Betulinic Acid Reduces Intestinal Inflammation and Enhances Intestinal Tight Junctions by Modulating the PPAR-γ/NF-κB Signaling Pathway in Intestinal Cells and Organoids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Animal Experiments
2.3. Cell Culture
2.4. Cell Viability Assay
2.5. Establishment of an Inflamed Epithelium–Microphage Co-Culture Model
2.6. Paracellular Permeability Assay
2.7. IO Culture
2.8. Establishment of an Inflamed Mice IO–Microphage Co-Culture Model
2.9. Measurement of TJ Permeability in Mouse IOs
2.10. Immunofluorescence
2.11. Quantitative Real-Time PCR (qRT-PCR)
2.12. Western Blot Analysis
2.13. Network Pharmacology Analysis
2.14. Molecular Modeling
2.15. Statistical Analysis
3. Results
3.1. BA Ameliorates DSS-Induced IBD Symptoms in Mice
3.2. Assessment of BA’s Effects on IEC and Macrophage Viability
3.3. BA Restores IEB Integrity, Decreases Inflammation, and Enhances TJ Protein Expression in the Cell Monolayer
3.4. BA Reduces Inflammation and Enhances Tight Junction Integrity in the IOs–Macrophage Co-Culture System
3.5. BA Engages with PPAR-γ Signaling Pathway Based on Network Pharmacology and MOD
3.6. BA Repairs IEB Dysfunction in the IEC Monolayer by Modulating the PPAR-γ/NF-κB Signaling Pathway
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chelakkot, C.; Ghim, J.; Ryu, S.H. Mechanisms Regulating Intestinal Barrier Integrity and Its Pathological Implications. Exp. Mol. Med. 2018, 50, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Aleman, R.S.; Moncada, M.; Aryana, K.J. Leaky Gut and the Ingredients That Help Treat It: A Review. Molecules 2023, 28, 619. [Google Scholar] [CrossRef]
- Pellegrini, C.; Fornai, M.; D’Antongiovanni, V.; Antonioli, L.; Bernardini, N.; Derkinderen, P. The Intestinal Barrier in Disorders of the Central Nervous System. Lancet Gastroenterol. Hepatol. 2023, 8, 66–80. [Google Scholar] [CrossRef]
- Tajik, N.; Frech, M.; Schulz, O.; Schalter, F.; Lucas, S.; Azizov, V.; Durholz, K.; Steffen, F.; Omata, Y.; Rings, A.; et al. Targeting Zonulin and Intestinal Epithelial Barrier Function to Prevent Onset of Arthritis. Nat. Commun. 2020, 11, 1995. [Google Scholar] [CrossRef]
- Thaiss, C.A.; Levy, M.; Grosheva, I.; Zheng, D.; Soffer, E.; Blacher, E.; Braverman, S.; Tengeler, A.C.; Barak, O.; Elazar, M.; et al. Hyperglycemia Drives Intestinal Barrier Dysfunction and Risk for Enteric Infection. Science 2018, 359, 1376–1383. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, A.; Chanez-Paredes, S.D.; Haest, X.; Turner, J.R. Paracellular Permeability and Tight Junction Regulation in Gut Health and Disease. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 417–432. [Google Scholar] [CrossRef] [PubMed]
- Parikh, K.; Antanaviciute, A.; Fawkner-Corbett, D.; Jagielowicz, M.; Aulicino, A.; Lagerholm, C.; Davis, S.; Kinchen, J.; Chen, H.H.; Alham, N.K.; et al. Colonic Epithelial Cell Diversity in Health and Inflammatory Bowel Disease. Nature 2019, 567, 49–55. [Google Scholar] [CrossRef]
- Lou, H.; Li, H.; Zhang, S.; Lu, H.; Chen, Q. A Review on Preparation of Betulinic Acid and Its Biological Activities. Molecules 2021, 26, 5583. [Google Scholar] [CrossRef]
- Yogeeswari, P.; Sriram, D. Betulinic Acid and Its Derivatives: A Review on Their Biological Properties. Curr. Med. Chem. 2005, 12, 657–666. [Google Scholar] [CrossRef]
