Lifestyle Medicine for Obesity in the Era of Highly Effective Anti-Obesity Treatment
Abstract
1. Role of Lifestyle Medicine in the Treatment of Obesity
2. Overview of Lifestyle Intervention for Treatment of Obesity
3. Lifestyle Medicine and Obesity Medicine History
Assessment Area | Elements of Assessment/Assessment Tools |
---|---|
Weight trajectory |
|
Previous weight loss attempts |
|
Eating behaviors |
|
Exercise |
|
4. Role of Other Lifestyle Medicine Pillars
5. Characteristics of Behavioral and Lifestyle Interventions
Key Characteristics of Intensive Multicomponent Lifestyle Interventions [25,51] | |
---|---|
Program Structure |
|
Examples of Established Programs | Diabetes Prevention Program (DPP):
|
Behavioral Components [25,51,52] |
|
Evaluation Strategy [25,51,52] |
|
6. The Effect of Weight Stigma in Healthcare and Its Impact on the Treatment of Obesity
7. The Role of Lifestyle Medicine in the Era of GLP-1 RA and Other Anti-Obesity Medications
7.1. Nutrition Recommendations for Those on Anti-Obesity Medications
7.2. Physical Activity Recommendations for Patients on AOMs
8. Role of Lifestyle Medicine in the Care of Metabolic and Bariatric Surgery Patients
9. The Role of Diet in the Treatment of Obesity
- Men: BMR = 10 × weight (kg) + 6.25 × height (cm) − 5 × age (years) + 5.
- Women: BMR = 10 × weight (kg) + 6.25 × height (cm) − 5 × age (years) − 161.
Approaches to caloric deficit for weight loss |
|
Screen for nutritional deficiencies |
|
General principles of diet quality |
|
Reduce calorie density [72,156] |
|
Recommend healthy protein intake |
|
9.1. The Role of Diet Quality in the Treatment of Obesity
9.2. The Role of Dietary Pattern
9.3. Volumetrics Approach
9.4. Low-Fat and Plant-Based Diet
9.5. Low-Carbohydrate Diet
9.6. Very-Low-Calorie Diets (VLCDs)
9.7. Time-Restricted Eating
9.8. Fasting
9.9. Fasting-Mimicking Diets
10. The Role of Physical Activity in Obesity Treatment
10.1. Role of Aerobic Exercise in Obesity Treatment
10.2. Role of Strength Training in Preventing Muscle Loss
10.3. Preventing Injury in Patients with Obesity Who Are Prescribed Exercise
11. Weight Maintenance and Preventing Metabolic Adaptation
12. Clinical Models to Support Lifestyle Medicine Treatment Access for Patients with Obesity
12.1. Shared Medical Appointments
12.2. Medical Nutrition Therapy
12.3. Collaborative Care Management (CoCM)
12.4. Remote Patient Monitoring
12.5. Chronic Care Management
12.6. Intensive Behavioral Therapy
13. Role of the Multidisciplinary Team in Lifestyle Medicine Treatment of Obesity
13.1. Exercise Physiologist/Certified Personal Trainer
13.2. Psychologist
13.3. Health Coach
13.4. Occupational Therapist (OT)
13.5. Physical Therapists (PT)
13.6. Pharmacists
14. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ADLs | Activities of Daily Living |
AHEAD | Action for Health in Diabetes |
OM | Obesity Medication |
BMI | Body Mass Index |
CBTi | Cognitive Behavioral Therapy for Insomnia |
CCM | Chronic Care Management |
CDC | Centers for Disease Control and Prevention |
CMS | Centers for Medicare & Medicaid Services |
CNS | Central Nervous System |
CoCM | Collaborative Care Management |
CPT | Current Procedural Terminology |
DASH | Dietary Approaches to Stop Hypertension |
DIRECT | Diabetes Remission Clinical Trial |
DKA | Diabetic Ketoacidosis |
DO | Doctor of Osteopathic Medicine |
DPP | Diabetes Prevention Program |
DPPOS | Diabetes Prevention Program Outcomes Study |
EC | Eigenvector Continuation |
E&M | Evaluation and Management |
FDA | U.S. Food and Drug Administration |
FMD | Fasting Mimicking Diet |
FODMAP | Fermentable Oligosaccharides, Disaccharides, Monosaccharides, and Polyols |
GLP-1 RA | Glucagon-Like Peptide-1 Receptor Agonists |
HAES | Health At Every Size |
HDL | High-Density Lipoprotein |
IBS | Irritable Bowel Syndrome |
IBT | Intensive Behavioral Therapy |
LDL | Low-Density Lipoprotein |
LM | Lifestyle Medicine |
MBS | Metabolic Bariatric Surgery |
MBSAQIP | Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program |
MDT | Multidisciplinary Team |
MI | Motivational Interviewing |
MIND | Mediterranean-DASH Intervention for Neurogenerative Delay |
MNT | Medical Nutrition Therapy |
NEAT | Non-exercise Activity Thermogenesis |
NCD-RisC | Non-communicable Disease Risk Factor Collaboration |
NP | Nurse Practitioner |
OMAD | One Meal A Day |
OT | Occupational Therapist |
PA | Physician Assistant |
PREVIEW | Prevention of Diabetes Through Lifestyle Intervention and Population Studies in Europe and Around the World |
PT | Physical Therapist |
RCT | Randomized Controlled Trial |
RDN | Registered Dietitian Nutritionist |
RPM | Remote Patient Monitoring |
RYGB | Roux-en Y Gastric Bypass |
SLIM | Supervised Lifestyle and Integrative Medicine |
SMA | Shared Medical Appointment |
STEP | Semaglutide Treatment Effect in People with Obesity |
TRE | Time-restricted Eating |
USPSTF | United States Preventative Services Task Force |
VLCD | Very-low-calorie Diet |
WFPB | Whole Food Plant-based |
References
- Emmerich, S.; Fryar, C.; Stierman, B.; Ogden, C. Obesity and Severe Obesity Prevalence in Adults: United States, August 2021–August 2023; National Center for Health Statistics (U.S.): Hyattsville, MD, USA, 2024. [CrossRef]
- World Health Organization. Obesity and Overweight—Key Facts. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 29 June 2025).
- Phelps, N.H.; Singleton, R.K.; Zhou, B.; Heap, R.A.; Mishra, A.; Bennett, J.E.; Paciorek, C.J.; Lhoste, V.P.; Carrillo-Larco, R.M.; Stevens, G.A.; et al. Worldwide trends in underweight and obesity from 1990 to 2022: A pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet 2024, 403, 1027–1050. [Google Scholar] [CrossRef]
- Rubino, F.; Cummings, D.E.; Eckel, R.H.; Cohen, R.V.; Wilding, J.P.H.; Brown, W.A.; Stanford, F.C.; Batterham, R.L.; Farooqi, I.S.; Farpour-Lambert, N.J.; et al. Definition and diagnostic criteria of clinical obesity. Lancet Diabetes Endocrinol. 2025, 13, 221–262. [Google Scholar] [CrossRef]
- Bays, H. Adiposopathy, “Sick Fat,” Ockham’s Razor, and Resolution of the Obesity Paradox. Curr. Atheroscler. Rep. 2014, 16, 409. [Google Scholar] [CrossRef]
- Schwartz, M.W.; Seeley, R.J.; Zeltser, L.M.; Drewnowski, A.; Ravussin, E.; Redman, L.M.; Leibel, R.L. Obesity Pathogenesis: An Endocrine Society Scientific Statement. Endocr. Rev. 2017, 38, 267–296. [Google Scholar] [CrossRef]
- Lippman, D.; Stump, M.; Veazey, E.; Guimarães, S.T.; Rosenfeld, R.; Kelly, J.H.; Ornish, D.; Katz, D.L. Foundations of Lifestyle Medicine and its Evolution. Mayo Clin. Proc. Innov. Qual. Outcomes 2024, 8, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Frates, B. The Power and Connection of the Six Pillars. Am. J. Lifestyle Med. 2023, 17, 216–218. [Google Scholar] [CrossRef] [PubMed]
- Gigliotti, L.; Warshaw, H.; Evert, A.; Dawkins, C.; Schwartz, J.; Susie, C.; Kushner, R.; Subramanian, S.; Handu, D.; Rozga, M. Incretin-Based Therapies and Lifestyle Interventions: The Evolving Role of Registered Dietitian Nutritionists in Obesity Care. J. Acad. Nutr. Diet. 2025, 125, 408–421. [Google Scholar] [CrossRef] [PubMed]
- American College of Lifestyle Medicine. American College of Lifestyle Medicine Official Position on Obesity and Overweight. 2023. Available online: https://lifestylemedicine.org/positions/ (accessed on 29 June 2025).
- Golovaty, I.; Hagan, S. Lifestyle Intervention Requirements for Novel Antiobesity Medications—Necessary Adjunct or Harmful Gatekeeper? JAMA Intern. Med. 2025, 185, 255–256. [Google Scholar] [CrossRef]
- Jensen, M.D.; Ryan, D.H.; Apovian, C.M.; Ard, J.D.; Comuzzie, A.G.; Donato, K.A.; Hu, F.B.; Hubbard, V.S.; Jakicic, J.M.; Kushner, R.F.; et al. 2013 AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. J. Am. Coll. Cardiol. 2014, 63 Pt B, 2985–3023. [Google Scholar] [CrossRef]
- Bays, H.; McCarthy, W.; Burridge, K.; Tondt, J.; Karjoo, S.; Christensen, S.; Ng, J.; Golden, A.; Davisson, L.; Richardson, L. Obesity Algorithm eBook, Presented by the Obesity Medicine Association. 2021. Available online: https://obesitymedicine.org/resources/obesity-algorithm/ (accessed on 10 July 2021).
- Grunvald, E.; Shah, R.; Hernaez, R.; Chandar, A.K.; Pickett-Blakely, O.; Teigen, L.M.; Harindhanavudhi, T.; Sultan, S.; Singh, S.; Davitkov, P. AGA clinical practice guideline on pharmacological interventions for adults with obesity. Gastroenterology 2022, 163, 1198–1225. [Google Scholar] [CrossRef]
- Garvey, W.T.; Mechanick, J.I.; Brett, E.M.; Garber, A.J.; Hurley, D.L.; Jastreboff, A.M.; Nadolsky, K.; Pessah-Pollack, R.; Plodkowski, R. American association of clinical endocrinologists and american college of endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr. Pract. 2016, 22 (Suppl. S3), 1–203. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Heianza, Y.; Li, X.; Sacks, F.M.; Bray, G.A. Toward precision weight-loss dietary interventions: Findings from the POUNDS lost trial. Nutrients 2023, 15, 3665. [Google Scholar] [CrossRef] [PubMed]
- Heymsfield, S.B.; Wadden, T.A. Mechanisms, Pathophysiology, and Management of Obesity. N. Engl. J. Med. 2017, 376, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Hauser, M.E.; Hartle, J.C.; Landry, M.J.; Fielding-Singh, P.; Shih, C.W.; Qin, F.; Rigdon, J.; Gardner, C.D. Association of dietary adherence and dietary quality with weight loss success among those following low-carbohydrate and low-fat diets: A secondary analysis of the DIETFITS randomized clinical trial. Am. J. Clin. Nutr. 2024, 119, 174–184. [Google Scholar] [CrossRef]
- Curry, S.J.; Krist, A.H.; Owens, D.K.; Barry, M.J.; Caughey, A.B.; Davidson, K.W.; Doubeni, C.A.; Epling, J.W.; Grossman, D.C.; Kemper, A.R.; et al. Behavioral Weight Loss Interventions to Prevent Obesity-Related Morbidity and Mortality in Adults: US Preventive Services Task Force Recommendation Statement. JAMA 2018, 320, 1163–1171. [Google Scholar] [CrossRef]
- US Preventive Services Task Force. Behavioral Counseling Interventions to Promote a Healthy Diet and Physical Activity for Cardiovascular Disease Prevention in Adults with Cardiovascular Risk Factors: US Preventive Services Task Force Recommendation Statement. JAMA 2020, 324, 2069–2075. [Google Scholar] [CrossRef]
- US Preventive Services Task Force. Behavioral Counseling Interventions for Healthy Weight and Weight Gain in Pregnancy: US Preventive Services Task Force Recommendation Statement. JAMA 2021, 325, 2087–2093. [Google Scholar] [CrossRef]
- US Preventive Services Task Force. Interventions for High Body Mass Index in Children and Adolescents: US Preventive Services Task Force Recommendation Statement. JAMA 2024, 332, 226–232. [Google Scholar] [CrossRef]
- US Preventive Services Task Force. Screening for Prediabetes and Type 2 Diabetes: US Preventive Services Task Force Recommendation Statement. JAMA 2021, 326, 736–743. [Google Scholar] [CrossRef]
- Richman, I.; Rittenberg, E. Lifestyle Modification for Obesity Management—A Cornerstone and Not a Roadblock. JAMA Intern. Med. 2025, 185, 257. [Google Scholar] [CrossRef]
- Greaves, C.J.; Sheppard, K.E.; Abraham, C.; Hardeman, W.; Roden, M.; Evans, P.H.; Schwarz, P.; The IMAGE Study Group. Systematic review of reviews of intervention components associated with increased effectiveness in dietary and physical activity interventions. BMC Public Health 2011, 11, 119. [Google Scholar] [CrossRef] [PubMed]
- Camacho, P.M.; Petak, S.M.; Binkley, N.; Diab, D.L.; Eldeiry, L.S.; Farooki, A.; Harris, S.T.; Hurley, D.L.; Kelly, J.; Lewiecki, E.M.; et al. American Association of Clinical Endocrinologists/American College of Endocrinology Clinical Practice Guidelines for the Diagnosis and Treatment of Postmenopausal Osteoporosis-2020 Update. Endocr. Pract. Off. J. Am. Coll. Endocrinol. Am. Assoc. Clin. Endocrinol. 2020, 26 (Suppl. S1), 1–46. [Google Scholar] [CrossRef] [PubMed]
- Bauer, K.; Lau, T.; Schwille-Kiuntke, J.; Schild, S.; Hauner, H.; Stengel, A.; Zipfel, S.; Mack, I. Conventional weight loss interventions across the different BMI obesity classes: A systematic review and quantitative comparative analysis. Eur. Eat. Disord. Rev. 2020, 28, 492–512. [Google Scholar] [CrossRef]
- Farhana, A.; Rehman, A. Metabolic Consequences of Weight Reduction. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK572145/ (accessed on 28 March 2025).
