: 18.76–28.81 Q3: 28.81–43.75 Q4: >43.75 | Fermented drinks OR (95% CI) | p 0.65 (0.42–1.00) | 0.048 Soy food intake Q1 vs. Q3 Q4 0.53 (0.35–0.81) 0.48 (0.31–0.73) |0.0002 | Lactobacillus-rich drinks in youth and soy associated with ↓ BC risk. Possible interaction. | 1, 8, 11, 12, 15, 16, 17, 18, 19, 22, 23, 25 | Low |
[192] | 183/192 | Soy protein (g/d) Q1: <2.12 Q2: 2.12–7.03 Q3: 7.03–13.02 Q4: >13.03 | Estimated Isofl (mg/d) Q1: <7.56 Q2: 7.56–17.31 Q3: 17.32–28.82 Q4: >28.83 | Q1 vs. Q4 OR (95% CI) Isofl intake 0.42 (0.22–0.80) soy protein 0.46 (0.24–0.88) Post-menopause 0.57 (0.29–0.83) 0.50 (0.38–0.95) ER+/PR+ Isofl 0.47 (0.19–0.85) ER+/PR+ soy protein 0.63 (0.45–0.97) | Estimated Isofl and soy proteins ↓ overall BC risk. Also ↓ of ER+/PR+ BC risk post-menopause. No p-value. | 1, 8, 12, 16, 17, 18, 22, 25 | Low |
[193] | 233/236 | Tofu Soybean milk T1: 9 t/month T2: 4 t/wk T3: 1 t/d | Estimated (mg/d) Vegetarians 25.9 ± 25.6 Non-vegetarians 18.1 ± 15.6 (p < 0.001) BC: 17.2 ± 16 Cont: 26.3 ± 24.7 (p < 0.001) | OR (95% CI) | p Fruit/vegetables/soy diet 1 t/d 1.01 (0.82–1.26) | 0.98 Isofl intake (mg/d) >22 vs. <22 0.37 (0.24–0.60) |<0.001 | Meat and processed meat ↑ BC risk. Vegetarian and soy food ↓ BC risk. Estimated Isofl ↓ BC risk. | 1, 3, 4, 5, 7, 8, 12, 14, 17, 18, 22, 23, 25 | Low |
[194] | 818/935 | FFQ, 149 Chinese food items (g/d) Q1: 0–3.3 Q2: 3.4–28.6 Q3: 28.6–57.1 Q4: >57.1 | Not applicable | OR (95% CI) | p Vegetable–fruit–soy diet pattern Q1 vs. Q4 post-menopause 0.57 (0.41, 0.80) |< 0.001 ER− subtypes 0.63 (0.37–0.94) | 0.003 ER−/PR− subtypes 0.64 (0.41, 0.93) | 0.012 Soy (g/d), Q2, Q3, Q4 0.68 (0.51, 0.91) 0.65 (0.50, 0.86) 0.52 (0.39, 0.69) |< 0.001 | Vegetable–fruit–soy diet ↓ BC risk post-menopause in ER−BC subtypes. No effect in ER+ BC subtypes. | 1, 12, 17, 18, 22, 25 | Reasonable |
Multiethnic | |||||||
[195] | 597/966 | Tofu (times/year) Q1: ≤12 Q2: 13–42 Q3: 43–54 Q4: >55 | Not applicable | OR (95% CI) 0.85 (0.74–0.99) | Tofu slightly ↓ BC risk No p-value. | 1, 2, 3, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 | Low |
[196] | 1326/1657 | Recall from the previous year Tofu ≥ 1/m vs. 0 Miso ≥ 1/m vs. 0 | Estimated from specific database Total Isofl (mg/d) Q1: <1.048 Q2: 1.048–1.647 Q3: 1.648–2.774 Q4: ≥2.775 | OR (95% CI) Q1 vs. Q4 Total Isofl/1000 µg/d 0.99 (0.98–1.01) Total lignans/100 µg/d 1.08 (0.98–1.14) Total phyto/100 µg/d 0.99 (0.98–1.01) | No effect of Isofl but exposure is low No p-value. | 1, 12, 14, 15, 17, 18, 19, 21, 22, 25 | Moderate |
[197] | 501/594 | Tofu in youth Q1: <1 t/month Q2: 1–3 t/month Q3: 1–3 t/wk Q4: >4 t/wk | Isofl in adults (mg/1000 kcal) Q1: ≤1.79 Q2: >179–6.24 Q3: >6.24–12.68 Q4: >12.68 | OR (95% CI) | p Tofu in youth Q1 vs. Q3 0.65 (0.42–0.92) |0.04 Isofl in adults 0.61 (0.39–0.97) | 0.04 Q4 Tofu in youth and Q4 Isofl in adults 0.65 (0.43–0.97) | 0.03 | Moderate tofu in youth ↓ BC risk in adults. Isofl ↓ BC risk in adults. High tofu in youth and high Isofl in adults ↓ BC risk. | 1, 3, 4, 8, 10, 12, 17, 18, 22, 23, 25 | Low |
