Association Between Dietary Intake and Blood Concentrations of One-Carbon-Metabolism-Related Nutrients in European Prospective Investigation into Cancer and Nutrition
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
IARC Disclaimer
References
- Friso, S.; Udali, S.; De Santis, D.; Choi, S.W. One-carbon metabolism and epigenetics. Mol. Asp. Med. 2017, 54, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Chillarón, J.C.; Díaz, R.; Martínez, D.; Pentinat, T.; Ramón-Krauel, M.; Ribó, S.; Plösch, T. The role of nutrition on epigenetic modifications and their implications on health. Biochimie 2012, 94, 2242–2263. [Google Scholar] [CrossRef] [PubMed]
- Anderson, O.S.; Sant, K.E.; Dolinoy, D.C. Nutrition and epigenetics: An interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J. Nutr. Biochem. 2012, 23, 853–859. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.C.; Maddocks, O.D.K. One-carbon metabolism in cancer. Br. J. Cancer 2017, 116, 1499–1504. [Google Scholar] [CrossRef]
- Kuhnle, G.G. Nutritional biomarkers for objective dietary assessment. J. Sci. Food Agric. 2012, 92, 1145–1149. [Google Scholar] [CrossRef]
- Jenab, M.; Slimani, N.; Bictash, M.; Ferrari, P.; Bingham, S.A. Biomarkers in nutritional epidemiology: Applications, needs and new horizons. Hum. Genet. 2009, 125, 507–525. [Google Scholar] [CrossRef]
- Hedrick, V.E.; Dietrich, A.M.; Estabrooks, P.A.; Savla, J.; Serrano, E.; Davy, B.M. Dietary biomarkers: Advances, limitations and future directions. Nutr. J. 2012, 11, 109. [Google Scholar] [CrossRef]
- Henríquez-Sánchez, P.; Sánchez-Villegas, A.; Doreste-Alonso, J.; Ortiz-Andrellucchi, A.; Pfrimer, K.; Serra-Majem, L. Dietary assessment methods for micronutrient intake: A systematic review on vitamins. Br. J. Nutr. 2009, 102 (Suppl. S1), S10–S37. [Google Scholar] [CrossRef]
- Park, J.Y.; Vollset, S.E.; Melse-Boonstra, A.; Chajes, V.; Ueland, P.M.; Slimani, N. Dietary intake and biological measurement of folate: A qualitative review of validation studies. Mol. Nutr. Food Res. 2013, 57, 562–581. [Google Scholar] [CrossRef]
- Yuan, C.; Spiegelman, D.; Rimm, E.B.; Rosner, B.A.; Stampfer, M.J.; Barnett, J.B.; Chavarro, J.E.; Rood, J.C.; Harnack, L.J.; Sampson, L.K.; et al. Relative Validity of Nutrient Intakes Assessed by Questionnaire, 24-Hour Recalls, and Diet Records as Compared With Urinary Recovery and Plasma Concentration Biomarkers: Findings for Women. Am. J. Epidemiol. 2018, 187, 1051–1063. [Google Scholar] [CrossRef]
- Baart, A.M.; Balvers, M.G.J.; de Vries, J.H.M.; Ten Haaf, D.S.M.; Hopman, M.T.E.; Klein Gunnewiek, J.M.T. Relationship between intake and plasma concentrations of vitamin B12 and folate in 873 adults with a physically active lifestyle: A cross-sectional study. J. Hum. Nutr. Diet. 2021, 34, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Ostan, R.; Guidarelli, G.; Giampieri, E.; Lanzarini, C.; Berendsen, A.A.M.; Januszko, O.; Jennings, A.; Lyon, N.; Caumon, E.; Gillings, R.; et al. Cross-Sectional Analysis of the Correlation Between Daily Nutrient Intake Assessed by 7-Day Food Records and Biomarkers of Dietary Intake Among Participants of the NU-AGE Study. Front. Physiol. 2018, 9, 1359. [Google Scholar] [CrossRef] [PubMed]
