Effect of Dietary and Physical Activity Interventions Combined with Psychological and Behavioral Strategies on Preventing Metabolic Syndrome in Adolescents with Obesity: A Meta-Analysis of Clinical Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Databases and Search Strategy
2.2. Selection of Studies/Eligibility Criteria
2.3. Data Extraction
2.4. Assessment of Methodological Quality and the Risk of Bias
2.5. Synthesis of Results/Data Analysis
3. Results
3.1. Study Selection
3.2. Characteristics of the Studies Included
3.3. Effects of Interventions on Body Composition and Variables Associated with MetS
3.4. Random-Effect Meta-Analyses of Changes in Body Weight, Waist Circumference, and zBMI by Combined Interventions
3.5. Evaluation of the Methodological Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Noncommunicable Diseases. Available online: https://www.who.int/en/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 21 December 2024).
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 21 December 2024).
- Ali, A.T.; Al-Ani, F.; Al-Ani, O. Childhood Obesity: Causes, Consequences, and Prevention. Ceska Slov. Farm. 2023, 72, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Fäldt, A.; Nejat, S.; Durbeej, N.; Holmgren, A. Childhood Overweight and Obesity During and After the COVID-19 Pandemic. JAMA Pediatr. 2024, 178, 498. [Google Scholar] [CrossRef] [PubMed]
- Fabin-Czepiel, K.; Pieczyńska-Chapuła, K.; Deja, G. “The Obesity Pandemic” in the COVID-19 Pandemic—New Treatment for an Old Problem. Pediatr. Endocrinol. Diabetes Metab. 2023, 29, 104–111. [Google Scholar] [CrossRef]
- Carrilero, N.; Dalmau-Bueno, A.; García-Altés, A. Socioeconomic Inequalities in 29 Childhood Diseases: Evidence from a 1,500,000 Children Population Retrospective Study. BMC Public Health 2021, 21, 1150. [Google Scholar] [CrossRef]
- Kappes, C.; Stein, R.; Körner, A.; Merkenschlager, A.; Kiess, W. Stress, Stress Reduction and Obesity in Childhood and Adolescence. Horm. Res. Paediatr. 2023, 96, 88–96. [Google Scholar] [CrossRef]
- Piątkowska-Chmiel, I.; Krawiec, P.; Ziętara, K.J.; Pawłowski, P.; Samardakiewicz, M.; Pac-Kożuchowska, E.; Herbet, M. The Impact of Chronic Stress Related to COVID-19 on Eating Behaviors and the Risk of Obesity in Children and Adolescents. Nutrients 2023, 16, 54. [Google Scholar] [CrossRef] [PubMed]
- Kohen-Avramoglu, R.; Theriault, A.; Adeli, K. Emergence of the Metabolic Syndrome in Childhood: An Epidemiological Overview and Mechanistic Link to Dyslipidemia. Clin. Biochem. 2003, 36, 413–420. [Google Scholar] [CrossRef]
- Roomi, M.A.; Mohammadnezhad, M. Prevalence of Metabolic Syndrome Among Apparently Healthy Workforce. J. Ayub Med. Coll. Abbottabad 2019, 31, 252–254. [Google Scholar]
- Whooten, R.; Kerem, L.; Stanley, T. Physical Activity in Adolescents and Children and Relationship to Metabolic Health. Curr. Opin. Endocrinol. Diabetes Obes. 2019, 26, 25–31. [Google Scholar] [CrossRef]
- Albert Pérez, E.; Mateu Olivares, V.; Martínez-Espinosa, R.; Molina Vila, M.; Reig García-Galbis, M. New Insights about How to Make an Intervention in Children and Adolescents with Metabolic Syndrome: Diet, Exercise vs. Changes in Body Composition. A Systematic Review of RCT. Nutrients 2018, 10, 878. [Google Scholar] [CrossRef]
- Albornoz López, R.; Pérez Rodrigo, I. Nutrición y síndrome metabólico. Nutr. Clínica Dietética Hosp. 2012, 32, 92–97. [Google Scholar]
- Rivera Vázquez, P.; Castro García, R.I.; De la Rosa Rodríguez, C.; Carbajal Mata, F.E.; Maldonado Guzmán, G. Intervención educativa nutricional por Enfermería en adolescentes con obesidad y sobrepeso en una escuela pública de ciudad Victoria. Rev. Salud Pública Nutr. 2016, 15, 28–34. [Google Scholar]
- de Lannoy, L.; Cowan, T.; Fernandez, A.; Ross, R. Physical Activity, Diet, and Weight Loss in Patients Recruited from Primary Care Settings: An Update on Obesity Management Interventions. Obes. Sci. Pract. 2021, 7, 619–628. [Google Scholar] [CrossRef]
- Hartmann-Boyce, J.; Johns, D.J.; Jebb, S.A.; Aveyard, P. Behavioural Weight Management Review Group Effect of Behavioural Techniques and Delivery Mode on Effectiveness of Weight Management: Systematic Review, Meta-analysis and Meta-regression. Obes. Rev. 2014, 15, 598–609. [Google Scholar] [CrossRef]
- Sabadini Piva, L.; Reig García-Galbis, M. Dietary intervention programs for weight loss aged 2–17 years. Systematic review. Nutr. Clínica Dietética Hosp. 2015, 35, 63–70. [Google Scholar] [CrossRef]
- Mendes, M.D.S.D.; de Melo, M.E.; Fernandes, A.E.; Fujiwara, C.T.H.; Pioltine, M.B.; Teixeira, A.; Coelho, K.; Galasso, M.; Cercato, C.; Mancini, M.C. Effects of Two Diet Techniques and Delivery Mode on Weight Loss, Metabolic Profile and Food Intake of Obese Adolescents: A Fixed Diet Plan and a Calorie-Counting Diet. Eur. J. Clin. Nutr. 2017, 71, 549–551. [Google Scholar] [CrossRef]
- Krebs, N.F.; Gao, D.; Gralla, J.; Collins, J.S.; Johnson, S.L. Efficacy and Safety of a High Protein, Low Carbohydrate Diet for Weight Loss in Severely Obese Adolescents. J. Pediatr. 2010, 157, 252–258. [Google Scholar] [CrossRef]
- Ministerio de Salud de la Nación Sobrepeso y Obesidad En Niños y Adolescentes. Orientaciones Para Su Prevención, Diagnóstico y Tratamiento En Atención Primaria de La Salud; Ministerio de Salud de la Nación: Buenos Aires, Argentina, 2013.