- Machado, A.M.; Guimarães, N.S.; Bocardi, V.B.; da Silva, T.P.R.; do Carmo, A.S.; de Menezes, M.C.; Duarte, C.K. Understanding weight regain after a nutritional weight loss intervention: Systematic review and meta-analysis. Clin. Nutr. ESPEN 2022, 49, 138–153. [Google Scholar] [CrossRef] [PubMed]
- Fothergill, E.; Guo, J.; Howard, L.; Kerns, J.C.; Knuth, N.D.; Brychta, R.; Chen, K.Y.; Skarulis, M.C.; Walter, M.; Walter, P.J.; et al. Persistent metabolic adaptation 6 years after “The Biggest Loser” competition. Obesity 2016, 24, 1612–1619. [Google Scholar] [CrossRef]
- Thom, G.; Dombrowski, S.U.; Brosnahan, N.; Algindan, Y.Y.; Rosario Lopez-Gonzalez, M.; Roditi, G.; Lean, M.E.J.; Malkova, D. The role of appetite-related hormones, adaptive thermogenesis, perceived hunger and stress in long-term weight-loss maintenance: A mixed-methods study. Eur. J. Clin. Nutr. 2020, 74, 622–632. [Google Scholar] [CrossRef]
- Melby, C.L.; Paris, H.L.; Foright, R.M.; Peth, J. Attenuating the Biologic Drive for Weight Regain Following Weight Loss: Must What Goes Down Always Go Back Up? Nutrients 2017, 9, 468. [Google Scholar] [CrossRef]
- Montani, J.-P.; Schutz, Y.; Dulloo, A.G. Dieting and weight cycling as risk factors for cardiometabolic diseases: Who is really at risk? Obes. Rev. 2015, 16, 7–18. [Google Scholar] [CrossRef]
- Park, Y.; Dodd, K.W.; Kipnis, V.; Thompson, F.E.; Potischman, N.; Schoeller, D.A.; Baer, D.J.; Midthune, D.; Troiano, R.P.; Bowles, H.; et al. Comparison of self-reported dietary intakes from the Automated Self-Administered 24-h recall, 4-d food records, and food-frequency questionnaires against recovery biomarkers. Am. J. Clin. Nutr. 2018, 107, 80–93. [Google Scholar] [CrossRef]
- Vadiveloo, M.; Lichtenstein, A.H.; Anderson, C.; Aspry, K.; Foraker, R.; Griggs, S.; Hayman, L.L.; Johnston, E.; Stone, N.J.; Thorndike, A.N.; et al. Rapid Diet Assessment Screening Tools for Cardiovascular Disease Risk Reduction Across Healthcare Settings: A Scientific Statement From the American Heart Association. Circ. Cardiovasc. Qual. Outcomes 2020, 13, e000094. [Google Scholar] [CrossRef]
- Gans, K.M.; Ross, E.; Barner, C.W.; Wylie-Rosett, J.; McMurray, J.; Eaton, C. REAP and WAVE: New tools to rapidly assess/discuss nutrition with patients. J. Nutr. 2003, 133, 556S–562S. [Google Scholar] [CrossRef]
- Lara-Breitinger, K.M.; Medina Inojosa, J.R.; Li, Z.; Kunzova, S.; Lerman, A.; Kopecky, S.L.; Lopez-Jimenez, F. Validation of a Brief Dietary Questionnaire for Use in Clinical Practice: Mini-EAT (Eating Assessment Tool). J. Am. Heart Assoc. 2023, 12, e025064. [Google Scholar] [CrossRef]
- Kronsteiner-Gicevic, S.; Tello, M.; Lincoln, L.E.; Kondo, J.K.; Naidoo, U.; Fung, T.T.; Willett, W.C.; Thorndike, A.N. Validation of the Rapid Prime Diet Quality Score Screener (rPDQS), A Brief Dietary Assessment Tool with Simple Traffic Light Scoring. J. Acad. Nutr. Diet. 2023, 123, 1541–1554.e7. [Google Scholar] [CrossRef] [PubMed]
- Karlsen, M.C.; Staffier, K.L.; Pollard, K.J.; Cara, K.C.; Hulit, S.M.; Campbell, E.K.; Friedman, S.M. Piloting a brief assessment to capture consumption of whole plant food and water: Version 1.0 of the American College of Lifestyle Medicine Diet Screener (ACLM Diet Screener). Front. Nutr. 2024, 11, 1356676. [Google Scholar] [CrossRef] [PubMed]
- Georgoulis, M.; Yiannakouris, N.; Kechribari, I.; Lamprou, K.; Perraki, E.; Vagiakis, E.; Kontogianni, M.D. Dose-response relationship between weight loss and improvements in obstructive sleep apnea severity after a diet/lifestyle interventions: Secondary analyses of the “MIMOSA” randomized clinical trial. J. Clin. Sleep Med. 2022, 18, 1251–1261. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Patel, S.R.; Kales, S.N.; Ayas, N.T.; Strohl, K.P.; Gozal, D.; Malhotra, A.; American Thoracic Society ad hoc Committee on Healthy Sleep. An Official American Thoracic Society Statement: The Importance of Healthy Sleep. Recommendations and Future Priorities. Am. J. Respir. Crit. Care Med. 2015, 191, 1450–1458. [Google Scholar] [CrossRef]
- Morin, C.M.; Buysse, D.J. Management of Insomnia. N. Engl. J. Med. 2024, 391, 247–258. [Google Scholar] [CrossRef]
- Aboona, M.B.; Danpanichkul, P.; Chen, V.L.; Rangan, P.; Kim, D.; Alkhouri, N.; Fallon, M.B.; Noureddin, M.; Arab, J.P.; Wijarnpreecha, K. Mortality outcomes in individuals with MASLD versus MASLD and increased alcohol intake. J. Gastroenterol. Hepatol. 2024, 39, 2456–2463. [Google Scholar] [CrossRef]
- Pangalangan, J.; Puma, J.; Tollefson, M.; Frates, B. Development and Psychometric Evaluation of the Lifestyle Medicine Health Behavior Scale. Am. J. Lifestyle Med. 2024, 15598276241280207. [Google Scholar] [CrossRef]
- Bonnet, J.P. Content and Face Validation of the Lifestyle Medicine Assessment. Am. J. Lifestyle Med. 2024, 18, 252–259. [Google Scholar] [CrossRef]
- Rozanski, A.; Sakul, S.; Narula, J.; Berman, D. Assessment of lifestyle “vital signs” in healthcare settings. Prog. Cardiovasc. Dis. 2023, 77, 107–118. [Google Scholar] [CrossRef]
- Mechley, A.R.; Dysinger, W. Intensive Therapeutic Lifestyle Change Programs: A Progressive Way to Successfully Manage Health Care. Am. J. Lifestyle Med. 2015, 9, 354–360. [Google Scholar] [CrossRef]
- The Diabetes Prevention Program Research Group. Reduction in the Incidence of Type 2 Diabetes with Lifestyle Intervention or Metformin. N. Engl. J. Med. 2002, 346, 393–403. [Google Scholar] [CrossRef]
- Center for Medicare and Medicaid Services. National Coverage Determination—Intensive Behavioral Therapy for Obesity (210.12). Medicare Coverage Database. Available online: https://www.cms.gov/medicare-coverage-database/view/ncd.aspx?NCDId=353 (accessed on 6 April 2025).
- Chao, A.M.; Moore, M.; Wadden, T.A. The past, present, and future of behavioral obesity treatment. Int. J. Obes. 2025, 49, 196–205. [Google Scholar] [CrossRef]
- Wadden, T.A.; Tsai, A.G.; Tronieri, J.S. A Protocol to Deliver Intensive Behavioral Therapy (IBT) for Obesity in Primary Care Settings: The MODEL-IBT Program. Obesity 2019, 27, 1562–1566. [Google Scholar] [CrossRef]
- Elmaleh-Sachs, A.; Schwartz, J.L.; Bramante, C.T.; Nicklas, J.M.; Gudzune, K.A.; Jay, M. Obesity Management in Adults: A Review. JAMA 2023, 330, 2000–2015. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. 8. Obesity and Weight Management for the Prevention and Treatment of Type 2 Diabetes: Standards of Care in Diabetes–2025. Diabetes Care 2024, 48 (Suppl. S1), S167–S180. [Google Scholar] [CrossRef] [PubMed]
- Nadolsky, K.; Addison, B.; Agarwal, M.; Almandoz, J.P.; Bird, M.D.; Chaplin, M.D.; Garvey, W.T.; Kyle, T.K. American Association of Clinical Endocrinology Consensus Statement: Addressing Stigma and Bias in the Diagnosis and Management of Patients with Obesity/Adiposity-Based Chronic Disease and Assessing Bias and Stigmatization as Determinants of Disease Severity. Endocr. Pract. 2023, 29, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Puhl, R.M. Weight Stigma and Barriers to Effective Obesity Care. Gastroenterol. Clin. 2023, 52, 417–428. [Google Scholar] [CrossRef]
- Talumaa, B.; Brown, A.; Batterham, R.L.; Kalea, A.Z. Effective strategies in ending weight stigma in healthcare. Obes. Rev. 2022, 23, e13494. [Google Scholar] [CrossRef]
- Eggerichs, L.A.; Wilson, O.W.A.; Chaplin, J.E.; Ramos Salas, X. Weight Stigma in Latin America, Asia, the Middle East, and Africa: A Scoping Review. Obes. Facts 2024, 17, 217–226. [Google Scholar] [CrossRef]
- Althumiri, N.A.; Basyouni, M.H.; AlMousa, N.; AlJuwaysim, M.F.; Alhamdan, A.A.; Al-Qahtani, F.S.; BinDhim, N.F.; Alqahtani, S.A. Exploring weight stigma in Saudi Arabia: A nationwide cross-sectional study. Int. J. Environ. Res. Public. Health 2021, 18, 9141. [Google Scholar] [CrossRef] [PubMed]
- Brenton-Peters, J.; Consedine, N.S.; Boggiss, A.; Wallace-Boyd, K.; Roy, R.; Serlachius, A. Self-compassion in weight management: A systematic review. J. Psychosom. Res. 2021, 150, 110617. [Google Scholar] [CrossRef] [PubMed]
- Braun, T.D.; Olson, K.; Panza, E.; Lillis, J.; Schumacher, L.; Abrantes, A.M.; Kunicki, Z.; Unick, J.L. Internalized weight stigma in women with class III obesity: A randomized controlled trial of a virtual lifestyle modification intervention followed by a mindful self-compassion intervention. Obes. Sci. Pract. 2022, 8, 816–827. [Google Scholar] [CrossRef] [PubMed]
- Thedinga, H.K.; Zehl, R.; Thiel, A. Weight stigma experiences and self-exclusion from sport and exercise settings among people with obesity. BMC Public Health 2021, 21, 565. [Google Scholar] [CrossRef]
- Pickett, A.C.; and Cunningham, G.B. Physical Activity for Every Body: A Model for Managing Weight Stigma and Creating Body-Inclusive Spaces. Quest 2017, 69, 19–36. [Google Scholar] [CrossRef]
- Lima Fogaca, J.; Zuest, L.; Lee, S.; Squires, N.; Clifford, D. Weight Inclusive Thinking for Fitness Spaces (WIT FITS): A Three-Month Follow-Up of a Weight Stigma Intervention for Exercise Professionals. Recreat. Sports J. 2024, 48, 132–145. [Google Scholar] [CrossRef]
- Greenleaf, C.; Rodriguez, A.M. Living in a Larger Body: Do Exercise Motives Influence Associations between Body Image and Exercise Avoidance Motivation? Int. J. Environ. Res. Public. Health 2021, 18, 72. [Google Scholar] [CrossRef]
- Cox, A.E.; Ullrich-French, S.; Tylka, T.L.; McMahon, A.K. The roles of self-compassion, body surveillance, and body appreciation in predicting intrinsic motivation for physical activity: Cross-sectional associations, and prospective changes within a yoga context. Body Image 2019, 29, 110–117. [Google Scholar] [CrossRef]
- Wood, M.; Pila, E. Investigating the effects of fit-normative and weight-inclusive Instagram images on women’s exercise motivations. Body Image 2022, 41, 460–471. [Google Scholar] [CrossRef]
- Tylka, T.L.; Calogero, R.M.; Daníelsdóttir, S. Intuitive eating is connected to self-reported weight stability in community women and men. Eat. Disord. 2020, 28, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Satter, E. Eating Competence: Definition and Evidence for the Satter Eating Competence Model. J. Nutr. Educ. Behav. 2007, 39, S142–S153. [Google Scholar] [CrossRef] [PubMed]
- Psota, T.L.; Lohse, B.; West, S.G. Associations between Eating Competence and Cardiovascular Disease Biomarkers. J. Nutr. Educ. Behav. 2007, 39, S171–S178. [Google Scholar] [CrossRef] [PubMed]
- Mensinger, J.L.; Calogero, R.M.; Stranges, S.; Tylka, T.L. A weight-neutral versus weight-loss approach for health promotion in women with high BMI: A randomized-controlled trial. Appetite 2016, 105, 364–374. [Google Scholar] [CrossRef]
- Zuraikat, F.M.; Rolls, B.J. Dietary Energy Density and Its Contribution to Weight Control. In Handbook of Obesity-Volume 2; CRC Press: Boca Raton, FL, USA, 2023; pp. 205–214. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/9781003432807-24/dietary-energy-density-contribution-weight-control-faris-zuraikat-barbara-rolls (accessed on 27 March 2025).