- Nijhout, H.F.; Reed, M.C.; Anderson, D.F.; Mattingly, J.C.; James, S.J.; Ulrich, C.M. Long-range allosteric interactions between the folate and methionine cycles stabilize DNA methylation reaction rate. Epigenetics 2006, 1, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Reed, M.C.; Nijhout, H.F.; Neuhouser, M.L.; Gregory, J.F., 3rd; Shane, B.; James, S.J.; Boynton, A.; Ulrich, C.M. A mathematical model gives insights into nutritional and genetic aspects of folate-mediated one-carbon metabolism. J. Nutr. 2006, 136, 2653–2661. [Google Scholar] [CrossRef]
- Marchetta, C.M.; Devine, O.J.; Crider, K.S.; Tsang, B.L.; Cordero, A.M.; Qi, Y.P.; Guo, J.; Berry, R.J.; Rosenthal, J.; Mulinare, J.; et al. Assessing the association between natural food folate intake and blood folate concentrations: A systematic review and Bayesian meta-analysis of trials and observational studies. Nutrients 2015, 7, 2663–2686. [Google Scholar] [CrossRef]
- Riboli, E.; Hunt, K.J.; Slimani, N.; Ferrari, P.; Norat, T.; Fahey, M.; Charrondiere, U.R.; Hemon, B.; Casagrande, C.; Vignat, J.; et al. European prospective investigation into cancer and nutrition (EPIC): Study populations and data collection. Public Health Nutr. 2002, 5, 1113–1124. [Google Scholar] [CrossRef]
- Riboli, E.; Kaaks, R. The EPIC Project: Rationale and study design. European Prospective Investigation into Cancer and Nutrition. Int. J. Epidemiol. 1997, 26, S6. [Google Scholar] [CrossRef]
- Bingham, S.; Riboli, E. Diet and cancer—the European Prospective Investigation into Cancer and Nutrition. Nat. Rev. Cancer 2004, 4, 206–215. [Google Scholar] [CrossRef]
- Eussen, S.J.P.M.; Vollset, S.E.; Hustad, S.; Midttun, Ø.; Meyer, K.; Fredriksen, Å.; Ueland, P.M.; Jenab, M.; Slimani, N.; Ferrari, P.; et al. Vitamins B2 and B6 and Genetic Polymorphisms Related to One-Carbon Metabolism as Risk Factors for Gastric Adenocarcinoma in the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol. Biomark. Prev. 2010, 19, 28–38. [Google Scholar] [CrossRef]
- Eussen, S.J.P.M.; Vollset, S.E.; Hustad, S.; Midttun, O.; Meyer, K.; Fredriksen, A.; Ueland, P.M.; Jenab, M.; Slimani, N.; Boffetta, P.; et al. Plasma Vitamins B2, B6, and B12, and Related Genetic Variants as Predictors of Colorectal Cancer Risk. Cancer Epidemiol. Biomark. Prev. 2010, 19, 2549–2561. [Google Scholar] [CrossRef]
- Johansson, M.; Relton, C.; Ueland, P.M.; Vollset, S.E.; Midttun, O.; Nygard, O.; Slimani, N.; Boffetta, P.; Jenab, M.; Clavel-Chapelon, F.; et al. Serum B vitamin levels and risk of lung cancer. JAMA 2010, 303, 2377–2385. [Google Scholar] [CrossRef] [PubMed]
- Chuang, S.C.; Stolzenberg-Solomon, R.; Ueland, P.M.; Vollset, S.E.; Midttun, O.; Olsen, A.; Tjonneland, A.; Overvad, K.; Boutron-Ruault, M.C.; Morois, S.; et al. A U-shaped relationship between plasma folate and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition. Eur. J. Cancer 2011, 47, 1808–1816. [Google Scholar] [CrossRef] [PubMed]
- Matejcic, M.; de Batlle, J.; Ricci, C.; Biessy, C.; Perrier, F.; Huybrechts, I.; Weiderpass, E.; Boutron-Ruault, M.C.; Cadeau, C.; His, M.; et al. Biomarkers of folate and vitamin B12 and breast cancer risk: Report from the EPIC cohort. Int. J. Cancer 2017, 140, 1246–1259. [Google Scholar] [CrossRef] [PubMed]