[198] | 501/594 | Soy food | Estimated from FFQ and USA database mg/1000 kcal Q1: ≤ 1.79 Q2: >1.79–6.24 Q3: >6.24–12.68 Q4: >12.68 | OR (95% CI) Soy intake youth/adult reference is low/low No green tea Low/high 0.81 (0.52–1.27) High/high 0.40 (0.24–0.66) Green tea Low/low 0.45 (0.26–0.78) Low/high 0.52 (0.31–0.85) High/high 0.41 (0.25–0.65) | Soy ↓ BC risk. Intake in youth ↓ BC risk. Effect amplified by green tea intake No p-value. | 1, 3, 7, 10, 12, 15, 16, 17, 22, 23, 25 | Low |
[199] | 850/850 | Recall from the previous year Tofu ≥ 1/m vs. 0 Miso ≥ 1/m vs. 0 | Estimated from database; median Isofl (mg/d) Q1: 8.7 Q2: 23.1 Q3: 33.8 Q4: 45.7 Q5: 71.3 | All subjects OR (95% CI) | p 0.69 (0.44–1.09) 0.54 (0.31–0.94) 0.45 (0.26–0.77) 0.34 (0.19–0.62) 0.43 (0.24–0.76) | 0.01 | Estimated Isofl ↓ BC risk. | 1, 3, 11, 12, 14, 17, 18, 22, 23, 24, 25 | Low |
Western | |||||||
[200] | 820/1548 | No soy exposure but FFQ | Estimated from the US database median (mg/d) Q1: 0.01 Q2: 0.2 Q3: 0.2 Q4: 0.3 Q5: 0.8 | Isofl Q1 vs. Q5 OR (95% CI) | p 1.07 (0.97–1.18) | 0.17 | No effect of estimated Isofl on BC risk. | 1, 2, 3, 4, 5, 10, 11, 12, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25 | Low |
[201] | 239/475 | Only through Asian diet Western foods not considered | Estimated from FFQ and database Total Isofl mg/1826 kcal Q1: ≤0.125 Q2: 0.126–0.253 Q3: 0.254–0.469 Q4: ≥0.470 | Adjust OR (95% CI) |p Tot Isofl, Q2, Q3, Q4 1.39 (0.87–2.22) 1.29 (0.79–2.12) 0.65 (0.38–1.13) | 0.15 Tot lignans, Q2, Q3, Q4 0.72 (0.43–1.20) 0.81 (0.49–1.34) 0.69 (0.40–1.18) | 0.27 | No effect of estimated Isofl on BC risk. | 1, 4, 14, 17, 18, 22, 25 | Moderate |
[202] | 278/666 | Validated FFQ [203] | Estimated from 4 databases of European foods Median (mg/d) Cases: 0.279 Control: 0.289 | Adjust OR (95% CI) |p Genistein Q3, Q4 0.68 (0.44–1.05), 0.47 (0.29–0.74) | 0.002 Daid + Gen Q3, Q4 0.63 (0.41–0.96), 0.56 (0.36–0.87) | 0.005 | After adjustment, Genistein and Gen+Daid tend to ↓ BC risk but not total isoflavonoids. No quartile value. | 1, 3, 4, 5, 8, 10, 11, 12, 14, 15, 17, 18, 22, 23, 25 | Low |
[204] | 3063/3430 | Soy-based diet sold in Canada | Estimated from FFQ and database (mg/d) Q1: 0–0.082 Q2: 0.083–0.154 Q3: 0.155–0.344 Q4: 0.345–1.236 Q5: 1.237–158.983 | OR (95% CI) All women Lignans Q5 vs. Q1 0.81 (0.65, 0.99) Overweight women pre-menopause all phyto Q5 vs. Q1 0.51 (0.30, 0.87) lignans Q5 vs. Q1 0.70 (0.53-0.93) | Total phyto and lignan intake ↓ BC risk in overweight women only. No effect of Isofl. Low exposure. No p-value. | 1, 12, 14, 15, 17, 18, 22, 25 | Moderate |