- Rolls, B.J. Dietary energy density: Applying behavioural science to weight management. Nutr. Bull. 2017, 42, 246–253. [Google Scholar] [CrossRef]
- Da Luz, F.Q.; Hay, P.; Touyz, S.; Sainsbury, A. Obesity with Comorbid Eating Disorders: Associated Health Risks and Treatment Approaches. Nutrients 2018, 10, 829. [Google Scholar] [CrossRef]
- Yoon, C.; Mason, S.M.; Hooper, L.; Eisenberg, M.E.; Neumark-Sztainer, D. Disordered Eating Behaviors and 15-year Trajectories in Body Mass Index: Findings From Project Eating and Activity in Teens and Young Adults (EAT). J. Adolesc. Health 2020, 66, 181–188. [Google Scholar] [CrossRef]
- Xu, Y.; Echouffo Tcheugui, J.B.; Coresh, J.; Grams, M.E.; Selvin, E.; Fang, M.; Shin, J.-I. Trends in obesity and glucagon-like peptide-1 receptor agonist prescriptions in type 1 diabetes in the United States. Diabetes Obes. Metab. 2025, 27, 2967–2976. [Google Scholar] [CrossRef]
- Ladebo, L.; Ernst, M.T.; Mailhac, A.; Dirksen, C.; Bojsen-Møller, K.N.; Pottegård, A. Real-World Use of Semaglutide for Weight Management: Patient Characteristics and Dose Titration-A Danish Cohort Study. Diabetes Care 2024, 47, 1834–1837. [Google Scholar] [CrossRef]
- Le Roux, C.W.; Koroleva, A.; Larsen, S.; Foot, E. Anti-obesity treatment preferences of healthcare providers and people living with obesity: A survey-based study. Clin. Obes. 2025, 15, e12704. [Google Scholar] [CrossRef]
- Blundell, J.; Finlayson, G.; Axelsen, M.; Flint, A.; Gibbons, C.; Kvist, T.; Hjerpsted, J.B. Effects of once-weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity. Diabetes Obes. Metab. 2017, 19, 1242–1251. [Google Scholar] [CrossRef] [PubMed]
- Jastreboff, A.M.; Aronne, L.J.; Ahmad, N.N.; Wharton, S.; Connery, L.; Alves, B.; Kiyosue, A.; Zhang, S.; Liu, B.; Bunck, M.C.; et al. Tirzepatide Once Weekly for the Treatment of Obesity. N. Engl. J. Med. 2022, 387, 205–216. [Google Scholar] [CrossRef]
- Wadden, T.A.; Bailey, T.S.; Billings, L.K.; Davies, M.; Frias, J.P.; Koroleva, A.; Lingvay, I.; O’Neil, P.M.; Rubino, D.M.; Skovgaard, D.; et al. Effect of Subcutaneous Semaglutide vs Placebo as an Adjunct to Intensive Behavioral Therapy on Body Weight in Adults With Overweight or Obesity: The STEP 3 Randomized Clinical Trial. JAMA 2021, 325, 1403–1413. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.S.; Ndumele, C.E.; Kazi, D.S. Discontinuation of Glucagon-Like Peptide-1 Receptor Agonists. JAMA 2025, 333, 113–114. [Google Scholar] [CrossRef] [PubMed]
- Highlights of Prescribing Information: Wegovy (Semaglutide) Injection, for Subcutaneous Use Initial Approval, 2017. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/215256s007lbl.pdf (accessed on 29 June 2025).
- Office of the Commissioner. FDA Approves New Medication for Chronic Weight Management. FDA. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-new-medication-chronic-weight-management (accessed on 27 March 2025).
- Ard, J.; Cannon, A.; Lewis, C.E.; Lofton, H.; Vang Skjøth, T.; Stevenin, B.; Pi-Sunyer, X. Efficacy and safety of liraglutide 3.0 mg for weight management are similar across races: Subgroup analysis across the SCALE and phase II randomized trials. Diabetes Obes. Metab. 2016, 18, 430–435. [Google Scholar] [CrossRef]
- Wadden, T.A.; Chao, A.M.; Machineni, S.; Kushner, R.; Ard, J.; Srivastava, G.; Halpern, B.; Zhang, S.; Chen, J.; Bunck, M.C.; et al. Tirzepatide after intensive lifestyle intervention in adults with overweight or obesity: The SURMOUNT-3 phase 3 trial. Nat. Med. 2023, 29, 2909–2918. [Google Scholar] [CrossRef]
- Das, S.R.; Everett, B.M.; Birtcher, K.K.; Brown, J.M.; Januzzi, J.L.; Kalyani, R.R.; Kosiborod, M.; Magwire, M.; Morris, P.B.; Neumiller, J.J.; et al. 2020 Expert Consensus Decision Pathway on Novel Therapies for Cardiovascular Risk Reduction in Patients With Type 2 Diabetes. J. Am. Coll. Cardiol. 2020, 76, 1117–1145. [Google Scholar] [CrossRef]
- Gudzune, K.A.; Kushner, R.F. Medications for Obesity: A Review. JAMA 2024, 332, 571–584. [Google Scholar] [CrossRef]
- Karakasis, P.; Patoulias, D.; Fragakis, N.; Mantzoros, C.S. Effect of glucagon-like peptide-1 receptor agonists and co-agonists on body composition: Systematic review and network meta-analysis. Metabolism 2025, 164, 156113. [Google Scholar] [CrossRef]
- Jiao, R.; Lin, C.; Cai, X.; Wang, J.; Wang, Y.; Lv, F.; Yang, W.; Ji, L. Characterizing body composition modifying effects of a glucagon-like peptide 1 receptor-based agonist: A meta-analysis. Diabetes Obes. Metab. 2025, 27, 259–267. [Google Scholar] [CrossRef]
- Linge, J.; Birkenfeld, A.L.; Neeland, I.J. Muscle Mass and Glucagon-Like Peptide-1 Receptor Agonists: Adaptive or Maladaptive Response to Weight Loss? Circulation 2024, 150, 1288–1298. [Google Scholar] [CrossRef]
- Mechanick, J.I.; Butsch, W.S.; Christensen, S.M.; Hamdy, O.; Li, Z.; Prado, C.M.; Heymsfield, S.B. Strategies for minimizing muscle loss during use of incretin-mimetic drugs for treatment of obesity. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2025, 26, e13841. [Google Scholar] [CrossRef] [PubMed]
- Lundgren, J.R.; Janus, C.; Jensen, S.B.K.; Juhl, C.R.; Olsen, L.M.; Christensen, R.M.; Svane, M.S.; Bandholm, T.; Bojsen-Møller, K.N.; Blond, M.B.; et al. Healthy Weight Loss Maintenance with Exercise, Liraglutide, or Both Combined. N. Engl. J. Med. 2021, 384, 1719–1730. [Google Scholar] [CrossRef] [PubMed]
- Beavers, K.M.; Cortes, T.M.; Foy, C.M.; Dinkla, L.; Reyes San Martin, F.; Ard, J.D.; Serra, M.C.; Beavers, D.P. GLP1Ra-based therapies and DXA-acquired musculoskeletal health outcomes: A focused meta-analysis of placebo-controlled trials. Obesity 2025, 33, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Seimon, R.V.; Wild-Taylor, A.L.; Keating, S.E.; McClintock, S.; Harper, C.; Gibson, A.A.; Johnson, N.A.; Fernando, H.A.; Markovic, T.P.; Center, J.R.; et al. Effect of Weight Loss via Severe vs Moderate Energy Restriction on Lean Mass and Body Composition Among Postmenopausal Women with Obesity: The TEMPO Diet Randomized Clinical Trial. JAMA Netw. Open 2019, 2, e1913733. [Google Scholar] [CrossRef]
- Turicchi, J.; O’Driscoll, R.; Finlayson, G.; Beaulieu, K.; Deighton, K.; Stubbs, R.J. Associations between the rate, amount, and composition of weight loss as predictors of spontaneous weight regain in adults achieving clinically significant weight loss: A systematic review and meta-regression. Obes. Rev. 2019, 20, 935–946. [Google Scholar] [CrossRef]
- Roust, L.R.; DiBaise, J.K. Nutrient deficiencies prior to bariatric surgery. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 138–144. [Google Scholar] [CrossRef]
- Astrup, A.; Bügel, S. Overfed but undernourished: Recognizing nutritional inadequacies/deficiencies in patients with overweight or obesity. Int. J. Obes. 2019, 43, 219–232. [Google Scholar] [CrossRef]
- Poli, V.F.S.; Sanches, R.B.; dos Santos Moraes, A.; Fidalgo, J.P.N.; Nascimento, M.A.; Bresciani, P.; Andrade-Silva, S.G.; Cipullo, M.A.T.; Clemente, J.C.; Caranti, D.A. The excessive caloric intake and micronutrient deficiencies related to obesity after a long-term interdisciplinary therapy. Nutrition 2017, 38, 113–119. [Google Scholar] [CrossRef]
- Fulgoni, V.L.; Agler, A.; Ricciuto, L.; DiFrancesco, L.; Williams, D.; Hertzler, S.R. Impact of Simulated Caloric Reduction on Nutrient Adequacy Among U.S. Adults with Overweight or Obesity (National Health and Nutrition Examination Survey [NHANES] 2015–2018). J. Nutr. 2024, 154, 2732–2742. [Google Scholar] [CrossRef]
- Chang, L.; Chey, W.D.; Imdad, A.; Almario, C.V.; Bharucha, A.E.; Diem, S.; Greer, K.B.; Hanson, B.; Harris, L.A.; Ko, C. American Gastroenterological Association-American College of Gastroenterology clinical practice guideline: Pharmacological management of chronic idiopathic constipation. Gastroenterology 2023, 164, 1086–1106. [Google Scholar] [CrossRef]
- Gentinetta, S.; Sottotetti, F.; Manuelli, M.; Cena, H. Dietary Recommendations for the Management of Gastrointestinal Symptoms in Patients Treated with GLP-1 Receptor Agonist. Diabetes Metab. Syndr. Obes. 2024, 17, 4817–4824. [Google Scholar] [CrossRef]
- Harvie, R.M.; Chisholm, A.W.; Bisanz, J.E.; Burton, J.P.; Herbison, P.; Schultz, K.; Schultz, M. Long-term irritable bowel syndrome symptom control with reintroduction of selected FODMAPs. World J. Gastroenterol. 2017, 23, 4632–4643. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Contrave—HIGHLIGHTS OF PRESCRIBING INFORMATION. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/200063s022lbl.pdf (accessed on 3 April 2025).
- He, L.; Li, Q.; Yang, Y.; Li, J.; Luo, W.; Huang, Y.; Zhong, X. Pharmacovigilance study of GLP-1 receptor agonists for metabolic and nutritional adverse events. Front. Pharmacol. 2024, 15, 1416985. [Google Scholar] [CrossRef] [PubMed]
- Winzeler, B.; Sailer, C.O.; Coynel, D.; Zanchi, D.; Vogt, D.R.; Urwyler, S.A.; Refardt, J.; Christ-Crain, M. A randomized controlled trial of the GLP-1 receptor agonist dulaglutide in primary polydipsia. J. Clin. Investig. 2021, 131, e151800. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration. Topiramate: Highlights of Prescribing Information. May 2017. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/020505s057_020844s048lbl.pdf (accessed on 3 April 2025).
- Alhomoud, I.S.; Cook, E.; Patel, D.; Brown, R.E.; Dixon, D.L. Effect of pharmacist interventions on the management of overweight and obesity: A systematic review. J. Am. Pharm. Assoc. 2024, 64, 102058. [Google Scholar] [CrossRef] [PubMed]
- Mirza, N.; Marson, A.G.; Pirmohamed, M. Effect of topiramate on acid–base balance: Extent, mechanism and effects. Br. J. Clin. Pharmacol. 2009, 68, 655–661. [Google Scholar] [CrossRef]
- Eisenberg, D.; Shikora, S.A.; Aarts, E.; Aminian, A.; Angrisani, L.; Cohen, R.V.; Luca, M.D.; Faria, S.L.; Goodpaster, K.P.S.; Haddad, A.; et al. 2022 American Society for Metabolic and Bariatric Surgery (ASMBS) and International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO): Indications for Metabolic and Bariatric Surgery. Surg. Obes. Relat. Dis. 2022, 18, 1345–1356. [Google Scholar] [CrossRef]
- Arterburn, D.E.; Telem, D.A.; Kushner, R.F.; Courcoulas, A.P. Benefits and Risks of Bariatric Surgery in Adults: A Review. JAMA 2020, 324, 879–887. [Google Scholar] [CrossRef]
- Courcoulas, A.P.; Daigle, C.R.; Arterburn, D.E. Long term outcomes of metabolic/bariatric surgery in adults. BMJ 2023, 383, e071027. [Google Scholar] [CrossRef]
- Wiebe, N.; Tonelli, M. Long-term clinical outcomes of bariatric surgery in adults with severe obesity: A population-based retrospective cohort study. PLoS ONE 2024, 19, e0298402. [Google Scholar] [CrossRef]
- Al-Khyatt, W.; Ryall, R.; Leeder, P.; Ahmed, J.; Awad, S. Predictors of Inadequate Weight Loss After Laparoscopic Gastric Bypass for Morbid Obesity. Obes. Surg. 2017, 27, 1446–1452. [Google Scholar] [CrossRef]
- Anderin, C.; Gustafsson, U.O.; Heijbel, N.; Thorell, A. Weight Loss Before Bariatric Surgery and Postoperative Complications: Data From the Scandinavian Obesity Registry (SOReg). Ann. Surg. 2015, 261, 909–913. [Google Scholar] [CrossRef]
- Mechanick, J.I.; Apovian, C.; Brethauer, S.; Garvey, W.T.; Joffe, A.M.; Kim, J.; Kushner, R.F.; Lindquist, R.; Pessah-Pollack, R.; Seger, J.; et al. Clinical practice guidelines for the perioperative nutrition, metabolic, and nonsurgical support of patients undergoing bariatric procedures—2019 update: Cosponsored by American Association of Clinical Endocrinologists/American College of Endocrinology, The Obesity Society, American Society for Metabolic & Bariatric Surgery, Obesity Medicine Association, and American Society of Anesthesiologists. Surg. Obes. Relat. Dis. 2020, 16, 175–247. [Google Scholar] [CrossRef]
- Carter, J.; Chang, J.; Birriel, T.J.; Moustarah, F.; Sogg, S.; Goodpaster, K.; Benson-Davies, S.; Chapmon, K.; Eisenberg, D. ASMBS position statement on preoperative patient optimization before metabolic and bariatric surgery. Surg. Obes. Relat. Dis. Off. J. Am. Soc. Bariatr. Surg. 2021, 17, 1956–1976. [Google Scholar] [CrossRef]
- Athanasiadis, D.I.; Martin, A.; Kapsampelis, P.; Monfared, S.; Stefanidis, D. Factors associated with weight regain post-bariatric surgery: A systematic review. Surg. Endosc. 2021, 35, 4069–4084. [Google Scholar] [CrossRef] [PubMed]
- Sherf Dagan, S.; Goldenshluger, A.; Globus, I.; Schweiger, C.; Kessler, Y.; Kowen Sandbank, G.; Ben-Porat, T.; Sinai, T. Nutritional Recommendations for Adult Bariatric Surgery Patients: Clinical Practice. Adv. Nutr. 2017, 8, 382–394. [Google Scholar] [CrossRef] [PubMed]
- Stocker, R.; Ceyhan, M.; Schönenberger, K.A.; Stanga, Z.; Reber, E. Nutrient and fluid requirements in post-bariatric patients performing physical activity: A systematic review. Nutrition 2022, 97, 111577. [Google Scholar] [CrossRef]
- Kumbhari, V.; Cummings, D.E.; Kalloo, A.N.; Schauer, P.R. AGA Clinical Practice Update on Evaluation and Management of Early Complications After Bariatric/Metabolic Surgery: Expert Review. Clin. Gastroenterol. Hepatol. 2021, 19, 1531–1537. [Google Scholar] [CrossRef] [PubMed]
- Hui, C.; Bauza, G.J. Dumping Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK470542/ (accessed on 12 April 2025).