- Johansson, M.; Fanidi, A.; Muller, D.C.; Bassett, J.K.; Midttun, Ø.; Vollset, S.E.; Travis, R.C.; Palli, D.; Mattiello, A.; Sieri, S.; et al. Circulating Biomarkers of One-Carbon Metabolism in Relation to Renal Cell Carcinoma Incidence and Survival. JNCI J. Natl. Cancer Inst. 2014, 106, dju327. [Google Scholar] [CrossRef]
- Fanidi, A.; Relton, C.; Ueland, P.M.; Midttun, Ø.; Vollset, S.E.; Travis, R.C.; Trichopoulou, A.; Lagiou, P.; Trichopoulos, D.; Bueno-de-Mesquita, H.B.; et al. A prospective study of one-carbon metabolism biomarkers and cancer of the head and neck and esophagus. Int. J. Cancer 2015, 136, 915–927. [Google Scholar] [CrossRef]
- Price, A.J.; Travis, R.C.; Appleby, P.N.; Albanes, D.; Barricarte Gurrea, A.; Bjørge, T.; Bueno-de-Mesquita, H.B.; Chen, C.; Donovan, J.; Gislefoss, R.; et al. Circulating Folate and Vitamin B(12) and Risk of Prostate Cancer: A Collaborative Analysis of Individual Participant Data from Six Cohorts Including 6875 Cases and 8104 Controls. Eur. Urol. 2016, 70, 941–951. [Google Scholar] [CrossRef]
- Travis, R.C.; Crowe, F.L.; Allen, N.E.; Appleby, P.N.; Roddam, A.W.; Tjønneland, A.; Olsen, A.; Linseisen, J.; Kaaks, R.; Boeing, H.; et al. Serum vitamin D and risk of prostate cancer in a case-control analysis nested within the European Prospective Investigation into Cancer and Nutrition (EPIC). Am. J. Epidemiol. 2009, 169, 1223–1232. [Google Scholar] [CrossRef]
- Eussen, S.J.; Nilsen, R.M.; Midttun, O.; Hustad, S.; IJssennagger, N.; Meyer, K.; Fredriksen, A.; Ulvik, A.; Ueland, P.M.; Brennan, P.; et al. North-south gradients in plasma concentrations of B-vitamins and other components of one-carbon metabolism in Western Europe: Results from the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Br. J. Nutr. 2013, 110, 363–374. [Google Scholar] [CrossRef]
- Midttun, O.; Hustad, S.; Solheim, E.; Schneede, J.; Ueland, P.M. Multianalyte quantification of vitamin B6 and B2 species in the nanomolar range in human plasma by liquid chromatography-tandem mass spectrometry. Clin. Chem. 2005, 51, 1206–1216. [Google Scholar] [CrossRef]
- Midttun, O.; Hustad, S.; Ueland, P.M. Quantitative profiling of biomarkers related to B-vitamin status, tryptophan metabolism and inflammation in human plasma by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 1371–1379. [Google Scholar] [CrossRef]
- Ueland, P.M.; Midttun, O.; Windelberg, A.; Svardal, A.; Skalevik, R.; Hustad, S. Quantitative profiling of folate and one-carbon metabolism in large-scale epidemiological studies by mass spectrometry. Clin. Chem. Lab. Med. 2007, 45, 1737–1745. [Google Scholar] [CrossRef] [PubMed]
- Windelberg, A.; Arseth, O.; Kvalheim, G.; Ueland, P.M. Automated assay for the determination of methylmalonic acid, total homocysteine, and related amino acids in human serum or plasma by means of methylchloroformate derivatization and gas chromatography-mass spectrometry. Clin. Chem. 2005, 51, 2103–2109. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, B.P.; Broin, S.D. Microbiological assay for vitamin B12 performed in 96-well microtitre plates. J. Clin. Pathol. 1991, 44, 592–595. [Google Scholar] [CrossRef]
- Molloy, A.M.; Scott, J.M. Microbiological assay for serum, plasma, and red cell folate using cryopreserved, microtiter plate method. Vitam. Coenzymes Pt K 1997, 281, 43–53. [Google Scholar]