- Alberga, A.S.; Prud’homme, D.; Sigal, R.J.; Goldfield, G.S.; Hadjiyannakis, S.; Phillips, P.; Malcolm, J.; Ma, J.; Doucette, S.; Gougeon, R.; et al. Effects of Aerobic Training, Resistance Training, or Both on Cardiorespiratory and Musculoskeletal Fitness in Adolescents with Obesity: The HEARTY Trial. Appl. Physiol. Nutr. Metab. 2016, 41, 255–265. [Google Scholar] [CrossRef]
- de Albuquerque Filho, N.J.B.; Mendes Rebouças, G.; Ferreira Matos, V.A.; de Mello Salgueiro, C.C.; Knackfuss, M.I.; Medeiros, H.J. Effect of Concurrent Training on Body Composition and Lipid Profile in Overweight Adolescents. Rev. Educ. Física 2018, 149, 26–33. [Google Scholar]
- Campos Paniagua, A.P. Factores de Adherencia a Un Programa de Tratamiento de Sobrepeso y Obesidad Para Adolescentes. Estudio Piloto. Master’s Thesis, Universidad Iberoamericana, Ciudad de México, Mexico, 2015. [Google Scholar]
- Lafuente, M.D. Cognitive behavioural therapy for obesity. Trastor. Conducta Aliment. 2011, 14, 1490–1504. [Google Scholar]
- Wu, J.-Z.; Dai, M.-H.; Xiong, J.; Liu, H.-X. Effect of motivational interviewing combined with peer participation on obesity management in adolescents. Zhongguo Dang Dai Er Ke Za Zhi 2016, 18, 645–649. [Google Scholar] [CrossRef] [PubMed]
- Bean, M.K.; Ingersoll, K.S.; Powell, P.; Stern, M.; Evans, R.K.; Wickham, E.P., 3rd; Mazzeo, S.E. Impact of Motivational Interviewing on Outcomes of an Adolescent Obesity Treatment: Results from the MI Values Randomized Controlled Pilot Trial. Clin. Obes. 2018, 8, 323–326. [Google Scholar] [CrossRef]
- Walpole, B.; Dettmer, E.; Morrongiello, B.A.; McCrindle, B.W.; Hamilton, J. Motivational Interviewing to Enhance Self-Efficacy and Promote Weight Loss in Overweight and Obese Adolescents: A Randomized Controlled Trial. J. Pediatr. Psychol. 2013, 38, 944–953. [Google Scholar] [CrossRef] [PubMed]
- Gourlan, M.; Sarrazin, P.; Trouilloud, D. Motivational Interviewing as a Way to Promote Physical Activity in Obese Adolescents: A Randomised-Controlled Trial Using Self-Determination Theory as an Explanatory Framework. Psychol. Health 2013, 28, 1265–1286. [Google Scholar] [CrossRef]
- Aguilar Cordero, M.J. Programas de actividad física para reducir sobrepeso y obesidad en niños y adolescentes: Revisión sistemática. Nutr. Hosp. 2014, 30, 727–740. [Google Scholar] [CrossRef] [PubMed]
- Yeste, D.; Carrascosa, A. El manejo de la obesidad en la infancia y adolescencia: De la dieta a la cirugía. Endocrinol. Nutr. 2012, 59, 403–406. [Google Scholar] [CrossRef]
- Ranucci, C.; Pippi, R.; Buratta, L.; Aiello, C.; Gianfredi, V.; Piana, N.; Reginato, E.; Tirimagni, A.; Chiodini, E.; Tomaro, E.; et al. Effects of an Intensive Lifestyle Intervention to Treat Overweight/Obese Children and Adolescents. BioMed Res. Int. 2017, 2017, 8573725. [Google Scholar] [CrossRef]
- Kumar, R.; Rizvi, M.R.; Saraswat, S. Obesity and Stress: A Contingent Paralysis. Int. J. Prev. Med. 2022, 13, 95. [Google Scholar] [CrossRef]
- Hruby, A.; Hu, F.B. The Epidemiology of Obesity: A Big Picture. PharmacoEconomics 2015, 33, 673–689. [Google Scholar] [CrossRef]
- Hamer, O.; Larkin, D.; Relph, N.; Dey, P. Fear as a Barrier to Physical Activity in Young Adults with Obesity: A Qualitative Study. Qual. Res. Sport Exerc. Health 2023, 15, 18–34. [Google Scholar] [CrossRef]
- Sisk, L.M.; Gee, D.G. Stress and Adolescence: Vulnerability and Opportunity during a Sensitive Window of Development. Curr. Opin. Psychol. 2022, 44, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Baygi, F.; Djalalinia, S.; Qorbani, M.; Larrabee Sonderlund, A.; Kousgaard Andersen, M.K.; Thilsing, T.; Heitmann, B.L.; Nielsen, J.B. The Effect of Psychological Interventions Targeting Overweight and Obesity in School-Aged Children: A Systematic Review and Meta-Analysis. BMC Public Health 2023, 23, 1478. [Google Scholar] [CrossRef]
- Kelly, K.P.; Kirschenbaum, D.S. Immersion Treatment of Childhood and Adolescent Obesity: The First Review of a Promising Intervention. Obes. Rev. 2011, 12, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. PLoS Med. 2021, 18, e1003583. [Google Scholar] [CrossRef]
- World Health Organization. Adolescent Health. Available online: https://www.who.int/health-topics/adolescent-health#tab=tab_1 (accessed on 21 December 2024).