- Mages, M.; Shojaa, M.; Kohl, M.; von Stengel, S.; Becker, C.; Gosch, M.; Jakob, F.; Kerschan-Schindl, K.; Kladny, B.; Klöckner, N.; et al. Exercise Effects on Bone Mineral Density in Men. Nutrients 2021, 13, 4244. [Google Scholar] [CrossRef]
- Kemmler, W.; Shojaa, M.; Kohl, M.; von Stengel, S. Effects of Different Types of Exercise on Bone Mineral Density in Postmenopausal Women: A Systematic Review and Meta-analysis. Calcif. Tissue Int. 2020, 107, 409–439. [Google Scholar] [CrossRef] [PubMed]
- Sackner-Bernstein, J.; Kanter, D.; Kaul, S. Dietary intervention for overweight and obese adults: Comparison of low-carbohydrate and low-fat diets. A meta-analysis. PLoS ONE 2015, 10, e0139817. [Google Scholar] [CrossRef] [PubMed]
- Karagun, B.; Baklaci, N. Comparative analysis of basal metabolic rate measurement methods in overweight and obese individuals: A retrospective study. Medicine 2024, 103, e39542. [Google Scholar] [CrossRef] [PubMed]
- Anderberg, I.; Kemps, E.; Prichard, I. The link between the use of diet and fitness monitoring apps, body image and disordered eating symptomology: A systematic review. Body Image 2025, 52, 101836. [Google Scholar] [CrossRef] [PubMed]
- Hahn, S.L.; Bornstein, C.; Burnette, C.B.; Loth, K.A.; Neumark-Sztainer, D. A mixed-methods longitudinal examination of weight-related self-monitoring and disordered eating among a population-based sample of emerging adults. J. Eat. Disord. 2024, 12, 112. [Google Scholar] [CrossRef]
- Turner-McGrievy, G.M.; Yang, C.-H.; Monroe, C.; Pellegrini, C.; West, D.S. Is Burden Always Bad? Emerging Low-Burden Approaches to Mobile Dietary Self-monitoring and the Role Burden Plays with Engagement. J. Technol. Behav. Sci. 2021, 6, 447–455. [Google Scholar] [CrossRef]
- Gardner, B.; Rebar, A.L. Habit Formation and Behavior Change. In Oxford Research Encyclopedia of Psychology; Oxford University Press: Oxford, UK, 2019; Available online: https://oxfordre.com/psychology/display/10.1093/acrefore/9780190236557.001.0001/acrefore-9780190236557-e-129 (accessed on 12 April 2025).
- Churuangsuk, C.; Griffiths, D.; Lean, M.E.J.; Combet, E. Impacts of carbohydrate-restricted diets on micronutrient intakes and status: A systematic review. Obes. Rev. 2019, 20, 1132–1147. [Google Scholar] [CrossRef]
- Lapik, I.A.; Galchenko, A.V.; Gapparova, K.M. Micronutrient status in obese patients: A narrative review. Obes. Med. 2020, 18, 100224. [Google Scholar] [CrossRef]
- Madanchi, M.; Fagagnini, S.; Fournier, N.; Biedermann, L.; Zeitz, J.; Battegay, E.; Zimmerli, L.; Vavricka, S.R.; Rogler, G.; Scharl, M.; et al. The Relevance of Vitamin and Iron Deficiency in Patients with Inflammatory Bowel Diseases in Patients of the Swiss IBD Cohort. Inflamm. Bowel Dis. 2018, 24, 1768–1779. [Google Scholar] [CrossRef]
- Reytor-González, C.; Frias-Toral, E.; Nuñez-Vásquez, C.; Parise-Vasco, J.M.; Zambrano-Villacres, R.; Simancas-Racines, D.; Schiavo, L. Preventing and Managing Pre- and Postoperative Micronutrient Deficiencies: A Vital Component of Long-Term Success in Bariatric Surgery. Nutrients 2025, 17, 741. [Google Scholar] [CrossRef]
- Gasmi, A.; Bjørklund, G.; Mujawdiya, P.K.; Semenova, Y.; Peana, M.; Dosa, A.; Piscopo, S.; Gasmi Benahmed, A.; Costea, D.O. Micronutrients deficiences in patients after bariatric surgery. Eur. J. Nutr. 2022, 61, 55–67. [Google Scholar] [CrossRef]
- Bogataj Jontez, N.; Šik Novak, K.; Jenko Pražnikar, Z.; Petelin, A.; Kenig, S.; Mohorko, N. Does Dietary Supplement Use Increase Micronutrient Intake Adequacy in Healthy Adults with Habitual Omnivorous, Vegetarian, Vegan, and Low-Carbohydrate High-Fat Diets? Nutrients 2024, 16, 1832. [Google Scholar] [CrossRef]
- Rogeri, P.S.; Zanella, R.; Martins, G.L.; Garcia, M.D.A.; Leite, G.; Lugaresi, R.; Gasparini, S.O.; Sperandio, G.A.; Ferreira, L.H.B.; Souza-Junior, T.P.; et al. Strategies to Prevent Sarcopenia in the Aging Process: Role of Protein Intake and Exercise. Nutrients 2021, 14, 52. [Google Scholar] [CrossRef]
- Hansen, T.T.; Astrup, A.; Sjödin, A. Are Dietary Proteins the Key to Successful Body Weight Management? A Systematic Review and Meta-Analysis of Studies Assessing Body Weight Outcomes after Interventions with Increased Dietary Protein. Nutrients 2021, 13, 3193. [Google Scholar] [CrossRef] [PubMed]
- Volek, J.S.; Kackley, M.L.; Buga, A. Nutritional Considerations During Major Weight Loss Therapy: Focus on Optimal Protein and a Low-Carbohydrate Dietary Pattern. Curr. Nutr. Rep. 2024, 13, 422–443. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, R.R.; Cifelli, A.M.; Kostas, G.; Kim, I.-Y. Optimizing Protein Intake in Adults: Interpretation and Application of the Recommended Dietary Allowance Compared with the Acceptable Macronutrient Distribution Range. Adv. Nutr. 2017, 8, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Heymsfield, S.B.; Shapses, S.A. Guidance on Energy and Macronutrients across the Life Span. N. Engl. J. Med. 2024, 390, 1299–1310. [Google Scholar] [CrossRef]
- Leidy, H.J.; Clifton, P.M.; Astrup, A.; Wycherley, T.P.; Westerterp-Plantenga, M.S.; Luscombe-Marsh, N.D.; Woods, S.C.; Mattes, R.D. The role of protein in weight loss and maintenance234. Am. J. Clin. Nutr. 2015, 101, 1320S–1329S. [Google Scholar] [CrossRef]
- Mateo-Gallego, R.; Marco-Benedí, V.; Perez-Calahorra, S.; Bea, A.M.; Baila-Rueda, L.; Lamiquiz-Moneo, I.; de Castro-Orós, I.; Cenarro, A.; Civeira, F. Energy-restricted, high-protein diets more effectively impact cardiometabolic profile in overweight and obese women than lower-protein diets. Clin. Nutr. Edinb. Scotl. 2017, 36, 371–379. [Google Scholar] [CrossRef]
- Campbell, W.W.; Deutz, N.E.P.; Volpi, E.; Apovian, C.M. Nutritional Interventions: Dietary Protein Needs and Influences on Skeletal Muscle of Older Adults. J. Gerontol. Ser. A 2023, 78 (Suppl. S1), 67–72. [Google Scholar] [CrossRef]
- Hevia-Larraín, V.; Gualano, B.; Longobardi, I.; Gil, S.; Fernandes, A.L.; Costa, L.A.R.; Pereira, R.M.R.; Artioli, G.G.; Phillips, S.M.; Roschel, H. High-Protein Plant-Based Diet Versus a Protein-Matched Omnivorous Diet to Support Resistance Training Adaptations: A Comparison Between Habitual Vegans and Omnivores. Sports Med. 2021, 51, 1317–1330. [Google Scholar] [CrossRef] [PubMed]
- Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.N.; Ferrando, A.A.; Arent, S.M.; et al. International Society of Sports Nutrition Position Stand: Protein and exercise. J. Int. Soc. Sports Nutr. 2017, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J. Acad. Nutr. Diet. 2016, 116, 501–528. [Google Scholar] [CrossRef] [PubMed]
- Pang, M.D.; Goossens, G.H.; Blaak, E.E. The Impact of Artificial Sweeteners on Body Weight Control and Glucose Homeostasis. Front. Nutr. 2021, 7, 598340. [Google Scholar] [CrossRef]
- Lenhart, A.; Chey, W.D. A Systematic Review of the Effects of Polyols on Gastrointestinal Health and Irritable Bowel Syndrome. Adv. Nutr. 2017, 8, 587–596. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 11. Chronic Kidney Disease and Risk Management: Standards of Care in Diabetes—2025. Diabetes Care 2024, 48 (Suppl. S1), S239–S251. [Google Scholar] [CrossRef]
- Chang, L.L.; Rhee, C.M.; Kalantar-Zadeh, K.; Woodrow, G. Dietary Protein Restriction in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2024, 390, 86–89. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Fouque, D. Nutritional Management of Chronic Kidney Disease. N. Engl. J. Med. 2017, 377, 1765–1776. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 5. Facilitating Positive Health Behaviors and Well-being to Improve Health Outcomes: Standards of Care in Diabetes—2025. Diabetes Care 2024, 48 (Suppl. S1), S86–S127. [Google Scholar] [CrossRef]
- The Diabetes Prevention Program Research Group. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet 2009, 374, 1677–1686. [Google Scholar] [CrossRef]
- Qin, W.; Ying, W.; Hamaker, B.; Zhang, G. Slow digestion-oriented dietary strategy to sustain the secretion of GLP-1 for improved glucose homeostasis. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5173–5196. [Google Scholar] [CrossRef]
- Luo, K.; Wang, X.; Zhang, G. The anti-obesity effect of starch in a whole grain-like structural form. Food Funct. 2018, 9, 3755–3763. [Google Scholar] [CrossRef]
- Rolls, B.J. The role of portion size, energy density, and variety in obesity and weight management. In Handbook of Obesity Treatment; The Guilford Press: New York, NY, USA, 2018; pp. 93–104. [Google Scholar]
- Lieberman, H.R.; Fulgoni, V.L.; Agarwal, S.; Pasiakos, S.M.; Berryman, C.E. Protein intake is more stable than carbohydrate or fat intake across various US demographic groups and international populations. Am. J. Clin. Nutr. 2020, 112, 180–186. [Google Scholar] [CrossRef]
- Naseeb, M.A.; Volpe, S.L. Protein and exercise in the prevention of sarcopenia and aging. Nutr. Res. 2017, 40, 1–20. [Google Scholar] [CrossRef]
- Giglio, B.M.; Lobo, P.C.B.; Pimentel, G.D. Effects of whey protein supplementation on adiposity, body weight, and glycemic parameters: A synthesis of evidence. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 258–274. [Google Scholar] [CrossRef] [PubMed]
- Kjølbæk, L.; Sørensen, L.B.; Søndertoft, N.B.; Rasmussen, C.K.; Lorenzen, J.K.; Serena, A.; Astrup, A.; Larsen, L.H. Protein supplements after weight loss do not improve weight maintenance compared with recommended dietary protein intake despite beneficial effects on appetite sensation and energy expenditure: A randomized, controlled, double-blinded trial. Am. J. Clin. Nutr. 2017, 106, 684–697. [Google Scholar] [CrossRef]
- Snetselaar, L.G.; de Jesus, J.M.; DeSilva, D.M.; Stoody, E.E. Dietary Guidelines for Americans, 2020–2025: Understanding the Scientific Process, Guidelines, and Key Recommendations. Nutr. Today 2021, 56, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Hoelscher, D.M.; Tobias, D.; Deierlein, A.; Gardner, C.; Giovannucci, E.; Anderson, C.A.M.; Booth, S.; Raynor, H.; Fung, T.; Stanford, F.C.; et al. Dietary Patterns and Growth, Body Composition, and Risk of Obesity: A Systematic Review; USDA: Alexandria, VA, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK611726/ (accessed on 29 June 2025).