- Slimani, N.; Kaaks, R.; Ferrari, P.; Casagrande, C.; Clavel-Chapelon, F.; Lotze, G.; Kroke, A.; Trichopoulos, D.; Trichopoulou, A.; Lauria, C.; et al. European Prospective Investigation into Cancer and Nutrition (EPIC) calibration study: Rationale, design and population characteristics. Public Health Nutr. 2002, 5, 1125–1145. [Google Scholar] [CrossRef]
- Friedenreich, C.; Cust, A.; Lahmann, P.H.; Steindorf, K.; Boutron-Ruault, M.C.; Clavel-Chapelon, F.; Mesrine, S.; Linseisen, J.; Rohrmann, S.; Boeing, H.; et al. Anthropometric factors and risk of endometrial cancer: The European prospective investigation into cancer and nutrition. Cancer Causes Control. 2007, 18, 399–413. [Google Scholar] [CrossRef]
- Haftenberger, M.; Lahmann, P.H.; Panico, S.; Gonzalez, C.A.; Seidell, J.C.; Boeing, H.; Giurdanella, M.C.; Krogh, V.; Bueno-de-Mesquita, H.; Peeters, P.H.M.; et al. Overweight, obesity and fat distribution in 50-to 64-year-old participants in the European Prospective Investigation into Cancer and Nutrition (EPIC). Public Health Nutr. 2002, 5, 1147–1162. [Google Scholar] [CrossRef]
- Haftenberger, M.; Schuit, A.J.; Tormo, N.; Boeing, H.; Wareham, N.; Bueno-de-Mesquita, H.B.; Kumle, M.; Hjartaker, A.; Chirlaque, M.D.; Ardanaz, E.; et al. Physical activity of subjects aged 50–64 years involved in the European Prospective Investigation into Cancer and Nutrition (EPIC). Public Health Nutr. 2002, 5, 1163–1177. [Google Scholar] [CrossRef]
- Slimani, N.; Deharveng, G.; Unwin, I.; Southgate, D.A.; Vignat, J.; Skeie, G.; Salvini, S.; Parpinel, M.; Moller, A.; Ireland, J.; et al. The EPIC nutrient database project (ENDB): A first attempt to standardize nutrient databases across the 10 European countries participating in the EPIC study. Eur. J. Clin. Nutr. 2007, 61, 1037–1056. [Google Scholar] [CrossRef]
- Van Puyvelde, H.; Versele, V.; De Backer, M.; Casagrande, C.; Nicolas, G.; Clasen, J.L.; Julián, C.; Skeie, G.; Chirlaque, M.-D.; Mahamat-Saleh, Y.; et al. Methodological approaches to compile and validate a food composition database for methyl-group carriers in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Food Chem. 2020, 330, 127231. [Google Scholar] [CrossRef]
- Van Puyvelde, H.; Papadimitriou, N.; Clasen, J.; Muller, D.; Biessy, C.; Ferrari, P.; Halkjær, J.; Overvad, K.; Tjønneland, A.; Fortner, R.T.; et al. Dietary Methyl-Group Donor Intake and Breast Cancer Risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). Nutrients 2021, 13, 1843. [Google Scholar] [CrossRef] [PubMed]
- U.S. Centers for Disease Control and Prevention. Water-Soluble Vitamins & Related Biochemical Compounds. In Second National Report on Biochemical Indicators of Diet and Nutrition in the US Population 2012; National Center for Environmental Health: Atlanta, GA, USA, 2012. Available online: http://www.cdc.gov/nutritionreport (accessed on 30 March 2025).