- Higgins, J.P.T.; Altman, D.G.; Gotzsche, P.C.; Juni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C.; et al. The Cochrane Collaboration’s Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef]
- Halpern, S.H.; Douglas, M.J. Appendix: Jadad Scale for Reporting Randomized Controlled Trials. In Evidence-based Obstetric Anesthesia; Halpern, S.H., Douglas, M.J., Eds.; Wiley: Hoboken, NJ, USA, 2005; pp. 237–238. ISBN 978-0-7279-1734-8. [Google Scholar]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A Tool for Assessing Risk of Bias in Non-Randomised Studies of Interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 21 December 2024).
- Jamovi. The Jamovi Project. Available online: https://www.jamovi.org/ (accessed on 21 December 2024).
- Andrade, C. Mean Difference, Standardized Mean Difference (SMD), and Their Use in Meta-Analysis: As Simple as It Gets. J. Clin. Psychiatry 2020, 81, 11349. [Google Scholar] [CrossRef] [PubMed]
- Viechtbauer, W. Conducting Meta-Analyses in R. with the Metafor Package. J. Stat. Soft. 2010, 36, 1–48. [Google Scholar] [CrossRef]
- Cochran, W.G. The Combination of Estimates from Different Experiments. Biometrics 1954, 10, 101. [Google Scholar] [CrossRef]
- Higgins, J.P.T. Measuring Inconsistency in Meta-Analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Sutton, A.J.; Ioannidis, J.P.A.; Terrin, N.; Jones, D.R.; Lau, J.; Carpenter, J.; Rucker, G.; Harbord, R.M.; Schmid, C.H.; et al. Recommendations for Examining and Interpreting Funnel Plot Asymmetry in Meta-Analyses of Randomised Controlled Trials. BMJ 2011, 343, d4002. [Google Scholar] [CrossRef] [PubMed]
- Pratt, K.; Lamson, A.; Collier, D.; Crawford, Y.; Harris, N.; Gross, K.; Ballard, S.; Sarvey, S.; Saporito, M. Camp Golden Treasures: A Multidisciplinary Weight-Loss and a Healthy Lifestyle Camp for Adolescent Girls. Fam. Syst. Health 2009, 27, 116–124. [Google Scholar] [CrossRef]
- Truby, H.; Baxter, K.; Ware, R.S.; Jensen, D.E.; Cardinal, J.W.; Warren, J.M.; Daniels, L.; Davies, P.S.W.; Barrett, P.; Blumfield, M.L.; et al. A Randomized Controlled Trial of Two Different Macronutrient Profiles on Weight, Body Composition and Metabolic Parameters in Obese Adolescents Seeking Weight Loss. PLoS ONE 2016, 11, e0151787. [Google Scholar] [CrossRef]
- Normayanti; Suparyatmo, J.; Prayitno, A. The Effect of Nutrition Education on Body Mass Index, Waist Circumference, Mid-Upper Arm Circumference and Blood Pressure in Obese Adolescents. Electron. J. Gen. Med. 2020, 17, em221. [Google Scholar] [CrossRef]
- Plavsic, L.; Knezevic, O.M.; Sovtic, A.; Minic, P.; Vukovic, R.; Mazibrada, I.; Stanojlovic, O.; Hrncic, D.; Rasic-Markovic, A.; Macut, D. Effects of High-Intensity Interval Training and Nutrition Advice on Cardiometabolic Markers and Aerobic Fitness in Adolescent Girls with Obesity. Appl. Physiol. Nutr. Metab. 2020, 45, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Ackel-D’Elia, C.; Carnier, J.; Bueno, C.R.J.; Campos, R.M.S.; Sanches, P.L.; Clemente, A.P.G.; Tufik, S.; de Mello, M.T.; Dâmaso, A.R. Effects of Different Physical Exercises on Leptin Concentration in Obese Adolescents. Int. J. Sports Med. 2014, 35, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, J.A.A.; Da Silva, D.F.; Nardo, C.C.S.; Carolino, I.D.R.; Hernandes, F.; Junior, N.N. Multidisciplinary Therapy Reduces Risk Factors for Metabolic Syndrome in Obese Adolescents. Eur. J. Pediatr. 2013, 172, 215–221. [Google Scholar] [CrossRef]