- McCarthy, D.; Berg, A. Weight Loss Strategies and the Risk of Skeletal Muscle Mass Loss. Nutrients 2021, 13, 2473. [Google Scholar] [CrossRef] [PubMed]
- Chiavaroli, L.; Viguiliouk, E.; Nishi, S.K.; Blanco Mejia, S.; Rahelić, D.; Kahleová, H.; Salas-Salvadó, J.; Kendall, C.W.; Sievenpiper, J.L. DASH Dietary Pattern and Cardiometabolic Outcomes: An Umbrella Review of Systematic Reviews and Meta-Analyses. Nutrients 2019, 11, 338. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Satija, A.; Bhupathiraju, S.N.; Rimm, E.B.; Spiegelman, D.; Chiuve, S.E.; Borgi, L.; Willett, W.C.; Manson, J.E.; Sun, Q.; Hu, F.B. Plant-Based Dietary Patterns and Incidence of Type 2 Diabetes in US Men and Women: Results from Three Prospective Cohort Studies. PLoS Med. 2016, 13, e1002039. [Google Scholar] [CrossRef]
- Satija, A.; Hu, F.B. Plant-based diets and cardiovascular health. Trends Cardiovasc. Med. 2018, 28, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Rico-Campà, A.; Martínez-González, M.A.; Alvarez-Alvarez, I.; de Deus Mendonça, R.; De La Fuente-Arrillaga, C.; Gómez-Donoso, C.; Bes-Rastrollo, M. Association between consumption of ultra-processed foods and all cause mortality: SUN prospective cohort study. BMJ 2019, 365, l1949. [Google Scholar] [CrossRef]
- Srour, B.; Fezeu, L.K.; Kesse-Guyot, E.; Allès, B.; Méjean, C.; Andrianasolo, R.M.; Chazelas, E.; Deschasaux, M.; Hercberg, S.; Galan, P.; et al. Ultra-processed food intake and risk of cardiovascular disease: Prospective cohort study (NutriNet-Santé). BMJ 2019, 365, l1451. [Google Scholar] [CrossRef]
- Fardet, A. Minimally processed foods are more satiating and less hyperglycemic than ultra-processed foods: A preliminary study with 98 ready-to-eat foods. Food Funct. 2016, 7, 2338–2346. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Cannon, G.; Levy, R.; Moubarac, J.-C.; Jaime, P.; Martins, A.P.; Canella, D.; Louzada, M.; Parra, D. NOVA. The star shines bright. World Nutr. 2016, 7, 28–38. [Google Scholar]
- Martinez-Steele, E.; Khandpur, N.; Batis, C.; Bes-Rastrollo, M.; Bonaccio, M.; Cediel, G.; Huybrechts, I.; Juul, F.; Levy, R.B.; da Costa Louzada, M.L.; et al. Best practices for applying the Nova food classification system. Nat. Food 2023, 4, 445–448. [Google Scholar] [CrossRef]
- Martínez Steele, E.; Popkin, B.M.; Swinburn, B.; Monteiro, C.A. The share of ultra-processed foods and the overall nutritional quality of diets in the US: Evidence from a nationally representative cross-sectional study. Popul. Health Metr. 2017, 15, 6. [Google Scholar] [CrossRef]
- Hall, K.D. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: A One-Month Inpatient Randomized Controlled Trial of ad Libitum Food Intake. 2018. Available online: https://osf.io/preprints/nutrixiv/w3zh2/ (accessed on 27 March 2025).
- Huang, Y.; Chen, Z.; Chen, B.; Li, J.; Yuan, X.; Li, J.; Wang, W.; Dai, T.; Chen, H.; Wang, Y.; et al. Dietary sugar consumption and health: Umbrella review. BMJ 2023, 381, e071609. [Google Scholar] [CrossRef]
- Hu, H.; Zhao, Y.; Feng, Y.; Yang, X.; Li, Y.; Wu, Y.; Yuan, L.; Zhang, J.; Li, T.; Huang, H.; et al. Consumption of whole grains and refined grains and associated risk of cardiovascular disease events and all-cause mortality: A systematic review and dose-response meta-analysis of prospective cohort studies. Am. J. Clin. Nutr. 2023, 117, 149–159. [Google Scholar] [CrossRef]
- Gaesser, G.A. Refined Grain Intake and Risk of Type 2 Diabetes. Mayo Clin. Proc. 2022, 97, 1428–1436. [Google Scholar] [CrossRef]
- Waddell, I.S.; Orfila, C. Dietary fiber in the prevention of obesity and obesity-related chronic diseases: From epidemiological evidence to potential molecular mechanisms. Crit. Rev. Food Sci. Nutr. 2023, 63, 8752–8767. [Google Scholar] [CrossRef]
- Alexander, L.; Christensen, S.M.; Richardson, L.; Ingersoll, A.B.; Burridge, K.; Golden, A.; Karjoo, S.; Cortez, D.; Shelver, M.; Bays, H.E. Nutrition and physical activity: An Obesity Medicine Association (OMA) Clinical Practice Statement 2022. Obes. Pillars 2022, 1, 100005. [Google Scholar] [CrossRef] [PubMed]
- Katz, D.L.; Doughty, K.N.; Geagan, K.; Jenkins, D.A.; Gardner, C.D. Perspective: The Public Health Case for Modernizing the Definition of Protein Quality. Adv. Nutr. 2019, 10, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.-Y.; Chang, H.-Y.; Huang, Y.-C.; Liu, C.-W. Effect of Whey Protein Supplementation in Postmenopausal Women: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 4210. [Google Scholar] [CrossRef] [PubMed]
- Gardner, C.D.; Trepanowski, J.F.; Del Gobbo, L.C.; Hauser, M.E.; Rigdon, J.; Ioannidis, J.P.; Desai, M.; King, A.C. Effect of low-fat vs low-carbohydrate diet on 12-month weight loss in overweight adults and the association with genotype pattern or insulin secretion: The DIETFITS randomized clinical trial. JAMA 2018, 319, 667–679. [Google Scholar] [CrossRef]
- Konieczna, J.; Ruiz-Canela, M.; Galmes-Panades, A.M.; Abete, I.; Babio, N.; Fiol, M.; Martín-Sánchez, V.; Estruch, R.; Vidal, J.; Buil-Cosiales, P.; et al. An Energy-Reduced Mediterranean Diet, Physical Activity, and Body Composition: An Interim Subgroup Analysis of the PREDIMED-Plus Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e2337994. [Google Scholar] [CrossRef]
- Jennings, A.; Mulligan, A.A.; Khaw, K.-T.; Luben, R.N.; Welch, A.A. A Mediterranean Diet Is Positively Associated with Bone and Muscle Health in a Non-Mediterranean Region in 25,450 Men and Women from EPIC-Norfolk. Nutrients 2020, 12, 1154. [Google Scholar] [CrossRef]
- Jakše, B.; Pinter, S.; Jakše, B.; Bučar Pajek, M.; Pajek, J. Effects of an Ad Libitum Consumed Low-Fat Plant-Based Diet Supplemented with Plant-Based Meal Replacements on Body Composition Indices. BioMed Res. Int. 2017, 2017, 9626390. [Google Scholar] [CrossRef]
- Wright, N.; Wilson, L.; Smith, M.; Duncan, B.; McHugh, P. The BROAD study: A randomised controlled trial using a whole food plant-based diet in the community for obesity, ischaemic heart disease or diabetes. Nutr. Diabetes 2017, 7, e256. [Google Scholar] [CrossRef]
- Shan, Z.; Guo, Y.; Hu, F.B.; Liu, L.; Qi, Q. Association of Low-Carbohydrate and Low-Fat Diets with Mortality Among US Adults. JAMA Intern. Med. 2020, 180, 513–523. [Google Scholar] [CrossRef]
- Seidelmann, S.B.; Claggett, B.; Cheng, S.; Henglin, M.; Shah, A.; Steffen, L.M.; Folsom, A.R.; Rimm, E.B.; Willett, W.C.; Solomon, S.D. Dietary carbohydrate intake and mortality: A prospective cohort study and meta-analysis. Lancet Public Health 2018, 3, e419–e428. [Google Scholar] [CrossRef] [PubMed]
- Akter, S.; Mizoue, T.; Nanri, A.; Goto, A.; Noda, M.; Sawada, N.; Yamaji, T.; Iwasaki, M.; Inoue, M.; Tsugane, S.; et al. Low carbohydrate diet and all cause and cause-specific mortality. Clin. Nutr. 2021, 40, 2016–2024. [Google Scholar] [CrossRef] [PubMed]
- Volek, J.S.; Phinney, S.D.; Krauss, R.M.; Johnson, R.J.; Saslow, L.R.; Gower, B.; Yancy, W.S.; King, J.C.; Hecht, F.M.; Teicholz, N.; et al. Alternative Dietary Patterns for Americans: Low-Carbohydrate Diets. Nutrients 2021, 13, 3299. [Google Scholar] [CrossRef] [PubMed]
- Barnard, N.D.; Alwarith, J.; Rembert, E.; Brandon, L.; Nguyen, M.; Goergen, A.; Horne, T.; Nascimento, G.F.D.; Lakkadi, K.; Tura, A.; et al. A Mediterranean Diet and Low-Fat Vegan Diet to Improve Body Weight and Cardiometabolic Risk Factors: A Randomized, Cross-over Trial. J. Am. Nutr. Assoc. 2022, 41, 127–139. [Google Scholar] [CrossRef]
- Kahleova, H.; Petersen, K.F.; Shulman, G.I.; Alwarith, J.; Rembert, E.; Tura, A.; Hill, M.; Holubkov, R.; Barnard, N.D. Effect of a Low-Fat Vegan Diet on Body Weight, Insulin Sensitivity, Postprandial Metabolism, and Intramyocellular and Hepatocellular Lipid Levels in Overweight Adults: A Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e2025454. [Google Scholar] [CrossRef]
- Moon, J.; Koh, G. Clinical Evidence and Mechanisms of High-Protein Diet-Induced Weight Loss. J. Obes. Metab. Syndr. 2020, 29, 166–173. [Google Scholar] [CrossRef]
- Ai, Y.; Xu, R.; Liu, L. The prevalence and risk factors of sarcopenia in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetol. Metab. Syndr. 2021, 13, 93. [Google Scholar] [CrossRef]
- Mesinovic, J.; Zengin, A.; De Courten, B.; Ebeling, P.R.; Scott, D. Sarcopenia and type 2 diabetes mellitus: A bidirectional relationship. Diabetes Metab. Syndr. Obes. 2019, 12, 1057–1072. [Google Scholar] [CrossRef]
- Basciani, S.; Camajani, E.; Contini, S.; Persichetti, A.; Risi, R.; Bertoldi, L.; Strigari, L.; Prossomariti, G.; Watanabe, M.; Mariani, S.; et al. Very-Low-Calorie Ketogenic Diets With Whey, Vegetable, or Animal Protein in Patients With Obesity: A Randomized Pilot Study. J. Clin. Endocrinol. Metab. 2020, 105, 2939–2949. [Google Scholar] [CrossRef]
- Castellana, M.; Conte, E.; Cignarelli, A.; Perrini, S.; Giustina, A.; Giovanella, L.; Giorgino, F.; Trimboli, P. Efficacy and safety of very low calorie ketogenic diet (VLCKD) in patients with overweight and obesity: A systematic review and meta-analysis. Rev. Endocr. Metab. Disord. 2020, 21, 5–16. [Google Scholar] [CrossRef]
- Lean, M.E.J.; Leslie, W.S.; Barnes, A.C.; Brosnahan, N.; Thom, G.; McCombie, L.; Peters, C.; Zhyzhneuskaya, S.; Al-Mrabeh, A.; Hollingsworth, K.G.; et al. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol. 2019, 7, 344–355. [Google Scholar] [CrossRef] [PubMed]
- Juray, S.; Axen, K.V.; Trasino, S.E. Remission of Type 2 Diabetes with Very Low-Calorie Diets-A Narrative Review. Nutrients 2021, 13, 2086. [Google Scholar] [CrossRef] [PubMed]
- Manoogian, E.N.C.; Chow, L.S.; Taub, P.R.; Laferrère, B.; Panda, S. Time-restricted Eating for the Prevention and Management of Metabolic Diseases. Endocr. Rev. 2022, 43, 405–436. [Google Scholar] [CrossRef] [PubMed]
- Elortegui Pascual, P.; Rolands, M.R.; Eldridge, A.L.; Kassis, A.; Mainardi, F.; Lê, K.-A.; Karagounis, L.G.; Gut, P.; Varady, K.A. A meta-analysis comparing the effectiveness of alternate day fasting, the 5:2 diet, and time-restricted eating for weight loss. Obesity 2023, 31, 9–21. [Google Scholar] [CrossRef]
- Laferrère, B.; Panda, S. Calorie and Time Restriction in Weight Loss. N. Engl. J. Med. 2022, 386, 1572–1573. [Google Scholar] [CrossRef]
- Attinà, A.; Leggeri, C.; Paroni, R.; Pivari, F.; Dei Cas, M.; Mingione, A.; Dri, M.; Marchetti, M.; Di Renzo, L. Fasting: How to Guide. Nutrients 2021, 13, 1570. [Google Scholar] [CrossRef]
- Corley, B.T.; Carroll, R.W.; Hall, R.M.; Weatherall, M.; Parry-Strong, A.; Krebs, J.D. Intermittent fasting in Type 2 diabetes mellitus and the risk of hypoglycaemia: A randomized controlled trial. Diabet. Med. J. Br. Diabet. Assoc. 2018, 35, 588–594. [Google Scholar] [CrossRef]
- Wang, X.; Li, Q.; Liu, Y.; Jiang, H.; Chen, W. Intermittent fasting versus continuous energy-restricted diet for patients with type 2 diabetes mellitus and metabolic syndrome for glycemic control: A systematic review and meta-analysis of randomized controlled trials. Diabetes Res. Clin. Pract. 2021, 179, 109003. [Google Scholar] [CrossRef]
- Kelly, R.K.; Calhoun, J.; Hanus, A.; Payne-Foster, P.; Stout, R.; Sherman, B.W. Increased dietary fiber is associated with weight loss among Full Plate Living program participants. Front. Nutr. 2023, 10, 1110748. [Google Scholar] [CrossRef]
- Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; et al. A Clinical Trial of the Effects of Dietary Patterns on Blood Pressure. N. Engl. J. Med. 1997, 336, 1117–1124. [Google Scholar] [CrossRef]