- White, I.R.; Royston, P.; Wood, A.M. Multiple imputation using chained equations: Issues and guidance for practice. Stat. Med. 2011, 30, 377–399. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Stampfer, M.J. Total energy intake: Implications for epidemiologic analyses. Am. J. Epidemiol. 1986, 124, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, G. PLS Path Modeling with R; Trowchez Editions: Berkeley, CA, USA, 2013. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Caudill, M.A. Folate bioavailability: Implications for establishing dietary recommendations and optimizing status. Am. J. Clin. Nutr. 2010, 91, 1455S–1460S. [Google Scholar] [CrossRef]
- Ulvik, A.; Ebbing, M.; Hustad, S.; Midttun, Ø.; Nygård, O.; Vollset, S.E.; Bønaa, K.H.; Nordrehaug, J.E.; Nilsen, D.W.; Schirmer, H.; et al. Long- and short-term effects of tobacco smoking on circulating concentrations of B vitamins. Clin. Chem. 2010, 56, 755–763. [Google Scholar] [CrossRef]
- Park, J.Y.; Nicolas, G.; Freisling, H.; Biessy, C.; Scalbert, A.; Romieu, I.; Chajès, V.; Chuang, S.-C.; Ericson, U.; Wallström, P. Comparison of standardised dietary folate intake across ten countries participating in the European Prospective Investigation into Cancer and Nutrition. Br. J. Nutr. 2012, 108, 552–569. [Google Scholar] [CrossRef]
- Olsen, A.; Halkjaer, J.; van Gils, C.H.; Buijsse, B.; Verhagen, H.; Jenab, M.; Boutron-Ruault, M.C.; Ericson, U.; Ocké, M.C.; Peeters, P.H.; et al. Dietary intake of the water-soluble vitamins B1, B2, B6, B12 and C in 10 countries in the European Prospective Investigation into Cancer and Nutrition. Eur. J. Clin. Nutr. 2009, 63 (Suppl. S4), S122–S149. [Google Scholar] [CrossRef]
- Clasen, J.L.; Heath, A.K.; Van Puyvelde, H.; Huybrechts, I.; Park, J.Y.; Ferrari, P.; Johansson, M.; Scelo, G.; Ulvik, A.; Midttun, Ø.; et al. A comparison of complementary measures of vitamin B6 status, function, and metabolism in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Am. J. Clin. Nutr. 2021, 114, 338–347. [Google Scholar] [CrossRef]
- Pfeiffer, C.M.; Sternberg, M.R.; Schleicher, R.L.; Rybak, M.E. Dietary supplement use and smoking are important correlates of biomarkers of water-soluble vitamin status after adjusting for sociodemographic and lifestyle variables in a representative sample of U.S. adults. J. Nutr. 2013, 143, 957S–965S. [Google Scholar] [CrossRef]
- Yanbaeva, D.G.; Dentener, M.A.; Creutzberg, E.C.; Wesseling, G.; Wouters, E.F.M. Systemic Effects of Smoking. Chest 2007, 131, 1557–1566. [Google Scholar] [CrossRef]
- Iso, H.; Moriyama, Y.; Yoshino, K.; Sasaki, S.; Ishihara, J.; Tsugane, S. Validity of the self-administered food frequency questionnaire used in the 5-year follow-up survey for the JPHC Study to assess folate, vitamin B6 and B12 intake: Comparison with dietary records and blood level. J. Epidemiol. 2003, 13, S98–S101. [Google Scholar] [CrossRef] [PubMed]
- Rubingh, C.M.; Kruizinga, A.G.; Hulshof, K.F.; Brussaard, J.H. Validation and sensitivity analysis of probabilistic models of dietary exposure to micronutrients: An example based on vitamin B6. Food Addit. Contam. 2003, 20 (Suppl. S1), S50–S60. [Google Scholar] [CrossRef] [PubMed]
- Mason, J.B. Biomarkers of nutrient exposure and status in one-carbon (methyl) metabolism. J. Nutr. 2003, 133 (Suppl. S3), 941S–947S. [Google Scholar] [CrossRef]
- Zuo, H.; Ueland, P.M.; Midttun, Ø.; Vollset, S.E.; Tell, G.S.; Theofylaktopoulou, D.; Travis, R.C.; Boutron-Ruault, M.C.; Fournier, A.; Severi, G.; et al. Results from the European Prospective Investigation into Cancer and Nutrition Link Vitamin B6 Catabolism and Lung Cancer Risk. Cancer Res. 2018, 78, 302–308. [Google Scholar] [CrossRef]