[205] | 2438/3370 | Validated FFQ | Estimation of Isofl lignans and total phyto from FFQ, databases Isofl (mg/d) Adults T1: <0.122 T2: 0.123-0.496 T3: ≥0.497 Adolescents T1: <0.01 T2: 0.011–0.02 T3: ≥0.02 | OR (95% CI) | p Post-menopause, ER+/PR+ subgroup Total phyto 0.79 (0.65–0.96) | ER−/PR− subgroup 1.38 (1.05–1.81) | 0.01 ER−/PR− subgroup Pre-menopause 1.65 (1.06–2.57) | 0.04 Isofl post-menopause 1.50 (1.05–2.15) | 0.04 | Total phyto ↓ BC risk in ER+/PR+ subgroup post-menopause. No significant effect of Isofl intake in youth. Isofl ↑ BC risk in ER−PR− subgroup. Exposure is low. | 1, 4, 9, 10, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25 | Low |
Ref | Number of Subjects | Soy Exposure | Doses of Isoflavones | Results | Effect Recorded | Confounding Factors Missed | Reliability |
---|---|---|---|---|---|---|---|
Asia | |||||||
[168] | 825/47,614 | Soy foods (g/d) Q1: 30.1 ± 10.4 Q2: 56.4 ± 6.8 Q3: 83.3 ± 9.4 Q4: 169 ± 107 | Estimated from Japanese database | QI vs. Q4 HR (95% CI) | p Nonlocalized BC fermented soy 0.53 (0.28–0.99) | 0.02 | Fermented soy food associated with ↓ nonlocalized BC. | 3, 4, 12, 15, 17, 18, 20, 22, 23, 24, 25 | Low |
[210] | 1460 BC patients | FFQ recording soy products | Estimated from Hong Kong soy food database [211] <3–12.5 mg/d | No significant effect | Tendency to ↑ BC risk. | 6, 8, 9, 12, 15, 17, 18, 22, 24, 25 | Moderate |
[212] | 2289/300,000 | FFQ repeated Rarely Monthly 1–3 times/wk ≥4 times/wk | Estimation (mg/d) Q1: 4.5 Q2: 7.2 Q3: 14.4 Q4: 19.1 | No effect of soy potential effect of Isofl (/10 mg) | No significant effect of soy potential effect of Isofl. | 1, 3, 4, 8, 11, 12, 17, 18, 21, 22, 25 | Moderate |
[213] | 1034/70,578 | Validated FFQ for soy proteins adulthood T1: 4.5 g/d T2: 8.2 g/d T3: 13.5 g/d Soy protein in youth T1: 2.6 g/d T2: 6.2 g/d T3: 12.5 g/d | Estimation from FFQ and database of Shanghai soy foods Adults (mg/d) T1: 14.5 T2: 27.8 T3: 46.7 Adolescents (mg/d) T1: 6.4 T2: 16.0 T3: 34.1 | HR (95% CI) | p T1 vs. T3 all adults ER+/PR+ 0.75 (0.58–0.98) | 0.03 Pre-menopause 0.46 (0.22–0.97) | 0.04 Post-menopause 0.72 (0.53–0.96) | 0.02 High for all ages Pre-menopause 0.53 (0.32–0.88) Low in youth and high in adulthood Post-menopause 0.63 (0.43–0.91) | Preventive effect in women only in some cases. Limited Significance. | 3, 4, 9, 10, 11, 17, 18, 19, 21, 22, 25 | Low |
[214] | 172/15,607 | Validated FFQ of 169 items; mean ± SD (g/d) Q1: 40.2 ± 17.5) Q2: 71.9 ± 6.9 Q3: 97.9 ± 8.8 Q4: 162.8 ± 64.6 | Estimation from FFQ and database Isofl mean ± SD (mg/d) Q1: 19.9 ± 10.0 Q2: 33.9 ± 7.8 Q3: 44.7 ± 10.1 Q4: 67.4 ± 26.3 | HR (95% CI) | p Q1 vs. Q4 Post-menopause 0.63 (0.39–1.01) | 0.023 0.52 (0.32–0.85) | 0.046 | ↓ in BC risk linked to soy and Isofl in post-menopausal women. Low number of cases. | 1, 2, 3, 4, 10, 12, 15, 16, 17, 18, 22, 23, 25 | Low |