- Toulabi, T.; Khosh Niyat Nikoo, M.; Amini, F.; Nazari, H.; Mardani, M. The Influence of a Behavior Modification Interventional Program on Body Mass Index in Obese Adolescents. J. Formos. Med. Assoc. 2012, 111, 153–159. [Google Scholar] [CrossRef]
- Peña, A.; Olson, M.L.; Ayers, S.L.; Sears, D.D.; Vega-López, S.; Colburn, A.T.; Shaibi, G.Q. Inflammatory Mediators and Type 2 Diabetes Risk Factors before and in Response to Lifestyle Intervention among Latino Adolescents with Obesity. Nutrients 2023, 15, 2442. [Google Scholar] [CrossRef]
- Peña, A.; Olson, M.L.; Hooker, E.; Ayers, S.L.; Castro, F.G.; Patrick, D.L.; Corral, L.; Lish, E.; Knowler, W.C.; Shaibi, G.Q. Effects of a Diabetes Prevention Program on Type 2 Diabetes Risk Factors and Quality of Life Among Latino Youths With Prediabetes: A Randomized Clinical Trial. JAMA Netw. Open 2022, 5, e2231196. [Google Scholar] [CrossRef]
- Kitzman-Ulrich, H.; Hampson, R.; Wilson, D.; Presnell, K.; Brown, A.; O’Boyle, M. An Adolescent Weight-Loss Program Integrating Family Variables Reduces Energy Intake. J. Am. Diet. Assoc. 2009, 109, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Reinehr, T.; Kleber, M.; Toschke, A.M. Lifestyle Intervention in Obese Children Is Associated with a Decrease of the Metabolic Syndrome Prevalence. Atherosclerosis 2009, 207, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Gow, M.L.; Ho, M.; Burrows, T.L.; Baur, L.A.; Stewart, L.; Hutchesson, M.J.; Cowell, C.T.; Collins, C.E.; Garnett, S.P. Impact of Dietary Macronutrient Distribution on BMI and Cardiometabolic Outcomes in Overweight and Obese Children and Adolescents: A Systematic Review. Nutr. Rev. 2014, 72, 453–470. [Google Scholar] [CrossRef] [PubMed]
- Aguilar Cordero, M.J. Rebound effect of intervention programs to reduce overweight and obesity in children and adolescents; systematic review. Nutr. Hosp. 2015, 32, 2508–2517. [Google Scholar] [CrossRef]
- Shrewsbury, V.A.; Nguyen, B.; O’Connor, J.; Steinbeck, K.S.; Lee, A.; Hill, A.J.; Shah, S.; Kohn, M.R.; Torvaldsen, S.; Baur, L.A. Short-Term Outcomes of Community-Based Adolescent Weight Management: The Loozit® Study. BMC Pediatr. 2011, 11, 13. [Google Scholar] [CrossRef]
- Savoye, M.; Nowicka, P.; Shaw, M.; Yu, S.; Dziura, J.; Chavent, G.; O’Malley, G.; Serrecchia, J.B.; Tamborlane, W.V.; Caprio, S. Long-Term Results of an Obesity Program in an Ethnically Diverse Pediatric Population. Pediatrics 2011, 127, 402–410. [Google Scholar] [CrossRef]
- Nayak, B.S. School Based Multicomponent Intervention for Obese Children in Udupi District, South India—A Randomized Controlled Trial. JCDR 2016, 10, SC24. [Google Scholar] [CrossRef]
- Ferreira González, I.; Urrútia, G.; Alonso-Coello, P. Systematic Reviews and Meta-Analysis: Scientific Rationale and Interpretation. Rev. Española Cardiol. 2011, 64, 688–696. [Google Scholar] [CrossRef]
Study ID | Population | Intervention | Outcomes Measured | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Author(s)/Date | Study Design | Country | Initial Sample Size | Final Sample Size | Loss of Follow-Up | Follow-Up | Sex | Age (Ranges) | Inclusion Criteria | Groups | |