- Farooqi, A.A.; Turgambayeva, A.; Tashenova, G.; Tulebayeva, A.; Bazarbayeva, A.; Kapanova, G.; Abzaliyeva, S. Multifunctional Roles of Betulinic Acid in Cancer Chemoprevention: Spotlight on Jak/Stat, Vegf, Egf/Egfr, Trail/Trail-R, Akt/Mtor and Non-Coding Rnas in the Inhibition of Carcinogenesis and Metastasis. Molecules 2022, 28, 67. [Google Scholar] [CrossRef]
- Lee, H.A.; Lee, J.K.; Han, J.S. Betulinic Acid Improves Tnf-Alpha-Induced Insulin Resistance by Inhibiting Negative Regulator of Insulin Signalling and Inflammation-Activated Protein Kinase in 3t3-L1 Adipocytes. Arch. Physiol. Biochem. 2024, 130, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wu, Y.; Liang, T.; Zhou, Y.; Chen, G.; He, J.; Ji, C.; Liu, P.; Zhang, C.; Lin, J.; et al. Betulinic Acid Attenuates Osteoarthritis Via Limiting Nlrp3 Inflammasome Activation to Decrease Interleukin-1beta Maturation and Secretion. Mediat. Inflamm. 2023, 2023, 3706421. [Google Scholar] [CrossRef]
- Gundoju, N.; Bokam, R.; Yalavarthi, N.R.; Azad, R.; Ponnapalli, M.G. Betulinic Acid Derivatives: A New Class of Alpha-Glucosidase Inhibitors and Lps-Stimulated Nitric Oxide Production Inhibition on Mouse Macrophage Raw 264.7 Cells. Nat. Prod. Res. 2019, 33, 2618–2622. [Google Scholar] [CrossRef] [PubMed]
- Kalra, J.; Lingaraju, M.C.; Mathesh, K.; Kumar, D.; Parida, S.; Singh, T.U.; Sharma, A.K.; Kumar, D.; Tandan, S.K. Betulinic Acid Alleviates Dextran Sulfate Sodium-Induced Colitis and Visceral Pain in Mice. Naunyn Schmiedebergs Arch. Pharmacol. 2018, 391, 285–297. [Google Scholar] [CrossRef]
- Liu, J.; Werner, U.; Funke, M.; Besenius, M.; Saaby, L.; Fano, M.; Mu, H.; Mullertz, A. Sedds for Intestinal Absorption of Insulin: Application of Caco-2 and Caco-2/Ht29 Co-Culture Monolayers and Intra-Jejunal Instillation in Rats. Int. J. Pharm. 2019, 560, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Le, N.P.K.; Altenburger, M.J.; Lamy, E. Development of an Inflammation-Triggered in Vitro Leaky Gut Model Using Caco-2/Ht29-Mtx-E12 Combined with Macrophage-Like Thp-1 Cells or Primary Human-Derived Macrophages. Int. J. Mol. Sci. 2023, 24, 7427. [Google Scholar] [CrossRef]
- Sun, W.; Li, E.; Mao, X.; Zhang, Y.; Wei, Q.; Huang, Z.; Wan, A.; Zou, Y. The Oligosaccharides of Xiasangju Alleviates Dextran Sulfate Sodium-Induced Colitis in Mice by Inhibiting Inflammation. PLoS ONE 2023, 18, e0295324. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhou, Y.; Xiong, X.; Li, L.; Chen, Z.; Wu, F.; Dong, R.; Liu, Q.; Zhao, Y.; Jiang, S.; et al. Traditional Herbal Pair Portulacae Herba and Granati Pericarpium Alleviates Dss-Induced Colitis in Mice through Il-6/Stat3/Socs3 Pathway. Phytomedicine 2024, 126, 155283. [Google Scholar] [CrossRef]
- Kono, G.; Yoshida, K.; Kokubo, E.; Ikeda, M.; Matsubara, T.; Koyama, T.; Iwamoto, H.; Miyaji, K. Fermentation Supernatant of Elderly Feces with Inulin and Partially Hydrolyzed Guar Gum Maintains the Barrier of Inflammation-Induced Caco-2/Ht29-Mtx-E12 Co-Cultured Cells. J. Agric. Food Chem. 2023, 71, 1510–1517. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, S.; Pang, Y.; Ye, L.; Zhang, Q.; Jiang, X.; Zhang, R.; Li, M.; Guo, Z.; Jiang, Y.; et al. Morphological Alterations in C57bl/6 Mouse Intestinal Organoids as a Tool for Predicting Chemical-Induced Toxicity. Arch. Toxicol. 2023, 97, 1133–1146. [Google Scholar] [CrossRef]
- Saul, D.; Barros, L.L.; Wixom, A.Q.; Gellhaus, B.; Gibbons, H.R.; Faubion, W.A.; Kosinsky, R.L. Cell Type-Specific Induction of Inflammation-Associated Genes in Crohn’s Disease and Colorectal Cancer. Int. J. Mol. Sci. 2022, 23, 3082. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghadban, S.; Kaissi, S.; Homaidan, F.R.; Naim, H.Y.; El-Sabban, M.E. Cross-Talk between Intestinal Epithelial Cells and Immune Cells in Inflammatory Bowel Disease. Sci. Rep. 2016, 6, 29783. [Google Scholar] [CrossRef] [PubMed]