[215] | 79/616 | validated FFQ with Soy proteins (g/d) Q1: <2.12 Q2: 2.12–7.03 Q3: 7.03–13.03 Q4: >13.03 | Estimation from databases for industrial soy foods from China | HR (95% CI); Soy: Q1 vs. Q4 All: 0.71 (0.52–0.98) er + bc: 0.59 (0.40–0.93) Isofl Q1 vs. Q4 All: 0.62 (1.42–0.90) er + bc: 0.59 (0.40–0.93) er−bc: 0.78 (0.47–0.98) | Soy food and estimated Isofl linked to long-term survival in ER+ BC patients. No p-value. | 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 23, 25 | Low |
[216] | 629/34,028 | FFQ for Asian foods. Recall. Two patterns: -Vegetable–fruit–soy diet -Meat–dim sum diet | Estimation from database (mg/d) meat–dim sum Q1: 9.68; Q2: 12.55; Q3: 15.07; Q4: 20.33 in vegetable–fruit–soy Q1: 7.45; Q2: 12.00 Q3: 16.28; Q4: 24.58 | HR (95% CI) | p Q4 vs. Q1 Vegetable–fruit–soy diet All women 0.82 (0.63–1.05) | 0.03 Post-menopause 0.70 (0.51–0.95) | 0.01 After ≥5 y follow-up 0.57 (0.36–0.88) |<0.01 | Vegetable–fruit–soy diet prevents BC risk. No effect of soy or estimated Isofl alone. | 3, 4, 8, 10, 12, 17, 22, 23, 25 | Moderate |
[217] | 5042 BC survivors 444 deaths 534 recurrences | FFQ for Asian foods Recall Soy proteins (g/d) Q1: ≤5.31 Q2: 5.32–9.45 Q3: 9.46–15.31 Q4: ≥15.31 | Estimated from FFQ and database of Chinese foods (mg/d) Q1: ≤20.00 Q2: 20.01–36.50 Q3: 36.51–62.68 Q4: ≥62.68 | HR (95% CI) Q1 vs. Q4 soy and tot mortality 0.67 (0.51–0.88) soy and recurrence 0.66 (0.52–0.84) Isofl effect not significant | No effect of estimated Isofl Soy slightly ↓ BC risk of mortality and recurrence. No p-value. | 1, 2, 3, 6, 8, 9, 10, 12, 15, 18, 19, 21, 22, 25 | Low |
[218] | 592/73,223 | Validated FFQ Soy (g/d), recall for adolescence Q1: ≤4.87 Q2: 4.88–7.11 Q3: 7.12–9.48 Q4: 9.49–12.82 Q5: ≥12.82 g/d | Estimated from FFQ Q1: ≤15.93 mg/d Q2: 15.94–23.88 mg/d Q3: 23.89–32.43 mg/d Q4: 32.44–44.23 mg/d Q5: ≥44.24 mg/d | RR (95% CI) | p Q1 vs. Q5 Pre-menopause soy 0.41 (0.25–0.70) | <0.01 Isofl 44 (0.26–0.73) | <0.01 Post-menopause soy in youth 0.57 (0.34–0.97) | 0.061 Isofl in youth 1.38 (1.00–1.91) | 0.038 | Adult soy or Isofl ↓ BC risk at pre-menopause. Soy in youth ↓ BC risk. Isofl ↑ BC risk post-menopause. | 3, 4, 6, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 21, 22, 23, 25 | Low |
[219] | 629/34,028 | FFQ on 7 soy food in Singapore expressed in equivalent tofu | Estimation from FFQ and database for Asian foods G1 = low: <10.6 mg Isofl/1000 Kcal), G2 = high: > 10.6 mg Isofl/1000 Kcal) | RR (95% CI) high vs. low 0.82 (0.70–0.97). Post-menopause 0.74 (0.61–0.90) Post-menopause above median BMI 0.67 (0.51–0.88) | Estimated Isofl slightly ↓ BC risk post-menopause. No effect pre-menopause. No p-value. | 3, 4, 8, 10, 11, 12, 15, 18, 20, 22, 23, 25 | Low |
[220] | 145/30,454 | FFQ on Japanese soy foods T1: ≤2 times/wk T2: 3–4 times/wk T3: almost daily | Not applicable | No significant effect | No link between soy food intake and BC risk. | 3, 4, 12, 16, 17, 18, 19, 22, 23, 24, 25 | Low |