- Juul, F.; Vaidean, G.; Lin, Y.; Deierlein, A.L.; Parekh, N. Ultra-Processed Foods and Incident Cardiovascular Disease in the Framingham Offspring Study. JACC 2021, 77, 1520–1531. [Google Scholar] [CrossRef]
- Dennis, K.K.; Wang, F.; Li, Y.; Manson, J.E.; Rimm, E.B.; Hu, F.B.; Willett, W.C.; Stampfer, M.J.; Wang, D.D. Associations of dietary sugar types with coronary heart disease risk: A prospective cohort study. Am. J. Clin. Nutr. 2023, 118, 1000–1009. [Google Scholar] [CrossRef]
- Mendoza, K.; Smith-Warner, S.A.; Rossato, S.L.; Khandpur, N.; Manson, J.E.; Qi, L.; Rimm, E.B.; Mukamal, K.J.; Willett, W.C.; Wang, M.; et al. Ultra-processed foods and cardiovascular disease: Analysis of three large US prospective cohorts and a systematic review and meta-analysis of prospective cohort studies. Lancet Reg. Health–Am. 2024, 37, 100859. [Google Scholar] [CrossRef]
- Crosby, L.; Rembert, E.; Levin, S.; Green, A.; Ali, Z.; Jardine, M.; Nguyen, M.; Elliott, P.; Goldstein, D.; Freeman, A.; et al. Changes in Food and Nutrient Intake and Diet Quality on a Low-Fat Vegan Diet Are Associated with Changes in Body Weight, Body Composition, and Insulin Sensitivity in Overweight Adults: A Randomized Clinical Trial. J. Acad. Nutr. Diet. 2022, 122, 1922–1939.e0. [Google Scholar] [CrossRef] [PubMed]
- Satija, A.; Malik, V.; Rimm, E.B.; Sacks, F.; Willett, W.; Hu, F.B. Changes in intake of plant-based diets and weight change: Results from 3 prospective cohort studies. Am. J. Clin. Nutr. 2019, 110, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Neufingerl, N.; Eilander, A. Nutrient Intake and Status in Adults Consuming Plant-Based Diets Compared to Meat-Eaters: A Systematic Review. Nutrients 2022, 14, 29. [Google Scholar] [CrossRef] [PubMed]
- Chacón, V.; Cara, K.C.; Chung, M.; Wallace, T.C. Defining “low-carb” in the scientific literature: A scoping review of clinical studies. Crit. Rev. Food Sci. Nutr. 2025, 65, 1792–1801. [Google Scholar] [CrossRef]
- Naude, C.E.; Brand, A.; Schoonees, A.; Nguyen, K.A.; Chaplin, M.; Volmink, J. Low-carbohydrate versus balanced-carbohydrate diets for reducing weight and cardiovascular risk. Cochrane Database Syst. Rev. 2022, 2022, CD013334. [Google Scholar] [CrossRef]
- Churuangsuk, C.; Kherouf, M.; Combet, E.; Lean, M. Low-carbohydrate diets for overweight and obesity: A systematic review of the systematic reviews. Obes. Rev. 2018, 19, 1700–1718. [Google Scholar] [CrossRef]
- Chawla, S.; Tessarolo Silva, F.; Amaral Medeiros, S.; Mekary, R.A.; Radenkovic, D. The effect of low-fat and low-carbohydrate diets on weight loss and lipid levels: A systematic review and meta-analysis. Nutrients 2020, 12, 3774. [Google Scholar] [CrossRef]
- Kerna, N.A.; Ngwu, D.C.; Jomsky, B.M.; Holets, H.M.; Nnake, I.; Jeremiah, S.M.; Flores, J.V.; Pruitt, K.D.; Carsrud, N.D.V.; Senat, A.J.B.; et al. Impact of Detox Diets on Obesity and Metabolic Syndrome: Implications for Weight Loss, Metabolic Health, and Clinical Practice. Eur. J. Med. Health Res. 2024, 2, 135–152. [Google Scholar] [CrossRef]
- Jenkins, D.J.A.; Wong, J.M.W.; Kendall, C.W.C.; Esfahani, A.; Ng, V.W.Y.; Leong, T.C.K.; Faulkner, D.A.; Vidgen, E.; Paul, G.; Mukherjea, R.; et al. Effect of a 6-month vegan low-carbohydrate (‘Eco-Atkins’) diet on cardiovascular risk factors and body weight in hyperlipidaemic adults: A randomised controlled trial. BMJ Open 2014, 4, e003505. [Google Scholar] [CrossRef] [PubMed]
- Kovell, L.C.; Yeung, E.H.; Miller, E.R.; Appel, L.J.; Christenson, R.H.; Rebuck, H.; Schulman, S.P.; Juraschek, S.P. Healthy diet reduces markers of cardiac injury and inflammation regardless of macronutrients: Results from the OmniHeart trial. Int. J. Cardiol. 2020, 299, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Ard, J.D.; Neeland, I.J.; Rothberg, A.E.; Chilton, R.J.; de Luis, D.; Cohen, S.S.; Johansen, O.E. The OPTIFAST total and partial meal replacement programme reduces cardiometabolic risk in adults with obesity: Secondary and exploratory analysis of the OPTIWIN study. Diabetes Obes. Metab. 2024, 26, 950–960. [Google Scholar] [CrossRef] [PubMed]
- Coleman, C.D.; Kiel, J.R.; Mitola, A.H.; Langford, J.S.; Davis, K.N.; Arterburn, L.M. Effectiveness of a Medifast meal replacement program on weight, body composition and cardiometabolic risk factors in overweight and obese adults: A multicenter systematic retrospective chart review study. Nutr. J. 2015, 14, 77. [Google Scholar] [CrossRef]
- Churuangsuk, C.; Hall, J.; Reynolds, A.; Griffin, S.J.; Combet, E.; Lean, M.E.J. Diets for weight management in adults with type 2 diabetes: An umbrella review of published meta-analyses and systematic review of trials of diets for diabetes remission. Diabetologia 2022, 65, 14–36. [Google Scholar] [CrossRef]
- Liu, D.; Huang, Y.; Huang, C.; Yang, S.; Wei, X.; Zhang, P.; Guo, D.; Lin, J.; Xu, B.; Li, C.; et al. Calorie Restriction with or without Time-Restricted Eating in Weight Loss. N. Engl. J. Med. 2022, 386, 1495–1504. [Google Scholar] [CrossRef]
- Meessen, E.C.E.; Andresen, H.; van Barneveld, T.; van Riel, A.; Johansen, E.I.; Kolnes, A.J.; Kemper, E.M.; Olde Damink, S.W.M.; Schaap, F.G.; Romijn, J.A.; et al. Differential Effects of One Meal per Day in the Evening on Metabolic Health and Physical Performance in Lean Individuals. Front. Physiol. 2022, 12, 771944. [Google Scholar] [CrossRef]
- Scholtens, E.L.; Krebs, J.D.; Corley, B.T.; Hall, R.M. Intermittent fasting 5:2 diet: What is the macronutrient and micronutrient intake and composition? Clin. Nutr. 2020, 39, 3354–3360. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, Y.; Zhao, L.; Zhou, Y. Effect of 5:2 Fasting Diet on Liver Fat Content in Patients with Type 2 Diabetic with Nonalcoholic Fatty Liver Disease. Metab. Syndr. Relat. Disord. 2022, 20, 459–465. [Google Scholar] [CrossRef]
- Barski, L.; Eshkoli, T.; Brandstaetter, E.; Jotkowitz, A. Euglycemic diabetic ketoacidosis. Eur. J. Intern. Med. 2019, 63, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Ezpeleta, M.; Cienfuegos, S.; Lin, S.; Pavlou, V.; Gabel, K.; Varady, K.A. Efficacy and safety of prolonged water fasting: A narrative review of human trials. Nutr. Rev. 2024, 82, 664–675. [Google Scholar] [CrossRef] [PubMed]
- van den Burg, E.L.; Schoonakker, M.P.; van Peet, P.G.; van den Akker-van Marle, E.M.; Lamb, H.J.; Longo, V.D.; Numans, M.E.; Pijl, H. Integration of a fasting-mimicking diet programme in primary care for type 2 diabetes reduces the need for medication and improves glycaemic control: A 12-month randomised controlled trial. Diabetologia 2024, 67, 1245–1259. [Google Scholar] [CrossRef] [PubMed]
- Sadeghian, M.; Hosseini, S.A.; Zare Javid, A.; Ahmadi Angali, K.; Mashkournia, A. Effect of Fasting-Mimicking Diet or Continuous Energy Restriction on Weight Loss, Body Composition, and Appetite-Regulating Hormones Among Metabolically Healthy Women with Obesity: A Randomized Controlled, Parallel Trial. Obes. Surg. 2021, 31, 2030–2039. [Google Scholar] [CrossRef]
- Lobelo, F.; Rohm Young, D.; Sallis, R.; Garber, M.D.; Billinger, S.A.; Duperly, J.; Hutber, A.; Pate, R.R.; Thomas, R.J.; Widlansky, M.E.; et al. Routine Assessment and Promotion of Physical Activity in Healthcare Settings: A Scientific Statement From the American Heart Association. Circulation 2018, 137, e495–e522. [Google Scholar] [CrossRef]
- Swift, D.L.; McGee, J.E.; Earnest, C.P.; Carlisle, E.; Nygard, M.; Johannsen, N.M. The Effects of Exercise and Physical Activity on Weight Loss and Maintenance. Prog. Cardiovasc. Dis. 2018, 61, 206–213. [Google Scholar] [CrossRef]
- Niezgoda, N.; Chomiuk, T.; Kasiak, P.; Mamcarz, A.; Śliż, D. The Impact of Physical Activity on Weight Loss in Relation to the Pillars of Lifestyle Medicine—A Narrative Review. Nutrients 2025, 17, 1095. [Google Scholar] [CrossRef]
- US Department of Health and Human Services. Physical Activity Guidelines for Americans, 2nd ed.; US Department of Health and Human Services: Washington, DC, USA, 2018.
- Eckel, R.H.; Jakicic, J.M.; Ard, J.D.; de Jesus, J.M.; Houston Miller, N.; Hubbard, V.S.; Lee, I.-M.; Lichtenstein, A.H.; Loria, C.M.; Millen, B.E.; et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014, 129 (Suppl. S2), S76–S99. [Google Scholar] [CrossRef]
- Oppert, J.-M.; Ciangura, C.; Bellicha, A. Physical activity and exercise for weight loss and maintenance in people living with obesity. Rev. Endocr. Metab. Disord. 2023, 24, 937–949. [Google Scholar] [CrossRef]
- Oppert, J.-M.; Ciangura, C.; Bellicha, A. Health-enhancing physical activity in obesity management: The need to (seriously) go beyond weight loss. Int. J. Obes. 2025, 49, 211–213. [Google Scholar] [CrossRef]
- Johnson, N.A.; Sultana, R.N.; Brown, W.J.; Bauman, A.E.; Gill, T. Physical activity in the management of obesity in adults: A position statement from Exercise and Sport Science Australia. J. Sci. Med. Sport 2021, 24, 1245–1254. [Google Scholar] [CrossRef] [PubMed]
- Funabashi, D.; Dobashi, S.; Sameshima, K.; Sagayama, H.; Nishijima, T.; Matsui, T. Acute Vigorous Exercise Decreases Subsequent Nonexercise Physical Activity and Body Temperature Linked to Weight Gain. Med. Sci. Sports Exerc. 2024, 56, 1964–1975. [Google Scholar] [CrossRef] [PubMed]
- Mandsager, K.; Harb, S.; Cremer, P.; Phelan, D.; Nissen, S.E.; Jaber, W. Association of Cardiorespiratory Fitness with Long-term Mortality Among Adults Undergoing Exercise Treadmill Testing. JAMA Netw. Open 2018, 1, e183605. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Jiménez, C.; Dumitrache, C.G.; Rubio, L.; Ruiz-Montero, P.J. Self-perceptions of ageing and perceived health status: The mediating role of cognitive functioning and physical activity. Ageing Soc. 2024, 44, 622–641. [Google Scholar] [CrossRef]
- Dantas, W.S.; Roschel, H.; Murai, I.H.; Gil, S.; Davuluri, G.; Axelrod, C.L.; Ghosh, S.; Newman, S.S.; Zhang, H.; Shinjo, S.K.; et al. Exercise-Induced Increases in Insulin Sensitivity After Bariatric Surgery Are Mediated by Muscle Extracellular Matrix Remodeling. Diabetes 2020, 69, 1675–1691. [Google Scholar] [CrossRef]
- Gil, S.; Peçanha, T.; Dantas, W.S.; Murai, I.H.; Merege-Filho, C.A.A.; de Sá-Pinto, A.L.; Pereira, R.M.R.; de Cleva, R.; Santo, M.A.; Rezende, D.A.N.; et al. Exercise Enhances the Effect of Bariatric Surgery in Markers of Cardiac Autonomic Function. Obes. Surg. 2021, 31, 1381–1386. [Google Scholar] [CrossRef]
- Kim, H.; Reece, J.; Kang, M. Effects of Accumulated Short Bouts of Exercise on Weight and Obesity Indices in Adults: A Meta-Analysis. Am. J. Health Promot. AJHP 2020, 34, 96–104. [Google Scholar] [CrossRef]
- Sanders, J.P.; Biddle, S.J.H.; Gokal, K.; Sherar, L.B.; Skrybant, M.; Parretti, H.M.; Ives, N.; Yates, T.; Mutrie, N.; Daley, A.J. ‘SnacktivityTM’ to increase physical activity: Time to try something different? Prev. Med. 2021, 153, 106851. [Google Scholar] [CrossRef]
- Fyfe, J.J.; Hamilton, D.L.; Daly, R.M. Minimal-Dose Resistance Training for Improving Muscle Mass, Strength, and Function: A Narrative Review of Current Evidence and Practical Considerations. Sports Med. 2022, 52, 463–479. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Dent, E.; Woo, J.; Scott, D.; Hoogendijk, E.O. Toward the recognition and management of sarcopenia in routine clinical care. Nat. Aging 2021, 1, 982–990. [Google Scholar] [CrossRef] [PubMed]
- Conte, C.; Hall, K.D.; Klein, S. Is Weight Loss–Induced Muscle Mass Loss Clinically Relevant? JAMA 2024, 332, 9–10. [Google Scholar] [CrossRef]