- Gunter, E.W.; Bowman, B.A.; Caudill, S.P.; Twite, D.B.; Adams, M.J.; Sampson, E.J. Results of an international round robin for serum and whole-blood folate. Clin. Chem. 1996, 42, 1689–1694. [Google Scholar] [CrossRef]
- Van Roekel, E.H.; Trijsburg, L.; Assi, N.; Carayol, M.; Achaintre, D.; Murphy, N.; Rinaldi, S.; Schmidt, J.A.; Stepien, M.; Kaaks, R.; et al. Circulating Metabolites Associated with Alcohol Intake in the European Prospective Investigation into Cancer and Nutrition Cohort. Nutrients 2018, 10, 654. [Google Scholar] [CrossRef]
- Midttun, O.; Townsend, M.K.; Nygård, O.; Tworoger, S.S.; Brennan, P.; Johansson, M.; Ueland, P.M. Most blood biomarkers related to vitamin status, one-carbon metabolism, and the kynurenine pathway show adequate preanalytical stability and within-person reproducibility to allow assessment of exposure or nutritional status in healthy women and cardiovascular patients. J. Nutr. 2014, 144, 784–790. [Google Scholar] [CrossRef]
- Bingham, S.A. Biomarkers in nutritional epidemiology. Public Health Nutr. 2002, 5, 821–827. [Google Scholar] [CrossRef]
- Peterson, C.T.; Rodionov, D.A.; Osterman, A.L.; Peterson, S.N. B Vitamins and Their Role in Immune Regulation and Cancer. Nutrients 2020, 12, 3380. [Google Scholar] [CrossRef]
- Shaw, P.A.; Deffner, V.; Keogh, R.H.; Tooze, J.A.; Dodd, K.W.; Küchenhoff, H.; Kipnis, V.; Freedman, L.S. Epidemiologic analyses with error-prone exposures: Review of current practice and recommendations. Ann. Epidemiol. 2018, 28, 821–828. [Google Scholar] [CrossRef]
- Van Puyvelde, H.; Perez-Cornago, A.; Casagrande, C.; Nicolas, G.; Versele, V.; Skeie, G.; B Schulze, M.; Johansson, I.; María Huerta, J.; Oliverio, A.; et al. Comparing Calculated Nutrient Intakes Using Different Food Composition Databases: Results from the European Prospective Investigation into Cancer and Nutrition (EPIC) Cohort. Nutrients 2020, 12, 2906. [Google Scholar] [CrossRef] [PubMed]
- Bailey, L.B.; Stover, P.J.; McNulty, H.; Fenech, M.F.; Gregory, J.F., 3rd; Mills, J.L.; Pfeiffer, C.M.; Fazili, Z.; Zhang, M.; Ueland, P.M.; et al. Biomarkers of Nutrition for Development-Folate Review. J. Nutr. 2015, 145, 1636s–1680s. [Google Scholar] [CrossRef] [PubMed]
- Skeie, G.; Braaten, T.; Hjartåker, A.; Lentjes, M.; Amiano, P.; Jakszyn, P.; Pala, V.; Palanca, A.; Niekerk, E.; Verhagen, H. Use of dietary supplements in the European Prospective Investigation into Cancer and Nutrition calibration study. Eur. J. Clin. Nutr. 2009, 63, S226–S238. [Google Scholar] [CrossRef] [PubMed]
Study | Age Range | Blood Biomarkers 1 | Number of Biomarkers | N | Study Size | Case-Control Status | Country | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Men | Women | Cases | Controls | France | Italy | Spain | United Kingdom 3 | The Netherlands | Germany | Sweden | Denmark | Norway | |||||
Stomach | 36–75 | B2, B6, B9, B12, H, M | 6 | 797 | 471 | 326 | 293 | 504 | 9 | 189 | 130 | 85 | 59 | 132 | 128 | 65 | - |
Breast | 26–77 | B9, B12 | 2 | 4928 | - | 4928 | 2499 | 2429 | 801 | 1301 | 432 | 812 | 640 | 680 | 262 | ||