[221] | 179/209,354 | Miso soup <1 time/d; 1 cup/d 2 cups/d; ≥3 cups/d Soy foods <2 times/wk 3–4 times/wk Almost every day | Isofl (mg/d) Q1: 6.9 ± 2.6 Q2: 13.0 ± 2.1 Q3: 20.0 ± 2.1 Q4: 25.3 ± 2.2 | RR (95% CI); Q1 vs. Q4 post-menopause 0.32 (0.14–0.71) | Estimated Isofl ↓ BC risk. No effect of miso or soy foods. No effect at pre-menopause. No p-value. | 3, 4, 10, 11, 13, 17, 18, 22, 23, 25 | Low |
Multiethnic | |||||||
[222] | 427/19,560 | FFQ for miso and tofu. (time/wk) T1: ≤1 T2: 2–4 T3: ≥5 | Not applicable | No significant effect | No association of soy with breast cancer. | Adjusted for radiation exposure | Low |
[223] | Soy: 538,337 Isofl: 842,964 | FFQ for soy food and/or soy protein | Estimated from FFQ based on soy products | Not significant | No significant effect. | 3, 4, 6, 7, 8, 9, 10, 11, 12, 15, 17, 18, 22, 23, 24 | Low |
[208] | 11,169/648,913 | Soy intake mainly assessed by FFQ | Estimated from industrial soy foods High vs. low or moderate vs. low | Limited significance | High soy intake may ↓ BC risk but not Isofl. | 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 17, 18, 22, 23, 25 | Low |
[224] | 3842 Multiethnic cohort study, USA | Specific FFQ Validated 0.0 to 8.1 g soy/d | Estimated from FFQ and specific database T1: 0–<4.3 mg/d T2: 4.3–<10.4 mg/d T3: ≥10.4 mg/d | No significant effect | No link between soy and BC. | 1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25 | Low |
[225] | 9514 BC survivors 1171 deaths 1348 recurrence | Validated FFQ of Shanghai soy foods, with a long time from event to inquiry | Estimation from FFQ and databases for USA or Shanghai Foods (mg/d) SBCSS: 45.9 ± 38.3 WHEL: 2.6 ± 7.9 LACE: 4.1 ± 11.9 | ≥10 mg Isofl/d HR (95% CI) BC recurrence 0.75 (0.61–0.92) | Tendency to prevent BC recurrence with Isofl > 10 mg/d. No p value | 1, 2, 3, 4, 6, 8, 10, 12, 14, 15, 18, 19, 22, 23, 25 | Low |
[226] | 3088 BC survivors Q1: 1095 Q2: 1094 Q3: 410 Q4: 137 | Recorded with AFFQ, no data used | Estimated from FFQ and US database for Isofl (mg/d) Median (min–max) Q1: 0 (0–0.7) Q2: 0.3 (0.7–1.01) Q3: 4.8 (1.01–16.33) Q4: 26.7 (16.33–86.9) | No significant effect | No effect of Isofl on BC risk. Isofl linked to ↓ mortality. | 1, 2, 3, 4, 6, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25 | Low |
Western Countries | |||||||
[227] | 1057/52,795 women 7th Day Adventist | FFQ validated | Estimated from database 0.3 to 44 mg/d | HR (95% CI) | p Isofl and BC risk Substituting soy milk for dairy milk 0.68 (0.54–0.87) | 0.002 | When soy ↓, dairy products ↑. Dairy product = confounding factors. | 3, 4, 10, 12, 17, 18, 22, 25 | Moderate |
[228] | 3241/76,442 | Soy intake low and not considered | Food supplements Isofl content variable T1: Never users T2: Current users T3: Past users | HR (95% CI) | p T1: vs. T2, T3; ER+: | 0.054 T2: 0.78 (0.60–0.99) T3: 1.03 (0.88–1.22) ER−: | 0.0007 T2: 2.01 (1.41–2.86) T3: 0.81 (0.53–1.23) Family history of BC 4.23 (2.21–8.07) | 0.03 | ↓ risk of ER+ BC ↑ risk of ER− BC. Still significant for ER−PR+ and ER−PR.− | 1, 5, 14, 16, 17, 20, 22, 23 | Reasonable |