- Azzolino, D.; Lucchi, T. Expanding applications of GLP-1 therapies: A careful view. Int. J. Obes. 2025, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Neeland, I.J.; Linge, J.; Birkenfeld, A.L. Changes in lean body mass with glucagon-like peptide-1-based therapies and mitigation strategies. Diabetes Obes. Metab. 2024, 26, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Mendes, C.; Carvalho, M.; Bravo, J.; Martins, S.; Raimundo, A. How Weight Loss After Bariatric Surgery Affects Sarcopenia Parameters and Diagnosis. Surgeries 2025, 6, 31. [Google Scholar] [CrossRef]
- Pekař, M.; Pekařová, A.; Bužga, M.; Holéczy, P.; Soltes, M. The risk of sarcopenia 24 months after bariatric surgery—Assessment by dual energy X-ray absorptiometry (DEXA): A prospective study. Videosurgery Miniinvasive Tech. 2020, 15, 583–587. [Google Scholar] [CrossRef]
- Prado, C.M.; Phillips, S.M.; Gonzalez, M.C.; Heymsfield, S.B. Muscle matters: The effects of medically induced weight loss on skeletal muscle. Lancet Diabetes Endocrinol. 2024, 12, 785–787. [Google Scholar] [CrossRef]
- Roh, E.; Choi, K.M. Health Consequences of Sarcopenic Obesity: A Narrative Review. Front. Endocrinol. 2020, 11, 332. [Google Scholar] [CrossRef]
- Morton, R.W.; McGlory, C.; Phillips, S.M. Nutritional interventions to augment resistance training-induced skeletal muscle hypertrophy. Front. Physiol. 2015, 6, 245. [Google Scholar] [CrossRef]
- Vikberg, S.; Sörlén, N.; Brandén, L.; Johansson, J.; Nordström, A.; Hult, A.; Nordström, P. Effects of Resistance Training on Functional Strength and Muscle Mass in 70-Year-Old Individuals With Pre-sarcopenia: A Randomized Controlled Trial. J. Am. Med. Dir. Assoc. 2019, 20, 28–34. [Google Scholar] [CrossRef]
- Hansen, D.; Decroix, L.; Devos, Y.; Nocca, D.; Cornelissen, V.; Dillemans, B.; Lannoo, M. Towards Optimized Care After Bariatric Surgery by Physical Activity and Exercise Intervention: A Review. Obes. Surg. 2020, 30, 1118–1125. [Google Scholar] [CrossRef]
- Vieira, F.T.; de Oliveira, G.S.; Gonçalves, V.S.S.; Neri, S.G.; de Carvalho, K.M.B.; Dutra, E.S. Effect of physical exercise on muscle strength in adults following bariatric surgery: A systematic review and meta-analysis of different muscle strength assessment tests. PLoS ONE 2022, 17, e0269699. [Google Scholar] [CrossRef]
- Bellicha, A.; Van Baak, M.A.; Battista, F.; Beaulieu, K.; Blundell, J.E.; Busetto, L.; Carraça, E.V.; Dicker, D.; Encantado, J.; Ermolao, A.; et al. Effect of exercise training before and after bariatric surgery: A systematic review and meta-analysis. Obes. Rev. 2021, 22, e13296. [Google Scholar] [CrossRef]
- Grier, T.; Brooks, R.D.; Solomon, Z.; Jones, B.H. Injury Risk Factors Associated with Weight Training. J. Strength Cond. Res. 2022, 36, e24–e30. [Google Scholar] [CrossRef]
- Richmond, S.A.; Nettel-Aguirre, A.; Doyle-Baker, P.K.; Macpherson, A.; Emery, C.A. Examining Measures of Weight as Risk Factors for Sport-Related Injury in Adolescents. J. Sports Med. 2016, 2016, 7316947. [Google Scholar] [CrossRef]
- Lauersen, J.B.; Andersen, T.E.; Andersen, L.B. Strength training as superior, dose-dependent and safe prevention of acute and overuse sports injuries: A systematic review, qualitative analysis and meta-analysis. Br. J. Sports Med. 2018, 52, 1557–1563. [Google Scholar] [CrossRef]
- Hanlon, C.; Krzak, J.J.; Prodoehl, J.; Hall, K.D. Effect of Injury Prevention Programs on Lower Extremity Performance in Youth Athletes: A Systematic Review. Sports Health Multidiscip. Approach 2020, 12, 12–22. [Google Scholar] [CrossRef]
- Al Attar, W.S.A.; Ghulam, H.; Al Arifi, S.; Alomar, A.I.; Alhosaini, S.; Alharbi, S.; Alraddadi, Y.; Sanders, R.H. Injury prevention programs including balance exercises with compliance and follow-up reduce the incidence of knee injuries in athletes: A systematic review and meta-analysis. Isokinet. Exerc. Sci. 2023, 31, 157–169. [Google Scholar] [CrossRef]
- Pocovi, N.C.; De Campos, T.F.; Christine Lin, C.-W.; Merom, D.; Tiedemann, A.; Hancock, M.J. Walking, Cycling, and Swimming for Nonspecific Low Back Pain: A Systematic Review with Meta-analysis. J. Orthop. Sports Phys. Ther. 2022, 52, 85–99. [Google Scholar] [CrossRef]
- Alkatan, M.; Baker, J.R.; Machin, D.R.; Park, W.; Akkari, A.S.; Pasha, E.P.; Tanaka, H. Improved Function and Reduced Pain after Swimming and Cycling Training in Patients with Osteoarthritis. J. Rheumatol. 2016, 43, 666–672. [Google Scholar] [CrossRef]
- Flore, G.; Preti, A.; Carta, M.G.; Deledda, A.; Fosci, M.; Nardi, A.E.; Loviselli, A.; Velluzzi, F. Weight Maintenance after Dietary Weight Loss: Systematic Review and Meta-Analysis on the Effectiveness of Behavioural Intensive Intervention. Nutrients 2022, 14, 1259. [Google Scholar] [CrossRef]
- Hall, K.D.; Kahan, S. Maintenance of Lost Weight and Long-Term Management of Obesity. Med. Clin. 2018, 102, 183–197. [Google Scholar] [CrossRef]
- Martínez-Gómez, M.G.; Roberts, B.M. Metabolic adaptations to weight loss: A brief review. J. Strength Cond. Res. 2022, 36, 2970–2981. [Google Scholar] [CrossRef]
- Mu, W.-J.; Zhu, J.-Y.; Chen, M.; Guo, L. Exercise-mediated browning of white adipose tissue: Its significance, mechanism and effectiveness. Int. J. Mol. Sci. 2021, 22, 11512. [Google Scholar] [CrossRef]
- Dinas, P.C.; Lahart, I.M.; Timmons, J.A.; Svensson, P.-A.; Koutedakis, Y.; Flouris, A.D.; Metsios, G.S. Effects of physical activity on the link between PGC-1a and FNDC5 in muscle, circulating Irisin and UCP1 of white adipocytes in humans: A systematic review. F1000Research 2017, 6, 286. [Google Scholar] [CrossRef]
- Cleven, L.; Syrjanen, J.A.; Geda, Y.E.; Christenson, L.R.; Petersen, R.C.; Vassilaki, M.; Woll, A.; Krell-Roesch, J. Association between physical activity and longitudinal change in body mass index in middle-aged and older adults. BMC Public Health 2023, 23, 202. [Google Scholar] [CrossRef]
- Cao, X.; Thyfault, J.P. Exercise drives metabolic integration between muscle, adipose and liver metabolism and protects against aging-related diseases. Exp. Gerontol. 2023, 176, 112178. [Google Scholar] [CrossRef]
- Grevendonk, L.; Connell, N.J.; McCrum, C.; Fealy, C.E.; Bilet, L.; Bruls, Y.M.H.; Mevenkamp, J.; Schrauwen-Hinderling, V.B.; Jörgensen, J.A.; Moonen-Kornips, E.; et al. Impact of aging and exercise on skeletal muscle mitochondrial capacity, energy metabolism, and physical function. Nat. Commun. 2021, 12, 4773. [Google Scholar] [CrossRef]
- Wang, Z.; Ying, Z.; Bosy-Westphal, A.; Zhang, J.; Heller, M.; Later, W.; Heymsfield, S.B.; Müller, M.J. Evaluation of specific metabolic rates of major organs and tissues: Comparison between men and women. Am. J. Hum. Biol. Off. J. Hum. Biol. Counc. 2011, 23, 333–338. [Google Scholar] [CrossRef]
- Ashtary-Larky, D.; Bagheri, R.; Abbasnezhad, A.; Tinsley, G.M.; Alipour, M.; Wong, A. Effects of gradual weight loss v. rapid weight loss on body composition and RMR: A systematic review and meta-analysis. Br. J. Nutr. 2020, 124, 1121–1132. [Google Scholar] [CrossRef]
- Petridou, A.; Siopi, A.; Mougios, V. Exercise in the management of obesity. Metabolism 2019, 92, 163–169. [Google Scholar] [CrossRef]
- Paixão, C.; Dias, C.M.; Jorge, R.; Carraça, E.V.; Yannakoulia, M.; de Zwaan, M.; Soini, S.; Hill, J.O.; Teixeira, P.J.; Santos, I. Successful weight loss maintenance: A systematic review of weight control registries. Obes. Rev. 2020, 21, e13003. [Google Scholar] [CrossRef]
- Melby, C.L.; Paris, H.L.; Sayer, R.D.; Bell, C.; Hill, J.O. Increasing energy flux to maintain diet-induced weight loss. Nutrients 2019, 11, 2533. [Google Scholar] [CrossRef] [PubMed]
- Chung, N.; Park, M.-Y.; Kim, J.; Park, H.-Y.; Hwang, H.; Lee, C.-H.; Han, J.-S.; So, J.; Park, J.; Lim, K. Non-exercise activity thermogenesis (NEAT): A component of total daily energy expenditure. J. Exerc. Nutr. Biochem. 2018, 22, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Perez, L.C.; Perez, L.T.; Nene, Y.; Umpierrez, G.E.; Davis, G.M.; Pasquel, F.J. Interventions associated with brown adipose tissue activation and the impact on energy expenditure and weight loss: A systematic review. Front. Endocrinol. 2022, 13, 1037458. [Google Scholar] [CrossRef] [PubMed]
- CDCMMWR. QuickStats: Percentage of Adults Aged ≥25 Years Who Met the 2018 Federal Physical Activity Guidelines for Both Muscle-Strengthening and Aerobic Physical Activity, by Educational Attainment—United States, 2022. MMWR Morb. Mortal. Wkly. Rep. 2024, 73, 521. [Google Scholar] [CrossRef]
- Vemulapalli, S.; Dolor, R.J.; Hasselblad, V.; Schmit, K.; Banks, A.; Heidenfelder, B.; Patel, M.R.; Jones, W.S. Supervised vs unsupervised exercise for intermittent claudication: A systematic review and meta-analysis. Am. Heart J. 2015, 169, 924–937.e3. [Google Scholar] [CrossRef]
- Roy, M.; Williams, S.M.; Brown, R.C.; Meredith-Jones, K.A.; Osborne, H.; Jospe, M.; Taylor, R.W. High-Intensity Interval Training in the Real World: Outcomes from a 12-Month Intervention in Overweight Adults. Med. Sci. Sports Exerc. 2018, 50, 1818–1826. [Google Scholar] [CrossRef]
- Bannell, D.J.; France-Ratcliffe, M.; Buckley, B.J.R.; Crozier, A.; Davies, A.P.; Hesketh, K.L.; Jones, H.; Cocks, M.; Sprung, V.S.; on behalf of the MOTIVATE Team. Adherence to unsupervised exercise in sedentary individuals: A randomised feasibility trial of two mobile health interventions. Digit. Health 2023, 9, 20552076231183552. [Google Scholar] [CrossRef]
- Lacroix, A.; Hortobágyi, T.; Beurskens, R.; Granacher, U. Effects of Supervised vs. Unsupervised Training Programs on Balance and Muscle Strength in Older Adults: A Systematic Review and Meta-Analysis. Sports Med. 2017, 47, 2341–2361. [Google Scholar] [CrossRef]
- Gabay, M.; Levi, O.; Petracovschi, S.; Negrea, C.; Matichescu, M.; Oravitan, M. Exploring exercise adherence and quality of life among veteran, novice, and dropout trainees. Front. Sports Act. Living 2023, 5, 1293535. [Google Scholar] [CrossRef]
- Shibuya, K.; Ji, X.; Pfoh, E.R.; Milinovich, A.; Weng, W.; Bauman, J.; Ganguly, R.; Misra-Hebert, A.D.; Hobbs, T.M.; Kattan, M.W.; et al. Association between shared medical appointments and weight loss outcomes and anti-obesity medication use in patients with obesity. Obes. Sci. Pract. 2020, 6, 247–254. [Google Scholar] [CrossRef]
- Kirbach, K.; Marshall-Moreno, I.; Shen, A.; Cullen, C.; Sanigepalli, S.; Bobadilla, A.; MacElhern, L.; Grunvald, E.; Kallenberg, G.; Tristão Parra, M.; et al. Implementation of a virtual, shared medical appointment program that focuses on food as medicine principles in a population with obesity: The SLIM program. Front. Nutr. 2024, 11, 1338727. [Google Scholar] [CrossRef]
- Wadsworth, K.H.; Archibald, T.G.; Payne, A.E.; Cleary, A.K.; Haney, B.L.; Hoverman, A.S. Shared medical appointments and patient-centered experience: A mixed-methods systematic review. BMC Fam. Pract. 2019, 20, 97. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.; Ramasamy, V.; Sturgiss, E.; Dunbar, J.; Boyle, J. Shared medical appointments for weight loss: A systematic review. Fam. Pract. 2022, 39, 710–724. [Google Scholar] [CrossRef] [PubMed]
- Yager, S.; Parker, M.; Luxenburg, J.; Varghai, N.H. Evaluation of multidisciplinary weight loss shared medical appointments. J. Am. Pharm. Assoc. 2020, 60, 93–99. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Family Physicians. Shared Medical Appointments/Group Visits. Available online: https://www.aafp.org/about/policies/all/shared-medical-appointments.html (accessed on 18 January 2022).
- Center for Medicare and Medicaid Services. National Coverage Determination—Medical Nutrition Therapy (180.1). Medicare Coverage Database. Available online: https://www.cms.gov/medicare-coverage-database/view/ncd.aspx?ncdid=252 (accessed on 6 April 2025).