Kidney | 36–75 | B2, B6, B9, B12, H, M | 6 | 1055 | 576 | 479 | 559 | 496 | 26 | 174 | 104 | 130 | 88 | 238 | 64 | 223 | 8 |
Lung | 34–77 | B2, B6, B9, B12, H, M | 6 | 2209 | 1333 | 876 | 858 | 1351 | 3 | 389 | 382 | 521 | 329 | 438 | 147 | - | - |
Pancreas | 30–76 | B2, B6, B9, B12, H, M | 6 | 821 | 395 | 426 | 449 | 372 | 18 | 78 | 73 | 85 | 71 | 103 | 225 | 164 | 4 |
CRC 2 | 30–77 | B2, B6, B9, B12, H, M | 6 | 3016 | 1384 | 1632 | 1191 | 1825 | 75 | 435 | 354 | 611 | 431 | 447 | 533 | 116 | 14 |
UADT 2 | 34–76 | B2, B6, B9, B12, H, M | 6 | 1533 | 1095 | 438 | 808 | 725 | 2 | 139 | 198 | 232 | 142 | 195 | 76 | 545 | 4 |
Prostate I | 44–77 | B9, B12 | 2 | 911 | 911 | 488 | 423 | 110 | 158 | 284 | 43 | 314 | 2 | - | - | ||
Prostate II | 40–77 | B2, B6, B9, B12, | 4 | 997 | 997 | 508 | 489 | 157 | 202 | 325 | 36 | 277 | - | - | - | ||
Total | 16,267 | 7162 | 9105 | 7653 | 8614 | 934 | 2972 | 2033 | 3085 | 1839 | 2824 | 1175 | 1113 | 292 |
df 2 | Riboflavin (B2) | PLP (B6) | Folate (B9) | Cobalamin (B12) | Methionine | Homocysteine | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 (%) | p-Value | R2 (%) | p-Value | R2 (%) | p-Value | R2 (%) | p-Value | Partial R2 (%) | p-Value | R2 (%) | p-Value | ||
Age at recruitment | 1 | 0.1 | 0.001 | 0.2 | <0.001 | 0.2 | <0.001 | <0.1 | 0.556 | 0.2 | <0.001 | 0.8 | <0.001 |
Alcohol intake | 1 | <0.1 | 0.002 | 1.4 | <0.001 | 0.5 | <0.001 | <0.1 | 0.002 | <0.1 | 0.112 | 0.6 | <0.001 |
BMI | 1 | <0.1 | 0.048 | 1 | <0.001 | <0.1 | <0.001 | <0.1 | 0.131 | <0.1 | 0.323 | <0.1 | 0.193 |
Case–control status | 1 | <0.1 | 0.247 | 0.4 | <0.001 | <0.1 | <0.001 | <0.1 | 0.646 | 0.2 | <0.001 | 0.2 | <0.001 |
Country | 8 | 2.9 | <0.001 | 2 | <0.001 | 2.6 | <0.001 | 1.6 | <0.001 | 2.5 | <0.001 | 7.7 | <0.001 |
Energy intake | 1 | 0.5 | <0.001 | 1.8 | <0.001 | 2 | <0.001 | 0.6 | <0.001 | 0.1 | 0.003 | 0.3 | <0.001 |
Dietary intake 3 | 1 | 1.5 | <0.001 | 2.9 | <0.001 | 3.7 | <0.001 | 2.2 | <0.001 | 0.5 | <0.001 | - | - |
Sex | 1 | 0.5 | <0.001 | <0.1 | 0.076 | 0.3 | <0.001 | 0.3 | <0.001 | 1.8 | <0.001 | 2.7 | <0.001 |
Smoking status | 3 | 1.9 | <0.001 | 3.1 | <0.001 | 1.5 | <0.001 | 0.2 | <0.001 | 0.8 | <0.001 | 0.7 | <0.001 |
Study | - 2 | 1.4 | <0.001 | 2 | <0.001 | 0.2 | <0.001 | 2.2 | <0.001 | 2.3 | <0.001 | 1.1 | <0.001 |
Study/batch | - 2 | 7.5 | <0.001 | 3.1 | <0.001 | 4.3 | <0.001 | 4.3 | <0.001 | 3.7 | <0.001 | 4.6 | <0.001 |
df 2 | Riboflavin (B2) | PLP (B6) | Folate (B9) | Cobalamin (B12) | Methionine | Cysteine | Betaine | Choline | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 (%) | p-Value | R2 (%) | p-Value | R2 (%) | p-Value | R2 (%) | p-Value | R2 (%) | p-Value | R2 (%) | p-Value | R2 (%) | p-Value | R2 (%) | p-Value | ||
Age at recruitment | 1 | <0.1 | 0.31 | <0.1 | 0.215 | <0.1 | <0.001 | <0.1 | 0.034 | <0.1 | 0.98 | 0.4 | <0.001 | <0.1 | 0.068 | <0.1 | 0.69 |
Alcohol intake | 1 | 2.8 | <0.001 | 0.6 | <0.001 | 1.8 | <0.001 | 0.2 | <0.001 | 2.5 | <0.001 | 4.1 | <0.001 | 0.7 | <0.001 | 0.5 | <0.001 |
BMI | 1 | 0.4 | <0.001 | 0.5 | <0.001 | <0.1 | 0.121 | 1.1 | <0.001 | 1.7 | <0.001 | 1.6 | <0.001 | <0.1 | 0.005 | 1.1 | <0.001 |
Case–control status | 1 | <0.1 | 0.352 | <0.1 | 0.217 | <0.1 | 0.021 | <0.1 | 0.835 | <0.1 | 0.109 | <0.1 | 0.302 | <0.1 | 0.411 | <0.1 | 0.633 |