[229] | 6235 BC survivors | Validated FFQ for soy Inquiry long time before or after BC | Isofl (mg/d) Q1: <0.342 Q2: 0.343–0.674 Q3: 0.675–1.493 Q4: 1.494 | HR (95% CI) | p Q1 vs. Q4 All-cause mortality 0.79 (0.64–0.97) |0.01 ER−/PR− tumors 0.49 (0.29–0.83) | 0.005 No HRT 0.68 (0.51–0.91) | 0.02 | Low doses of Isofl ↓ risk of ER−/PR− tumors. | 1, 2, 6, 7, 8, 9, 10, 12, 17, 22, 25 | Low |
[230] | 896 in situ 3873 invasive /84,450 | Validated FFQ including tofu, miso, vegetarian meat | Estimation on database of USA foods Q1: 1.7 (0.0–3.2) Q2: 4.8 (3.2–6.7) Q3: 9.1 (6.7–12.9) Q4-: 16.0 (12.9–20.3) Q4+: 29.6 (20.3–178.7) | No significant effect | No significant effect of large range of Isofl intake on BC risk. | 3, 4, 15, 16, 17, 18, 22, 23, 25 | Moderate |
[231] | 1954 BC survivors 282 recurrences | FFQ from [232] FFQ from [172] with Isofl assay in plasmas and low correlation with soy intake; FFQ from [233] | Estimation by FFQ Daidzein (mg/d) Q1: 0.0 Q2: 0.001–0.1495 Q3: 0.1496–9.59654 Q4: ≥9.59655 | Estimated daidzein post-menopause: HR (95% CI) | p 0.48 (0.21–0.79) | 0.008 | Significant ↓ in risk with the highest daidzein intake. | 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 1819, 20, 22, 23, 24, 25 | Low |
[234] | 585/37,643 | FFQ on diet used to be consumed the year before; 31% of vegetarians | Estimated from database (mg/d) T1: <10 T2: 10–19.9 T3: ≥20 | No significant effect | No link between Isofl or vegetarian diet and BC risk. | 1, 2, 12, 17, 18, 20, 22, 23, 24, 25 | Moderate |
[235] | 711/111,526 | FFQ based on recall from previous year, no hidden soy | Mean: 1.778 mg/d 20th–80th percentile (0.641–2.080 mg/d) | RR and 95% CI Genistein Q1 vs. Q5 1.0 (0.7–1.3) Daidzein Q1 vs. Q5 0.9 (0.7–1.2) | No link between Isofl and BC risk No p-value. | 3, 4, 10, 11, 12, 17, 18, 21, 22, 23, 24, 25 | Low |
Ref | Number of Subjects | Samples Collected | Isoflavone Measurements | Isoflavone Exposure and Biomarkers | Results | Effect Recorded | Reliability |
---|---|---|---|---|---|---|---|
Asian | |||||||
[236] | 60/60 | Overnight urine samples adjusted for creatinine | HPLC-DAD (nmol/mg creatinine) | Soy protein intake (g/d) Cases: 8.7 (5.2, 13.3) Cont: 8.7 (4.6, 15.4) p = 0.80 Excretion of total Isofl (mean ± SD) Cases: 13.95 ± 20.76 Control: 19.52 ± 25.36 p = 0.04 | OR (95% CI) Isofl: 0.50 (0.19–1.31) Gen: 0.70 (0.27–1.84) Daid: 0.54 (0.22–1.32) | No significant effect of Isofl on BC risk | Low |
[239] | 250/250 | Overnight urine samples adjusted for creatinine | LC-Mass (nmol/m creatinine) | Soy protein intake (g/d) Cases: 10.69 ± 0.61 Control: 11.49 ± 0.61 Isofl in urine Cases: 32.32 ± 43.70 Control: 40.50 ± 62.55 p < 0.01 | All subjects OR (95% CI) Isofl: 0.62 (0.39–0.99) Gen: 0.79 (0.41–1.03) Daid: 0.54 (0.34–0.85) Pre-menopause Isofl: 0.72 (0.36–1.44) Post-menopause Isofl: 0.54 (0.28–1.06) | No effect of Isofl. Potential ↓ of BC risk for Daid and glycitein. No effect of Gen ↓ of BC risk with lignans. Tertiles not defined. No p-value. | Low |