Truby et al. [51] | RCT | Australia | n = 50 IG: 36 CG: 14 | n = 46 IG: 32 CG: 14 | 8% | 12 weeks | ♂ (28%) ♀ (72%) | 10–19 | BMI > 90th percentile, as defined by CDC 2000 | Dietary plus education intervention IG: five sessions of in-person counseling with participants and caregivers plus two sessions by phone. Structured low-fat diet” (55% carbohydrate, 20% protein, 25% fat). CG: Without dietary advice during the study. At the end of the study, participants received the dietary program of the IG. | BMI, BMI z-score, BW, BF (%), WC, HDL, TG, HOMA-IR |
Normayanti et al. [52] | non-RCT | Indonesia | n = 60 IG:30 CG:30 | n = 60 IG:30 CG:30 | 0% | 4 weeks | ♀ (100%) | 14–17 | BMI ≥ 95th percentile (or ≥26.3 kg/m2) | Dietary plus education intervention. IG: Given a nutritional education booklet on dietary approaches to stop hypertension (DASH)), discussed orally for ± 20 min (once weekly for 4 weeks) CG: No nutritional education was given. | BMI, WC, SBP, DBP |
Plavsic et al. [53] | RCT | Serbia | n = 44 IG: 22 CG: 22 | n = 39 IG: 19 CG: 20 | 11.37% | 12 weeks | ♀ (100%) | Range not defined (15.8 ± 1.6) | (BMI) = 33.0 ± 3.1 kg/m2 | Multicomponent intervention IG: Hypocaloric diet (1500–1700 kcal/day) and 4–6 individual sessions of dietary advice + HIIT training 2 days a week. CG: Hypocaloric diet (1500–1700 kcal/day) and 4–6 individual sessions of dietary advice. Participants of all groups received individual sessions of dietary advice | BW, BMI, BF, WC, SBP, DBP, TG, HDL, HOMA-IR, ISI |
Ackel-D’Elia et al. [54] | RCT | Brazil | n = 48 IG: 24 CG: 24 | NR | NR | 6 months | ♂ (33.33%) ♀ (77.77%) | 15–19 | BMI > 95th percentile (CDC 2000) | Multicomponent intervention IG: Aerobic plus resistance training (180 min/week). CG: Aerobic training (180 min/week) All participants received individual nutritional counseling, psychological therapy for 1 h a week, and a session with an endocrinologist once a month. | BW, BMI, BF, FBG, HOMA-IR |
Bianchini et al. [55] | non-RCT | Brazil | n = 97 IG: 50 CG: 47 | n = 86 IG:44 CG:42 | 11.34% | 16 weeks | ♂ (44.19%) ♀ (55.81%) | 10–18 | Obesity according to criteria indicated by Cole et al. | Multicomponent intervention. IG: 1 h per week of CBT, 1 h of nutritional intervention, 3 h per week of physical exercise, and once a month, meetings with the professionals and parents CG: No intervention. Just monitoring. | BW, BMI, BF, WC, SBP, DBP, HDL, TG, FBG, HOMA-IR |
Toulabi et al. [56] | RCT | Iran | n = 152 IG: 76 CG: 76 | NR | NR | 6 months | NR | 14–19 | BMI ≥ 28 (15 years); BMI ≥ 29 (16–17 years) | Behavior-modification intervention. School-based intervention IG: 8 sessions of 45 min of nutritional instructions and techniques to increase physical activity, plus exercise, 1 h per day, 3 days a week, for 6 weeks. CG: Educational brochures were provided after data collection. | BW, BMI, WC |
Peña et al. [57] | RCT | USA | n = 64 IG: 40 CG: 24 | n = 64 IG: 40 CG: 24 | 0% | 6 months | ♂ (60.9%) ♀ (39.1%) | 12–16 | Latino adolescents, BMI ≥ 95th percentile for age and sex, and prediabetes diagnosed. | Multicomponent intervention IG: 1 day/week (75 min per session) of nutrition and health education with behavior change skills training and 3 days/week (60 min per session) of physical activity. CG: Usual care on T2DM risk factors. | BW, BMI, BMI z-score, BF, ISI |
Peña et al. [58] | RCT | USA | n = 117 IG: 79 CG: 38 | n = 108 IG: 71 CG: 37 | 7.70% | 6 months | ♂ (61.40%) ♀ (38.60%) | 12–16 | Latino adolescents, BMI ≥ 95th percentile for age and sex, and prediabetes diagnosed. | Multicomponent intervention IG: 1 day/week (75 min per session) of nutrition and health education with behavior change skills training and 3 days/week (60 min per session) of physical activity. CG: Usual care on T2DM risk factors. | BW, BMI, BMI z-score, WC, BF (%), ISI, FBG, |