- de Bruyn, M.; Vandooren, J.; Ugarte-Berzal, E.; Arijs, I.; Vermeire, S.; Opdenakker, G. The Molecular Biology of Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases in Inflammatory Bowel Diseases. Crit. Rev. Biochem. Mol. Biol. 2016, 51, 295–358. [Google Scholar] [CrossRef]
- Newman, K.L.; Kamada, N. Pathogenic Associations between Oral and Gastrointestinal Diseases. Trends Mol. Med. 2022, 28, 1030–1039. [Google Scholar] [CrossRef]
- Nader, M.A.; Baraka, H.N. Effect of Betulinic Acid on Neutrophil Recruitment and Inflammatory Mediator Expression in Lipopolysaccharide-Induced Lung Inflammation in Rats. Eur. J. Pharm. Sci. 2012, 46, 106–113. [Google Scholar] [CrossRef]
- Meira, C.S.; Santo, R.F.D.E.; Santos, T.B.D.; Orge, I.D.; Silva, D.K.C.; Guimaraes, E.T.; Franca, L.S.A.; Barbosa-Filho, J.M.; Moreira, D.R.M.; Soares, M.B.P. Betulinic Acid Derivative Ba5, a Dual Nf-Kb/Calcineurin Inhibitor, Alleviates Experimental Shock and Delayed Hypersensitivity. Eur. J. Pharmacol. 2017, 815, 156–165. [Google Scholar] [CrossRef]
- Hu, X.; Yu, Q.; Hou, K.; Ding, X.; Chen, Y.; Xie, J.; Nie, S.; Xie, M. Regulatory Effects of Ganoderma Atrum Polysaccharides on Lps-Induced Inflammatory Macrophages Model and Intestinal-Like Caco-2/Macrophages Co-Culture Inflammation Model. Food Chem. Toxicol. 2020, 140, 111321. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yao, Y.; Xu, F.; Yuan, Q.; Ju, X.; Wang, L. Anti-Inflammatory and Transepithelial Transport Activities of Rapeseed (Brassica Napus) Napin-Derived Dipeptide Thr-Leu in Caco-2 and Raw264.7 Cocultures. J. Agric. Food Chem. 2023, 71, 8437–8447. [Google Scholar] [CrossRef]
- Almeqdadi, M.; Mana, M.D.; Roper, J.; Yilmaz, O.H. Gut Organoids: Mini-Tissues in Culture to Study Intestinal Physiology and Disease. Am. J. Physiol. Cell Physiol. 2019, 317, C405–C419. [Google Scholar] [CrossRef]
- Lindemans, C.A.; Calafiore, M.; Mertelsmann, A.M.; O’Connor, M.H.; Dudakov, J.A.; Jenq, R.R.; Velardi, E.; Young, L.F.; Smith, O.M.; Lawrence, G.; et al. Interleukin-22 Promotes Intestinal-Stem-Cell-Mediated Epithelial Regeneration. Nature 2015, 528, 560–564. [Google Scholar] [CrossRef]
- Kuo, W.T.; Zuo, L.; Odenwald, M.A.; Madha, S.; Singh, G.; Gurniak, C.B.; Abraham, C.; Turner, J.R. The Tight Junction Protein Zo-1 Is Dispensable for Barrier Function but Critical for Effective Mucosal Repair. Gastroenterology 2021, 161, 1924–1939. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Wang, X.; Xie, X.; Su, Y.; Pan, Z.; Li, Y.; Liang, J.; Zhang, M.; Pan, S.; Xu, B.; et al. Dahuang Mudan Decoction Repairs Intestinal Barrier in Chronic Colitic Mice by Regulating the Function of Ilc3. J. Ethnopharmacol. 2022, 299, 115652. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Huang, C.; Zhu, L.; Kong, L.; Yuan, Z.; Wen, L.; Li, R.; Wu, J.; Yi, J. Betulinic Acid Ameliorates the T-2 Toxin-Triggered Intestinal Impairment in Mice by Inhibiting Inflammation and Mucosal Barrier Dysfunction through the Nf-Kappab Signaling Pathway. Toxins 2020, 12, 794. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.M.; Shah, Y.M.; Gonzalez, F.J. The Role of Peroxisome Proliferator-Activated Receptors in Carcinogenesis and Chemoprevention. Nat. Rev. Cancer 2012, 12, 181–195. [Google Scholar] [CrossRef]