- Brown, J.; Clarke, C.; Stoklossa, C.; Sievenpiper, J. Medical Nutrition Therapy in Obesity Management; The Association for the Study of Obesity on the Island of Ireland: Dublin, Ireland, 2022; 28p. [Google Scholar]
- Medicare Learning Network. Telehealth and Remote Patient Monitoring—Medicare Learning Network. Centers for Medicare and Medicaid Services. January 2025. Available online: https://www.cms.gov/files/document/mln901705-telehealth-remote-patient-monitoring.pdf (accessed on 6 April 2025).
- de Farias, F.A.C.; Dagostini, C.M.; Bicca, Y.d.A.; Falavigna, V.F.; Falavigna, A. Remote Patient Monitoring: A Systematic Review. Telemed. E-Health 2020, 26, 576–583. [Google Scholar] [CrossRef]
- Noah, B.; Keller, M.S.; Mosadeghi, S.; Stein, L.; Johl, S.; Delshad, S.; Tashjian, V.C.; Lew, D.; Kwan, J.T.; Jusufagic, A.; et al. Impact of remote patient monitoring on clinical outcomes: An updated meta-analysis of randomized controlled trials. Npj Digit. Med. 2018, 1, 20172. [Google Scholar] [CrossRef]
- Medicare Learning Network. Medicare Learning Network—Chronic Care Management Services. Centers for Medicare and Medicaid Services. May 2024. Available online: https://www.cms.gov/outreach-and-education/medicare-learning-network-mln/mlnproducts/downloads/chroniccaremanagement.pdf (accessed on 6 April 2025).
- Basu, S.; Phillips, R.S.; Bitton, A.; Song, Z.; Landon, B.E. Medicare Chronic Care Management Payments and Financial Returns to Primary Care Practices: A Modeling Study. Ann. Intern. Med. 2015, 163, 580–588. [Google Scholar] [CrossRef]
- O’Malley, A.S.; Sarwar, R.; Keith, R.; Balke, P.; Ma, S.; McCall, N. Provider Experiences with Chronic Care Management (CCM) Services and Fees: A Qualitative Research Study. J. Gen. Intern. Med. 2017, 32, 1294–1300. [Google Scholar] [CrossRef]
- Jacobs, M.; Harris, J.; Craven, K.; Sastre, L. Sharing the “weight” of obesity management in primary care: Integration of registered dietitian nutritionists to provide intensive behavioural therapy for obesity for Medicare patients. Fam. Pract. 2021, 38, 18–24. [Google Scholar] [CrossRef]
- Luo, Z.; Gritz, M.; Connelly, L.; Dolor, R.J.; Phimphasone-Brady, P.; Li, H.; Fitzpatrick, L.; Gales, M.; Shah, N.; Holtrop, J.S. A Survey of Primary Care Practices on Their Use of the Intensive Behavioral Therapy for Obese Medicare Patients. J. Gen. Intern. Med. 2021, 36, 2700–2708. [Google Scholar] [CrossRef]
- Tapsell, L.C.; Neale, E.P. The Effect of Interdisciplinary Interventions on Risk Factors for Lifestyle Disease: A Literature Review. Health Educ. Behav. 2016, 43, 271–285. [Google Scholar] [CrossRef] [PubMed]
- Clinical Exercise Physiology Association. What is Clinical Exercise Physiology? Clinical Exercise Physiology Association—An ACSM Affiliate Society. Available online: https://www.acsm-cepa.org/content.aspx?page_id=22&club_id=324409&module_id=291959 (accessed on 7 April 2025).
- Magal, M.; Neric, F.B. ACSM Certifications: Defining an Exercise Profession from Concept to Assessment. ACSMs Health Fit. J. 2020, 24, 12–18. [Google Scholar] [CrossRef]
- Boehmer, K.R.; Barakat, S.; Ahn, S.; Prokop, L.J.; Erwin, P.J.; Murad, M.H. Health coaching interventions for persons with chronic conditions: A systematic review and meta-analysis protocol. Syst. Rev. 2016, 5, 146. [Google Scholar] [CrossRef] [PubMed]
- Silberman, J.M.; Kaur, M.; Sletteland, J.; Venkatesan, A. Outcomes in a digital weight management intervention with one-on-one health coaching. PLoS ONE 2020, 15, e0232221. [Google Scholar] [CrossRef]
- Chew, H.S.J.; Rajasegaran, N.N.; Chin, Y.H.; Chew, W.S.N.; Kim, K.M. Effectiveness of Combined Health Coaching and Self-Monitoring Apps on Weight-Related Outcomes in People With Overweight and Obesity: Systematic Review and Meta-analysis. J. Med. Internet Res. 2023, 25, e42432. [Google Scholar] [CrossRef]
- Hesseldal, L.; Christensen, J.R.; Olesen, T.B.; Olsen, M.H.; Jakobsen, P.R.; Laursen, D.H.; Lauridsen, J.T.; Nielsen, J.B.; Søndergaard, J.; Brandt, C.J. Long-term Weight Loss in a Primary Care-Anchored eHealth Lifestyle Coaching Program: Randomized Controlled Trial. J. Med. Internet Res. 2022, 24, e39741. [Google Scholar] [CrossRef]
- Sieczkowska, S.M.; de Lima, A.P.; Swinton, P.A.; Dolan, E.; Roschel, H.; Gualano, B. Health Coaching Strategies for Weight Loss: A Systematic Review and Meta-Analysis. Adv. Nutr. 2021, 12, 1449–1460. [Google Scholar] [CrossRef]
- Jay, M.R.; Wittleder, S.; Vandyousefi, S.; Illenberger, N.; Nicholson, A.; Sweat, V.; Meissner, P.; Angelotti, G.; Ruan, A.; Wong, L.; et al. A Cluster-Randomized Study of Technology-Assisted Health Coaching for Weight Management in Primary Care. Ann. Fam. Med. 2024, 22, 392–399. [Google Scholar] [CrossRef]
- Halley, M.C.; Petersen, J.; Nasrallah, C.; Szwerinski, N.; Romanelli, R.; Azar, K.M. Barriers and Facilitators to Real-world Implementation of the Diabetes Prevention Program in Large Healthcare Systems: Lifestyle Coach Perspectives. J. Gen. Intern. Med. 2020, 35, 1684–1692. [Google Scholar] [CrossRef]
- An, S.; Song, R. Effects of health coaching on behavioral modification among adults with cardiovascular risk factors: Systematic review and meta-analysis. Patient Educ. Couns. 2020, 103, 2029–2038. [Google Scholar] [CrossRef]
- Nielsen, S.S.; Christensen, J.R. Occupational Therapy for Adults with Overweight and Obesity: Mapping Interventions Involving Occupational Therapists. Occup. Ther. Int. 2018, 2018, 7412686. [Google Scholar] [CrossRef] [PubMed]
- Macchi, M.; Spezia, M.; Elli, S.; Schiaffini, G.; Chisari, E. Obesity Increases the Risk of Tendinopathy, Tendon Tear and Rupture, and Postoperative Complications: A Systematic Review of Clinical Studies. Clin. Orthop. 2020, 478, 1839–1847. [Google Scholar] [CrossRef] [PubMed]
- Lynch, D.H.; Petersen, C.L.; Fanous, M.M.; Spangler, H.B.; Kahkoska, A.R.; Jimenez, D.; Batsis, J.A. The relationship between multimorbidity, obesity and functional impairment in older adults. J. Am. Geriatr. Soc. 2022, 70, 1442–1449. [Google Scholar] [CrossRef] [PubMed]
- IQWiG. In brief: Physical therapy. In InformedHealth.org [Internet]; Institute for Quality and Efficiency in Health Care (IQWiG): Cologne, Germany, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK561514/ (accessed on 9 June 2025).
- Mechanick, J.I. Pharmacotherapy De-Escalation as a Critical Component of Lifestyle Medicine. In Lifestyle Medicine: Closing Research, Practice, and Knowledge Gaps; Mechanick, J.I., Kushner, R.F., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2025; pp. 605–616. [Google Scholar] [CrossRef]
- Valliant, S.N.; Burbage, S.C.; Pathak, S.; Urick, B.Y. Pharmacists as accessible health care providers: Quantifying the opportunity. J. Manag. Care Spec. Pharm. 2022, 28, 85–90. [Google Scholar] [CrossRef]
- Burns, R.B.; Jay, M.R.; Thorndike, A.N.; Kanjee, Z. How Would You Manage This Patient With Obesity? Grand Rounds Discussion From Beth Israel Deaconess Medical Center. Ann. Intern. Med. 2024, 177, 1415–1424. [Google Scholar] [CrossRef]
- Moiz, A.; Filion, K.B.; Toutounchi, H.; Tsoukas, M.A.; Yu, O.H.Y.; Peters, T.M.; Eisenberg, M.J. Efficacy and Safety of Glucagon-Like Peptide-1 Receptor Agonists for Weight Loss Among Adults Without Diabetes. Ann. Intern. Med. 2025, 178, 199–217. [Google Scholar] [CrossRef]
- Christensen, S.; Robinson, K.; Thomas, S.; Williams, D.R. Dietary intake by patients taking GLP-1 and dual GIP/GLP-1 receptor agonists: A narrative review and discussion of research needs. Obes. Pillars 2024, 11, 100121. [Google Scholar] [CrossRef]
Assessment Tools | |
Sleep |
|
Substance Use |
|
Stress and Mental Health |
|
Medication Class | Examples | Common Side Effects | Lifestyle Support Strategies |
---|---|---|---|
GLP-1 Receptor Agonists | Semaglutide, Liraglutide | Nausea, constipation, bloating, early satiety, muscle loss | Small, low-fat meals; slow titration; encourage fiber and hydration; resistance training and ≥60 g protein/day to reduce lean mass loss |
Stimulants (Sympathomimetics) | Phentermine, Benzphetamine | Insomnia, tachycardia, anxiety, elevated BP | Avoid evening dosing; monitor vitals; gradual exercise progression; avoid caffeine [87] |
Noradrenergic/Dopaminergic Agents | Bupropion | Headache, dry mouth, insomnia, elevated BP | Hydration; morning dosing; stress management; monitor mood and cardiovascular status |
Combination: Bupropion/Naltrexone | Contrave® | Nausea, vomiting, headache, mood changes | Take with food; hydration; consider mental health screening and support |
Phentermine/Topiramate (Anticonvulsant) | Qsymia® (topiramate/phentermine) | Dizziness, cognitive effects, paresthesia, heat intolerance | Avoid solo high-risk activity; ensure hydration; caution with heat exposure; screen for cognitive changes; foods containing vitamin C or vitamin C supplementation may mitigate side effects of nephrolithiasis [108] |
Orlistat (Lipase Inhibitor) | Xenical®, Alli® | GI urgency, oily stools, fat-soluble vitamin loss | Recommend low-fat diet (<30% fat); supplement A, D, E, and K; schedule physical activity post-GI relief |
GIP/GLP-1 Dual Agonists | Tirzepatide | Similar to GLP-1 RA: GI symptoms, possible hypotension | Monitor hydration, encourage water-rich foods; titrate activity based on tolerance [87,104,105] |
Phase | Lifestyle Focus | Key Interventions |
---|---|---|
Preoperative | Nutritional optimization, behavior readiness, and comorbidity management | RD evaluation, supervised weight loss, CBT/psychological evaluation, micronutrient screening [98,99,100,101,102,103,104,105,106] |
Immediate Postoperative | Recovery, hydration, nutrient absorption, and complication monitoring | Advance diet stages; monitor protein and fluid intake; gentle activity; supplement adherence |
Long-term Maintenance | Preventing weight regain, supporting metabolic health, and bone/muscle preservation | ≥60 g protein/day; progressive exercise (cardio + resistance); monitor for B12, iron, and D; regular follow-up [109,110,111,112,113,114,115,116,117,118,119] |
Diet Type | Key Features | Pros | Cautions |
---|---|---|---|
General principles |
| ||
Plant-based |
| Improves cardiometabolic health; promotes satiety; and reduces inflammation and insulin resistance. With emphasis on low-calorie-density foods, can provide weight loss while minimizing hunger and restrictive approaches [71,185,186]. | Risk of B12 and iron deficiency without supplementation [179]. Ensure adequate protein. |
Volumetrics |
| Increases fullness without strict calorie tracking; adaptable to many diets. Reduces hunger during calorie restriction [72]. | May require meal prep and education. |
Low-carbohydrate |
|
| |
Low-fat |
|
| |
High-protein |
|
| |
Very-low-calorie diet (VLCD) |
|
| |
Time-restricted eating (TRE) and fasting |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sannidhi, D.; Abeles, R.; Andrew, W.; Bonnet, J.P.; Vitale, K.; Niranjan, V.; Gulati, M.; Pauly, K.; Moran, R.; Alexander, L.; et al. Lifestyle Medicine for Obesity in the Era of Highly Effective Anti-Obesity Treatment. Nutrients 2025, 17, 2382. https://doi.org/10.3390/nu17142382
Sannidhi D, Abeles R, Andrew W, Bonnet JP, Vitale K, Niranjan V, Gulati M, Pauly K, Moran R, Alexander L, et al. Lifestyle Medicine for Obesity in the Era of Highly Effective Anti-Obesity Treatment. Nutrients. 2025; 17(14):2382. https://doi.org/10.3390/nu17142382
Chicago/Turabian StyleSannidhi, Deepa, Ruth Abeles, William Andrew, Jonathan P. Bonnet, Kenneth Vitale, Varalakshmi Niranjan, Mahima Gulati, Kaitlyn Pauly, Ryan Moran, Lydia Alexander, and et al. 2025. "Lifestyle Medicine for Obesity in the Era of Highly Effective Anti-Obesity Treatment" Nutrients 17, no. 14: 2382. https://doi.org/10.3390/nu17142382
APA StyleSannidhi, D., Abeles, R., Andrew, W., Bonnet, J. P., Vitale, K., Niranjan, V., Gulati, M., Pauly, K., Moran, R., Alexander, L., Le, C., Rajan, S., & Romero, C. (2025). Lifestyle Medicine for Obesity in the Era of Highly Effective Anti-Obesity Treatment. Nutrients, 17(14), 2382. https://doi.org/10.3390/nu17142382