Kitzman-Ulrich et al. [59] | RCT | USA | n = 22 IG 1: 14 IG 2: 13 CG: 8 | n = 22 IG 1: 14 IG 2: 13 CG: 8 | 0% | 16 weeks | ♀ (100%) | 12–15 | BMI ≥ 95th percentile. | Familiar therapy IG 1: Multifamiliar therapy + psychoeducation. IG 2: Psychoeducation CG: Waiting list. | ↓ non-significant BMI z score only in the psychoeducation group |
Reinehr et al. [60] | non-RCT | Germany | n= 474 IG: 288 CG: 186 | n= 474 IG: 288 CG: 186 | 0% | 12 months | ♂ (43.88%) ♀ (56.12%) | 10–16 | Adolescents with obesity without endocrine disorders, familial hyperlipidemia or syndromal obesity. | Multicomponent and lifestyle intervention IG: physical activity (aerobic training once a week), nutrition education (twice a month), behavior therapy (twice a month), and psychological family therapy (30 min/month). CG: 15 min of nutritional counseling, physical activity, and behavior patterns. | WC, FBG, HDL, TG, SBP, DBP |
Author(s)/Date | Variables | IG | CG | ΔDiD (ΔIG–ΔCG) | ||||
---|---|---|---|---|---|---|---|---|
Pre | Post | Δ | Pre | Post | Δ | |||
Truby et al. [51] | BW (kg) | 86.63 ± 22.60 | 86.26 ± 23.38 | –0.37 †,* | 94.42 ± 30.94 | 96.88 ± 31.00 | 2.46 † | −4.15 |
BMI (kg/m2) | 32.62 ± 5.9 | 31.88 ± 6.17 | –0.74 †,* | 35.17 ± 8.54 | 35.74 ± 8.66 | 0.57 † | −1.58 | |
BMI z-score | 2.19 ± 0.39 | 2.10 ± 0.46 | –0.09 †,* | 2.27 ± 0.43 | 2.29 ± 0.42 | 0.02 † | −0.13 | |
BF (%) | 39.67 ± 6.38 | 39.54 ± 5.22 | –0.13 †,* | 40.36 ± 5.31 | 42.98 ± 4.26 | 2.62 † | −2.99 | |
WC (cm) | 105.30 ± 13.53 | 102.88 ± 14.96 | –2.42 †,* | 112.44 ± 19.27 | 113.26 ± 19.54 | 0.82 † | −3.07 | |
HDL (mmol/L) | 1.1 ± 0.2 | 1.0 ± 0.2 | –0.1 † | 1.0 ± 0.3 | 1.1 ± 0.4 | 0.1 † | −0.1 | |
TG (mmol/L) | 1.2 ±0.5 | 1.2 ± 0.4 | 0.0 † | 1.3 ± 0.5 | 1.2 ± 0.7 | –0.1 † | 0.1 | |
HOMA-IR | 1.7 ± 1.0 | 1.5 ± 0.9 | –0.2 †,* | 2.5 ± 2.1 | 2.7 ± 1.1 | 0.2 † | −0.7 | |
Normayanti et al. [52] | BMI (kg/m2) | 30.68 ± 1.50 | 30.31 ± 1.50 a | –0.36 ± 0.05 * | 30.54 ± 1.60 | 30.83 ± 1.51 a | 0.29 ± 0.05 | –0.65 † |
WC (cm) | 89.63 ± 7.68 | 88.79 ± 7.69 a | –0.84 ± 0.14 * | 89.55 ± 6.00 | 90.29 ± 6.16 a | 0.75 ± 0.30 | –1.59 † | |
SBP (mmHg) | 113.67 ± 5.15 | 112.53 ± 5.11 a | –1.13 ± 1.36 * | 112.40 ± 5.81 | 112.93 ± 5.86 | 0.53 ± 1.81 | –1.66 † | |
DBP (mmHg) | 72.40 ± 5.26 | 72.70 ± 6.37 | −0.13 ± 3.06 | 72.80 ± 5.96 | 73.13 ± 7.40 | 0.33 ± 3.02 | –0.46 † | |
Plavsic et al. [53] | BW (kg) | 90.1 ± 11.8 | 85.4 ± 11.8 b | –4.7 † | 89.3 ± 13.8 | 87.1 ± 15.0 c | –2.2 † | –2.5 † |
BMI (kg/m2) | 32.6 ± 2.7 | 30.9 ± 3.3 b | –1.7 † | 33.2 ± 3.5 | 32.2 ± 4.0 c | –1.0 † | –0.7 † | |
WC (cm) | 94.9 ± 6.2 | 91.5 ± 7.8 c | –3.4 † | 98.5 ± 11.2 | 96.9 ± 11.4 | –1.6 † | –1.8 † | |
BF (%) | 44.3 ± 4.9 | 41.8 ± 6.1 c | –2.5 † | 45.6 ± 3.5 | 44.0 ± 3.9 b | –1.6 † | –0.9 † | |
SBP (mm Hg) | 121.4 ± 5.6 | 110.3 ± 8.5 b | –11.1 † | 120.0 ± 8.8 | 114.4 ± 6.8 c | –5.6 † | –5.5 † | |
DBP (mm Hg) | 77.2 ± 6.0 | 69.2 ± 6.2 b | –10.0 † | 75.6 ± 7.7 | 72.4 ± 6.6 | –3.2 † | –6.8 † | |
TG (mmol/L) | 0.89 ± 0.27 | 0.90 ± 0.32 | 0.01 † | 0.90 ± 0.35 | 1.00 ± 0.43 | 0.1 † | –0.09 † | |
HDL (mmol/L) | 1.29 ± 0.30 | 1.33 ± 0.27 | 0.04 † | 1.31 ± 0.28 | 1.30 ± 0.26 | –0.01 † | 0.05 † | |
HOMA-IR | 3.35 ± 2.49 | 2.51 ± 0.96 | –0.84 † | 2.94 ± 1.31 | 2.93 ± 1.33 | –0.01 † | –0.83 † | |
