Association between Flavonoid Intake and Cognitive Executive Function among African American and White Adults in the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) Study
Abstract
:1. Introduction
2. Methods
2.1. Study Sample
2.2. Assessment of Flavonoid Intake
2.3. Cognitive Measures
2.4. Statistical Analyses
2.4.1. Basic Model
2.4.2. Demographic Model
2.4.3. Lifestyle Model
2.4.4. Clinical Model
2.4.5. Missing Data
2.4.6. Model Detail
3. Results
3.1. Study Sample Description
3.2. Flavonoid-TMT A and B Associations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hale, J.M.; Schneider, D.C.; Mehta, N.K.; Myrskylä, M. Cognitive impairment in the U.S.: Lifetime risk, age at onset, and years impaired. SSM Popul. Health 2020, 11, 100577. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Cognitive Impairment: A Call for Action, Now! Available online: https://www.cdc.gov/aging/pdf/cognitive_impairment/cogimp_poilicy_final.pdf (accessed on 6 March 2024).
- Jennings, A.; Steves, C.J.; Macgregor, A.; Spector, T.; Cassidy, A. Increased habitual flavonoid intake predicts attenuation of cognitive ageing in twins. BMC Med. 2021, 19, 185. [Google Scholar] [CrossRef]
- Bakoyiannis, I.; Daskalopoulou, A.; Pergialiotis, V.; Perrea, D. Phytochemicals and cognitive health: Are flavonoids doing the trick? Biomed. Pharmacother. 2019, 109, 1488–1497. [Google Scholar] [CrossRef]
- Cheng, N.; Bell, L.; Lamport, D.J.; Williams, C.M. Dietary Flavonoids and Human Cognition: A Meta-Analysis. Mol. Nutr. Food Res. 2022, 66, e2100976. [Google Scholar] [CrossRef] [PubMed]
- Yeh, T.S.; Yuan, C.; Ascherio, A.; Rosner, B.A.; Willett, W.C.; Blacker, D. Long-term Dietary Flavonoid Intake and Subjective Cognitive Decline in US Men and Women. Neurology 2021, 97, e1041–e1056. [Google Scholar] [CrossRef]
- Gardener, S.L.; Rainey-Smith, S.R.; Weinborn, M.; Bondonno, C.P.; Martins, R.N. Intake of Products Containing Anthocyanins, Flavanols, and Flavanones, and Cognitive Function: A Narrative Review. Front. Aging Neurosci. 2021, 13, 640381. [Google Scholar] [CrossRef] [PubMed]
- Cheatham, C.L.; Nieman, D.C.; Neilson, A.P.; Lila, M.A. Enhancing the Cognitive Effects of Flavonoids With Physical Activity: Is There a Case for the Gut Microbiome? Front. Neurosci. 2022, 16, 833202. [Google Scholar] [CrossRef]
- Melrose, J. The Potential of Flavonoids and Flavonoid Metabolites in the Treatment of Neurodegenerative Pathology in Disorders of Cognitive Decline. Antioxidants 2023, 12, 663. [Google Scholar] [CrossRef]
- Chu, Z.; Han, S.; Luo, Y.; Zhou, Y.; Zhu, L.; Luo, F. Targeting gut-brain axis by dietary flavonoids ameliorate aging-related cognition decline: Evidences and mechanisms. Crit. Rev. Food Sci. Nutr. 2023, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Caraci, F.; Castellano, S.; Currenti, W.; Galvano, F.; Ferri, R.; Grosso, G. Association Between Dietary Flavonoids Intake and Cognitive Function in an Italian Cohort. Biomolecules 2020, 10, 1300. [Google Scholar] [CrossRef]
- Shishtar, E.; Rogers, G.T.; Blumberg, J.B.; Au, R.; Jacques, P.F. Long-term dietary flavonoid intake and change in cognitive function in the Framingham Offspring cohort. Public Health Nutr. 2020, 23, 1576–1588. [Google Scholar] [CrossRef] [PubMed]
- Moreira, A.; Diógenes, M.J.; de Mendonça, A.; Lunet, N.; Barros, H. Chocolate Consumption is Associated with a Lower Risk of Cognitive Decline. J. Alzheimers Dis. 2016, 53, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Nooyens, A.C.; Milder, I.E.; van Gelder, B.M.; Bueno-de-Mesquita, H.B.; van Boxtel, M.P.; Verschuren, W.M. Diet and cognitive decline at middle age: The role of antioxidants. Br. J. Nutr. 2015, 113, 1410–1417. [Google Scholar] [CrossRef] [PubMed]
- Root, M.; Ravine, E.; Harper, A. Flavonol Intake and Cognitive Decline in Middle-Aged Adults. J. Med. Food 2015, 18, 1327–1332. [Google Scholar] [CrossRef] [PubMed]
- Letenneur, L.; Proust-Lima, C.; Le Gouge, A.; Dartigues, J.F.; Barberger-Gateau, P. Flavonoid intake and cognitive decline over a 10-year period. Am. J. Epidemiol. 2007, 165, 1364–1371. [Google Scholar] [CrossRef] [PubMed]
- Crichton, G.E.; Bryan, J.; Murphy, K.J. Dietary antioxidants, cognitive function and dementia--a systematic review. Plant Foods Hum. Nutr. 2013, 68, 279–292. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Mental Health. Major Depresssion. Available online: https://www.nimh.nih.gov/health/statistics/major-depression (accessed on 6 March 2024).