- Dong, J.; Chen, Y.; Yang, F.; Zhang, W.; Wei, K.; Xiong, Y.; Wang, L.; Zhou, Z.; Li, C.; Wang, J.; et al. Naringin Exerts Therapeutic Effects on Mice Colitis: A Study Based on Transcriptomics Combined with Functional Experiments. Front. Pharmacol. 2021, 12, 729414. [Google Scholar] [CrossRef]
- Brochard, C.; Siproudhis, L.; Ropert, A.; Mallak, A.; Bretagne, J.F.; Bouguen, G. Anorectal Dysfunction in Patients with Ulcerative Colitis: Impaired Adaptation or Enhanced Perception? Neurogastroenterol. Motil. 2015, 27, 1032–1037. [Google Scholar] [CrossRef]
- Gersemann, M.; Wehkamp, J.; Stange, E.F. Innate Immune Dysfunction in Inflammatory Bowel Disease. J. Intern. Med. 2012, 271, 421–428. [Google Scholar] [CrossRef]
- Decara, J.; Rivera, P.; Lopez-Gambero, A.J.; Serrano, A.; Pavon, F.J.; Baixeras, E.; de Fonseca, F.R.; Suarez, J. Peroxisome Proliferator-Activated Receptors: Experimental Targeting for the Treatment of Inflammatory Bowel Diseases. Front. Pharmacol. 2020, 11, 730. [Google Scholar] [CrossRef]
- Jingbo, W.; Aimin, C.; Qi, W.; Xin, L.; Huaining, L. Betulinic Acid Inhibits Il-1beta-Induced Inflammation by Activating Ppar-Gamma in Human Osteoarthritis Chondrocytes. Int. Immunopharmacol. 2015, 29, 687–692. [Google Scholar] [CrossRef]
- Abdulqadir, R.; Al-Sadi, R.; Haque, M.; Gupta, Y.; Rawat, M.; Ma, T.Y. Bifidobacterium Bifidum Strain Bb1 Inhibits Tumor Necrosis Factor-Alpha-Induced Increase in Intestinal Epithelial Tight Junction Permeability Via Toll-Like Receptor-2/Toll-Like Receptor-6 Receptor Complex-Dependent Stimulation of Peroxisome Proliferator-Activated Receptor Gamma and Suppression of Nf-Kappab P65. Am. J. Pathol. 2024, 194, 1664–1683. [Google Scholar]
- Hou, Y.; Moreau, F.; Chadee, K. Ppargamma Is an E3 Ligase That Induces the Degradation of Nfkappab/P65. Nat. Commun. 2012, 3, 1300. [Google Scholar] [CrossRef] [PubMed]
- Zongo, A.W.; Zogona, D.; Youssef, M.; Ye, S.; Zhan, F.; Li, J.; Li, B. Senegalia Macrostachya Seed Polysaccharides Attenuate Inflammation-Induced Intestinal Epithelial Barrier Dysfunction in a Caco-2 and Raw264.7 Macrophage Co-Culture Model by Inhibiting the Nf-Kappab/Mlck Pathway. Food Funct. 2022, 13, 11676–11689. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Cao, Z.; Wang, M.; Yuan, R.; Han, Y.; Li, A.; Wang, X. Betulinic Acid Reduces Intestinal Inflammation and Enhances Intestinal Tight Junctions by Modulating the PPAR-γ/NF-κB Signaling Pathway in Intestinal Cells and Organoids. Nutrients 2025, 17, 2052. https://doi.org/10.3390/nu17132052
Zheng X, Cao Z, Wang M, Yuan R, Han Y, Li A, Wang X. Betulinic Acid Reduces Intestinal Inflammation and Enhances Intestinal Tight Junctions by Modulating the PPAR-γ/NF-κB Signaling Pathway in Intestinal Cells and Organoids. Nutrients. 2025; 17(13):2052. https://doi.org/10.3390/nu17132052
Chicago/Turabian StyleZheng, Xu, Zhen Cao, Mingqi Wang, Ruqiang Yuan, Yinhe Han, Ang Li, and Xiuli Wang. 2025. "Betulinic Acid Reduces Intestinal Inflammation and Enhances Intestinal Tight Junctions by Modulating the PPAR-γ/NF-κB Signaling Pathway in Intestinal Cells and Organoids" Nutrients 17, no. 13: 2052. https://doi.org/10.3390/nu17132052
APA StyleZheng, X., Cao, Z., Wang, M., Yuan, R., Han, Y., Li, A., & Wang, X. (2025). Betulinic Acid Reduces Intestinal Inflammation and Enhances Intestinal Tight Junctions by Modulating the PPAR-γ/NF-κB Signaling Pathway in Intestinal Cells and Organoids. Nutrients, 17(13), 2052. https://doi.org/10.3390/nu17132052