ISI | 4.60 ± 2.70 | 5.65 ± 2.36 c | 1.05 † | 3.98 ± 1.63 | 3.65 ± 1.40 | –0.33 † | 1.38 † | |
Ackel-D’Elia et al. [54] | BW (kg) | 97.22 ± 13.06 | 89.12 ± 12.13 c | –8.14 ± 4.57 * | 96.11 ± 12.69 | 90.46 ± 10.81 c | –5.14 ± 4.54 | –3 † |
BMI (kg/m2) | 35.10 ± 4.67 | 31.82 ± 3.90 c | –3.28 ± 1.56 * | 35.06 ± 3.90 | 33.22 ± 3.70 c | –1.85 ± 1.60 | –1.43 † | |
BF (%) | 45.57 ± 6.04 | 38.68 ± 6.27 c | –6.80 ± 3.03 * | 41.79 ± 6.59 | 41.07 ± 8.15 | –1.18 ± 3.83 | –5.62 † | |
FBG (µU/mL) | 4.97 ± 0.39 | 4.96 ± 0.32 | −0.01 ± 0.38 | 5.01 ± 0.34 | 4.97 ± 0.42 | −0.05 ± 0.33 | 0.04 † | |
HOMA-IR | 3.32 ± 1.17 | 2.54 ± 1.28 | −0.78 ± 1.44 | 4.29 ± 2.75 | 3.97 ± 2.41 | −0.32 ± 1.55 | –0.46 † | |
Bianchini et al. [55] | BW (kg) | 82.4 (48.3–114.2) | 81.1 (46.5–113.7) | −1.3 † | 82.3 (51.3–132.1) | 83.6 (48.1–132.0) c | 1.3 | −2.6† |
BMI (kg/m2) | 31.7 (25.5–50.8) | 30.8 (24.1–50.3) c | −0.9 † | 30.6 (25.1–42.4) | 30.4 (25.3–43.2) | −0.2 † | −0.7 † | |
BF (%) | 50.5 (23.5–58.4) | 47.9 (16.5–56.7) c | −2.6 † | 45.8 (24.1–56.0) | 45.2 (24.0–55.4) | −0.6 † | −2.0 † | |
BF (kg) | 39.7 (14.6–64.6) | 37.6 (10.0–61.6) c | −2.1 † | 38.3 (13.4–56.6) | 38.2 (14.4–60.1) | −0.1 † | −2.0 † | |
WC (cm) | 90.8 (74.5–122.0) | 88.2 (70.8–125.0) c | −2.6 † | 92.8 (73.0–116.0) | 90.8 (74.5–112.0) | −2.0 † | −0.6 † | |
SBP (mmHg) | 121.0 (98.0–164.0) | 118.0 (103.0–136.0) c | −3.0 † | 124.5 (103.0–161.0) | 122.5 (109.0–161.0) | −2.0 † | −2.0 † | |
DBP (mmHg) | 74.0 (57.0–100.0) | 70.5 (57.0–86.0) c | −3.5 † | 72.0 (54.0–126.0) | 73.5 (54.0–104.0) | 1.5 † | −5.0 † | |
HDL (mg/dL) | 45.5 (35.0–71.0) | 44 (35.0–69.0) | −1.5 † | 44.5 (30.0–79.0) | 43.0 (35.0–84.0) | −1.5 † | −0 † | |
TG (mg/dL) | 106.5 (51.0–209.0) | 93.0 (40.0–383.0) | −13.5 † | 101.5 (40.0–280.0) | 113.5 (44.0–286.0) | 12 † | −26.5 † | |
FBG (mg/dL) | 88.0 (66.0–107.0) | 87.0 (70.0–112.0) | −1.0 † | 89.0 (72.0–109.0) | 84.5 (66.0–100.0) c | −4.5 † | 3.5 † | |
HOMA-IR | 3.7 (0.8–9.4) | 3.2 (0.9–13.6) | −0.5 † | 3.7 (1.1–10.4) | 3.8 (0.9–20.1) | 0.1 † | −0.6 † | |
Toulabi et al. [56] | BW (kg) | 81.67 ± 10.94 | 77.50 ± 12.46 | –4.17 † | 84.43 ± 10.79 | 83.51 ± 11.79 | –0.92 † | –3.25 † |
BMI (kg/m2) | 30.43 ± 2.39 | 27.51 ± 3.18 | –2.42 † | 30.33 ± 1.93 | 29.15 ± 2.74 | –1.18 † | –1.24 † | |
WC (cm) | 99.25 ± 7.73 | 96.23 ± 9.50 | –3.05 † | 100.19 ± 9.7 | 100.40 ± 6.99 | 0.21 † | –3.26 † | |
Peña et al. [57] | BW (kg) | 86 ± 2 | 88 ± 2 b | 2 | 89 ± 4 | 92 ± 4 a | 3 | –1.3 |
BMI (z-score) | 2.19 ± 0.04 | 2.15 ± 0.05 | –0.04 | 2.28 ± 0.07 | 2.24 ± 0.09 | –0.04 | –0.009 | |
BMI (kg/m2) | 32.1 ± 0.5 | 32.1 ± 0.6 | 0 | 33.7 ± 1.1 | 34.0 ± 1.2 | 0.3 | –0.3 | |
BF (%) | 44.5 ± 0.6 | 42.7 ± 0.7 b | –1.8 †,* | 47.0 ± 0.9 | 46.3 ± 1.0 | –0.7 | –1.0 | |
ISI | 1.8 ± 0.2 | 2.6 ± 0.4 b | 0.8 | 1.6 ± 0.2 | 2.8 ± 0.5 b | 1.2 | –0.4 | |
Peña et al. [58] | BW (kg) | 90 ± 2 | 92 ± 2 | 2 | 95 ± 4 | 98 ± 4 a | 3 | −0.8 |
BMI (z-score) | 2.25 ± 0.03 | 2.23 ± 0.04 | −0.02 | 2.33 ± 0.10 | 2.32 ± 0.07 | −0.01 | −0.02 | |
BMI (kg/m2) | 33 ± 1 | 34 ± 1 | 1 | 35 ± 1 | 35 ± 1 c | 0 | −0.2 | |
WC (cm) | 106 ± 1 | 107 ± 2 | 1 | 110 ± 3 | 111 ± 3 | 1 | −0.8 | |
BF (%) | 45 ± 1 | 44 ± 1 | −1 * | 47 ± 1 | 47 ± 1 | 0 | −1.0 | |
ISI | 1.9 ± 0.2 | 2.6 ± 0.3 a | 0.7 | 1.9 ± 0.3 | 2.5 ± 0.5 | 0.6 | 0.1 | |
FBG (mg/dL) | 101 ± 1 | 99 ± 1 c | −2 | 103 ± 1 | 106 ± 4 | 3 | −4.7 | |
Kitzman-Ulrich et al. [59] | BMI z score | NR | NR | 0.0 ± 0.1 | NR | NR | 0.0 ± 0.1 | 0.0† |