[240] | 117/117 | Urine sample collected in time-matched controls and cases | LC-Mass (nmoles/mg creatinine) | Soy protein intake (g/d) Cases: 10.8 ± 0.8 Control: 13.2 ± 0.8 p = 0.03 Isofl in urine Median (25th, 75th percentiles) Cases: 18.38 (5.36, 44.91) Cont: 26.41 (8.31, 62.32) p = 0.04 | OR (95% CI) All population Isofl: 0.46 (0.22–0.95) Tertile not defined | Total Isofl ↓ BC risk when E2 is high, and E1-S and SHBG are low No p-value. | Low |
Western | |||||||
[241] | 88/268 | Overnight urine samples for Genistein and enterolactone | TRFIA (nmol/mol creatinine) | Mean intake Gen ± SD: Cases: 107.7 ± 85.7 Cont: 111.6 ± 82.0 Range (median) T1: 10.2–67.1 (48.4) T2: 67.2–112.2 (87.8) T3: 112.3–523.8 (196.6) | OR (95% CI) | p Genistein T1 vs. T3 0.83 (0.46–1.51) | 0.6 Enterolactone T1 vs. T3 1.43 (0.79–2.59) | 0.25 | No significant effect of Gen or enterolactone on BC risk. | Low |
[238] | 114/219 | Spot urine samples adjusted for creatinine | 7-day dietary diaries LC-MS GC-MS (µmol/mmol creatinine) | Mean ± SD Gen: T1: 6.5 ± 2.8 T2: 7.9 ± 2.8 T3: 12.8 ± 2. Daid: T1: 11.5 ± 3.4 T2: 16.1 ± 3.2 T3: 22.4 ± 3.3 | OR (95% CI) | p Genistein: 1.16 (0.97–1.39) | 0.097 Daidzein: 1.12 (0.96–1.31) | 0.138 Equol: 1.34 (1.06–1.70) | 0.013 | No significant effect of Isofl on BC risk. Equol ↑ BC risk. | Low |
[242] | 219/891 | Spot urine samples adjusted for creatinine | 7-day dietary diaries LC-MS GC-MS (μg/mmol creatinine) | Median urine Controls: Gen: 5.71 Daid: 14.82 Equol: 0.011 Cases Gen: 6.47 Daid: 14.63 Equol: 0.011 | No significant effect on BC risk, except for equol in ER+ BC OR (95% CI) | p 1.07 (1.01–1.12) | 0.013 | No significant effect of Isofl on BC risk. Equol ↑ BC risk. | Moderate |
[243] | 251/462 | Urine collection overnight or first thing in the morning Samples collected during recruitment | HPLC-MS (nmoles/mg creatinine | Daid: Q1: ≤0.183 Q2: 0.184–0.617 Q3: 0.618–2.535 Q4: ≥2.536 Gen: Q1: ≤0.022 Q2: 0.023–0.101 Q3: 0.102–0.646 Q4: ≥ 0.647 Equol: Q1: ≤0.001 Q2: 0.002–0.004 Q3: 0.005–0.013 Q4: ≥0.014 | OR (95% CI) | p Japanese–American Daidzein Q4 vs. Q1 0.41 (0.19–0.89) | 0.005 Genistein Q4 vs. Q1 0.62 (0.29–1.32) | 0.08 Equol Q4 vs. Q1 1.32 (0.70–2.49) | 0.06 Daid + Gen Q4 vs. Q1 0.51 (0.23–1.13) | 0.008 D + G + Eq Q4 vs. Q1 0.53 (0.24–1.16) |0.003 | In Japanese American women, Daid alone or in combination with Gen and Equol ↓ BC risk. | Low |
Ref | Number of Subjects | Samples Collected | Isoflavone Measurements | Isoflavones in Samples | Results | Effect Recorded | Reliability |
---|---|---|---|---|---|---|---|
Asian | |||||||