Country | 8 | 28.4 | <0.001 | 33.8 | <0.001 | 25.1 | <0.001 | 10.1 | <0.001 | 13.6 | <0.001 | 19.2 | <0.001 | 66.6 | <0.001 | 26.8 | <0.001 |
Energy intake | 1 | 54.2 | <0.001 | 48.5 | <0.001 | 53.4 | <0.001 | 25.9 | <0.001 | 52.1 | <0.001 | 60.1 | <0.001 | 25.2 | <0.001 | 57.2 | <0.001 |
Study | 8 | <0.1 | 0.148 | <0.1 | 0.254 | <0.1 | 0.297 | <0.1 | 0.612 | 0.1 | 0.007 | 0.2 | <0.001 | 0.2 | <0.001 | 0.1 | 0.017 |
Sex | 1 | 0.6 | <0.001 | <0.1 | 0.02 | 0.4 | <0.001 | 0.1 | <0.001 | <0.1 | <0.001 | <0.1 | 0.016 | 0.2 | <0.001 | 0.1 | <0.001 |
Smoking status | 3 | 0.3 | <0.001 | 0.2 | <0.001 | 0.3 | <0.001 | 0.3 | <0.001 | <0.1 | 0.002 | <0.1 | 0.041 | <0.1 | 0.212 | 0.2 | <0.001 |
Concentration Variable | PC1 | PC2 | PC3 |
---|---|---|---|
Folate (B9) | 0.50 | −0.27 | 0.27 |
Cobalamin (B12) | 0.37 | −0.18 | −0.50 |
Riboflavin (B2) | 0.43 | 0.33 | 0.36 |
PLP 1 (B6) | 0.47 | 0.33 | 0.29 |
Methionine | 0.17 | 0.66 | −0.59 |
Homocysteine | −0.42 | 0.50 | 0.32 |
Proportion of explained variance (%) | 31.8 | 17.6 | 16.1 |
Cumulative explained variance (%) | 31.8 | 49.4 | 65.5 |
Dietary Variable | PC1 | PC2 | PC3 |
Folate (B9) | 0.17 | 0.67 | −0.44 |
Cobalamin (B12) | 0.41 | −0.13 | 0.21 |
Riboflavin (B2) | 0.36 | 0.20 | 0.02 |
PLP 1 (B6) | 0.34 | 0.26 | −0.32 |
Methionine | 0.46 | −0.25 | 0.19 |
Cysteine | 0.42 | −0.21 | −0.03 |
Betaine | −0.04 | 0.56 | 0.78 |
Choline | 0.40 | 0.01 | 0.10 |
Proportion of explained variance (%) | 43.3 | 16.8 | 10.7 |
Cumulative explained variance (%) | 43.3 | 60.1 | 70.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.Y.; Van Puyvelde, H.; Regazzetti, L.; Clasen, J.L.; Heath, A.K.; Eussen, S.; Ueland, P.M.; Johansson, M.; Biessy, C.; Zamora-Ros, R.; et al. Association Between Dietary Intake and Blood Concentrations of One-Carbon-Metabolism-Related Nutrients in European Prospective Investigation into Cancer and Nutrition. Nutrients 2025, 17, 1970. https://doi.org/10.3390/nu17121970
Park JY, Van Puyvelde H, Regazzetti L, Clasen JL, Heath AK, Eussen S, Ueland PM, Johansson M, Biessy C, Zamora-Ros R, et al. Association Between Dietary Intake and Blood Concentrations of One-Carbon-Metabolism-Related Nutrients in European Prospective Investigation into Cancer and Nutrition. Nutrients. 2025; 17(12):1970. https://doi.org/10.3390/nu17121970
Chicago/Turabian StylePark, Jin Young, Heleen Van Puyvelde, Lea Regazzetti, Joanna L. Clasen, Alicia K. Heath, Simone Eussen, Per Magne Ueland, Mattias Johansson, Carine Biessy, Raul Zamora-Ros, and et al. 2025. "Association Between Dietary Intake and Blood Concentrations of One-Carbon-Metabolism-Related Nutrients in European Prospective Investigation into Cancer and Nutrition" Nutrients 17, no. 12: 1970. https://doi.org/10.3390/nu17121970
APA StylePark, J. Y., Van Puyvelde, H., Regazzetti, L., Clasen, J. L., Heath, A. K., Eussen, S., Ueland, P. M., Johansson, M., Biessy, C., Zamora-Ros, R., Huerta, J. M., Sánchez, M.-J., Ocke, M., Schulze, M. B., Schiborn, C., Braaten, T. B., Skeie, G., Sacerdote, C., Castilla, J., ... Ferrari, P. (2025). Association Between Dietary Intake and Blood Concentrations of One-Carbon-Metabolism-Related Nutrients in European Prospective Investigation into Cancer and Nutrition. Nutrients, 17(12), 1970. https://doi.org/10.3390/nu17121970