Reinehr et al. [60] | WC (cm) | 103 ± 12 | 102 ± 13 c | –1 †,* | 103 ± 11 | 107 ± 10 a | 4 † | –5 † |
FBG (mmol/L) | 4.8 ± 0.4 | 4.9 ± 0.4 | 0.1 † | 4.8 ± 0.4 | 4.9 ± 0.4 | 0.1 † | 0 † | |
HDL (mmol/L) | 1.3 ± 0.3 | 1.3 ± 0.4 | 0.0 † | 1.3 ± 0.3 | 1.3 ± 0.3 | 0.0 † | 0 † | |
TG (mmol/L) | 1.3 ± 0.7 | 1.3 ± 0.7 | 0.0 † | 1.3 ± 0.7 | 1.3 ± 0.7 | 0.0 † | 0 † | |
SBP (mmHg) | 127 ± 17 | 120 ± 15 a | –7 †,* | 120 ± 14 | 122 ± 15 | 2 † | −9 † | |
DBP (mmHg) | 69 ± 12 | 67 ± 12 c | –2 †,* | 64 ± 11 | 67 ± 12 b | 3 † | −5 † |
Study | Domain 1. Randomization Process | Domain 2. Deviations from Intended Interventions | Domain 3. Missing Outcome Data | Domain 4. Measurement of the Outcome | Domain 5. Selection of the Reported Result | Domain 6. Overall Bias | Jadad Scale |
---|---|---|---|---|---|---|---|
Truby et al. (2016) [51] | Low risk | High risk | Low risk | Some concerns | Low risk | High risk | 3 |
Plavsic et al. (2019) [53] | Some concerns | Low risk | Low risk | Some concerns | Low risk | Some concerns | 3 |
Peña et al. (2023) [57] | Some concerns | Low risk | Low risk | Low risk | Some concerns | Some concerns | 3 |
Peña et al. (2022) [58] | Low risk | Low risk | Low risk | Low risk | Low risk | Low risk | 4 |
Ackel-D’Elia et al. (2013) [54] | Low risk | Low risk | Some concerns | Some concerns | Low risk | Some concerns | 3 |
Toulabi et al. (2011) [56] | Low risk | Low risk | Some concerns | Some concerns | Low risk | Some concerns | 3 |
Kitzman-Ulrich et al. (2009) [59] | Low risk | Some concerns | Low risk | Low risk | Some concerns | Some concerns | 3 |
Study | D1 | D2 | D3 | D4 | D5 | D6 | D7 | Overall |
---|---|---|---|---|---|---|---|---|
Normayanti et al. (2020) [52] | Moderate | Low | Moderate | Low | Low | Moderate | Low | Moderate |
Bianchini et al. (2012) [55] | Moderate | Low | Low | Low | Low | Moderate | Low | Moderate |
Reinehr et al. (2009) [60] | Low | Low | Low | Moderate | Moderate | Low | Low | Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Peláez, C.C.; Fernández-Aparicio, Á.; Montero-Alonso, M.A.; González-Jiménez, E. Effect of Dietary and Physical Activity Interventions Combined with Psychological and Behavioral Strategies on Preventing Metabolic Syndrome in Adolescents with Obesity: A Meta-Analysis of Clinical Trials. Nutrients 2025, 17, 2051. https://doi.org/10.3390/nu17132051
Jiménez-Peláez CC, Fernández-Aparicio Á, Montero-Alonso MA, González-Jiménez E. Effect of Dietary and Physical Activity Interventions Combined with Psychological and Behavioral Strategies on Preventing Metabolic Syndrome in Adolescents with Obesity: A Meta-Analysis of Clinical Trials. Nutrients. 2025; 17(13):2051. https://doi.org/10.3390/nu17132051
Chicago/Turabian StyleJiménez-Peláez, Claudia C., Ángel Fernández-Aparicio, Miguel A. Montero-Alonso, and Emilio González-Jiménez. 2025. "Effect of Dietary and Physical Activity Interventions Combined with Psychological and Behavioral Strategies on Preventing Metabolic Syndrome in Adolescents with Obesity: A Meta-Analysis of Clinical Trials" Nutrients 17, no. 13: 2051. https://doi.org/10.3390/nu17132051
APA StyleJiménez-Peláez, C. C., Fernández-Aparicio, Á., Montero-Alonso, M. A., & González-Jiménez, E. (2025). Effect of Dietary and Physical Activity Interventions Combined with Psychological and Behavioral Strategies on Preventing Metabolic Syndrome in Adolescents with Obesity: A Meta-Analysis of Clinical Trials. Nutrients, 17(13), 2051. https://doi.org/10.3390/nu17132051