[246] | 500/1002 (196 BC+ 304 benign breast changes) | Plasma No data on collection time | LC–Coularray LC–MS (ng/mL) | Genistein: Q1: <9.418 Q2: 9.418–31.761 Q3: 31.761–76.954 Q4: >76.954 Daidzein: Q1: <6.718 Q2: 6.718–18.515 Q3: 18.515–42.092 Q4: >42.092 | OR (95% CI) | p Q4 vs. Q1 Benign vs. control Gen: 0.40 (0.23–0.70) | <0.0001 Daid: 0.24 (0.13–0.45) | <0.0001 Cancer vs. control Gen: 0.26 (0.13–0.50) | <0.0001 Daid: 0.23 (0.12–0.48) | <0.0001 | Nanomolar plasma concentrations of Gen and Daid associated with ↓ BC risk | Low |
[247] | 144/288 | Plasma samples No data about time of collection | LC-Coularray (ng/mL) | Median Genistein: Q1: 31.9 Q2: 108.1 Q3: 190.8 Q4: 353.9 Median Daidzein: Q1: 0 Q2: 12.0 Q3: 27.0 Q4: 53.7 | Q1 vs. Q4 Adjusted OR (95% CI) | p Gen: 0.34 (0.16–0.74) | 0.02 Daid: 0.71 (0.35–1.44) | 0.54 | Nanomolar plasma concentrations of Gen associated with ↓ BC risk No effect of Daid | Moderate |
[238] | 114/219 | Plasma samples No data about time of collection | LC-MS GC-MS (ng/mL) | Daidzein: T1: 1.6 (3.3) T2: 2.0 (3.4) T3: 2.5 (3.4) Genistein: T1: 5.0 (2.3) T2: 5.5 (2.2) T3: 7.7 (2.4) | OR (95% CI) | p Serum Gen: 1.24 (0.98–1.57) Serum Daid: 1.22 (1.01–1.48) Serum Equol: 1.46 (1.05–2.02) | Daid and Equol associated with ↑ BC risk Gen has no effect Serum levels are low | Low |
Western | |||||||
[248] | 383/383 87 pre- menopause 296 post-menopause | Plasma No data on collection time | LC-MS-MS (ng/mL) | Isofl Mean (min–max) Daid: 2.6 (0–78) Gen: 3.9 (0.28–57.6) Gly: 0.28 (0–1.38) Tertiles not stated | OR (95% CI) All women Gen: 0.68 (0.47–0.98) Daid: 0.83 (0.58–1.19) Pre–Peri-menopause Gen: 0.80 (0.38–1.69) Daid: 0.80 (0.34–1.88) Post-menopause Gen: 0.69 (0.45–1.04) Daid: 0.88 (0.59–1.32) | Gen tends to ↓ BC risk in the total population but not in subpopulations No effect of Daid No p-value | Low |
[242] | 219/891 | Serum No data on collection time | GC-MS HPLC-MS (ng/mL) | Medians (ng/mL) for Control–cases | p Genistein: 5.00–4.77 | 0.608 Daidzein: 2.00–1.98 | 0.206 Equol: 0.01–0.01 | 0.005 Glycitein: 0.01–0.01 | <0.0001 | OR (95% CI) All women Isofl: 1.03 (0.95–1.11) Gen: 1.00 (0.94–1.05) Daid: 1.04 (0.98–1.10) Pre–peri-menopause Isofl: 1.30 (1.04–1.64) | No significant link between serum Isofl and BC risk in all women ↑ BC risk in pre- and peri- menopause No p-value | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bennetau-Pelissero, C. Soy and Isoflavones: Revisiting Their Potential Links to Breast Cancer Risk. Nutrients 2025, 17, 2621. https://doi.org/10.3390/nu17162621
Bennetau-Pelissero C. Soy and Isoflavones: Revisiting Their Potential Links to Breast Cancer Risk. Nutrients. 2025; 17(16):2621. https://doi.org/10.3390/nu17162621
Chicago/Turabian StyleBennetau-Pelissero, Catherine. 2025. "Soy and Isoflavones: Revisiting Their Potential Links to Breast Cancer Risk" Nutrients 17, no. 16: 2621. https://doi.org/10.3390/nu17162621
APA StyleBennetau-Pelissero, C. (2025). Soy and Isoflavones: Revisiting Their Potential Links to Breast Cancer Risk. Nutrients, 17(16), 2621. https://doi.org/10.3390/nu17162621