- Miller, K.; Feucht, W.; Schmid, M. Bioactive Compounds of Strawberry and Blueberry and Their Potential Health Effects Based on Human Intervention Studies: A Brief Overview. Nutrients 2019, 11, 1510. [Google Scholar] [CrossRef] [PubMed]
- Nicolucci, C.; Padovani, M.; Rodrigues, F.d.C.; Fritsch, L.N.; Santos, A.C.; Priolli, D.G.; Sciani, J.M. Flavonoids: The use in mental health and related diseases. Nat. Prod. Res. 2023, 1–11. [Google Scholar] [CrossRef]
- Calderaro, A.; Patanè, G.T.; Tellone, E.; Barreca, D.; Ficarra, S.; Misiti, F.; Laganà, G. The Neuroprotective Potentiality of Flavonoids on Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 23, 14835. [Google Scholar] [CrossRef]
- Khan, H.; Ullah, H.; Aschner, M.; Cheang, W.S.; Akkol, E.K. Neuroprotective Effects of Quercetin in Alzheimer’s Disease. Biomolecules 2019, 10, 59. [Google Scholar] [CrossRef]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef] [PubMed]
- Bennett, D.A.; Schneider, J.A.; Buchman, A.S.; Barnes, L.L.; Boyle, P.A.; Wilson, R.S. Overview and findings from the Rush Memory and Aging Project. Curr. Alzheimer Res. 2012, 9, 646–663. [Google Scholar] [CrossRef] [PubMed]
- Fanelli Kuczmarski, M.; Sebastian, R.S.; Goldman, J.D.; Murayi, T.; Steinfeldt, L.C.; Eosso, J.R.; Moshfegh, A.J.; Zonderman, A.B.; Evans, M.K. Dietary Flavonoid Intakes Are Associated with Race but Not Income in an Urban Population. Nutrients 2018, 10, 1749. [Google Scholar] [CrossRef] [PubMed]
- National Institiute on Aging. Healthy Aging in Neighborhoods of Diversity across the Life Span Study Design. Available online: https://handls.nih.gov/01Design.htm (accessed on 15 November 2023).
- National Institutes of Health; National Institute on Aging; Intramural Research Program. Healthy Aging in Neighborhoods of Diversity across the Life Span. Available online: https://handls.nih.gov/02Protocol.htm (accessed on 6 March 2024).
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Mini-Mental State Examination. Available online: https://www.physio-pedia.com/Mini-Mental_State_Examination (accessed on 6 March 2024).
- Steinfeldt, L.; Anand, J.; Murayi, T. Food reporting patterns in the USDA Automated Multiple-Pass Method. Procedia Food Sci. 2013, 2, 145–156. [Google Scholar] [CrossRef]
- US Department of Agriculture. Food and Nutrient Database for Dietary Studies. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fndds-download-databases/ (accessed on 3 March 2024).
- Sebastian, R.S.; Fanelli Kuczmarski, M.; Wilkinson Enns, C.; Goldman, J.D.; Murayi, T.; Moshfegh, A.J.; Zonderman, A.B.; Evans, M.K. Application of the Database of Flavonoid Values for USDA Food Codes 2007–2010 in Assessing Intake Differences between the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) Study and What We Eat in America (WWEIA), NHANES. J Food Compost Anal 2021, 104, 104124. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, R.S.; Wilkinson Enns, C.; Goldman, J.D.; Martin, C.L.; Steinfeldt, L.C.; Murayi, T.; Moshfegh, A.J. A New Database Facilitates Characterization of Flavonoid Intake, Sources, and Positive Associations with Diet Quality among US Adults. J. Nutr. 2015, 145, 1239–1248. [Google Scholar] [CrossRef] [PubMed]
- Reitan, R.M. Validity of the Trail Making Test as an indicator of organic brain damage. Percept. Mot. Ski. 1958, 8, 271–276. [Google Scholar] [CrossRef]
- Corrigan, J.D.; Hinkeldey, N.S. Relationships between parts A and B of the Trail Making Test. J. Clin. Psychol. 1987, 43, 402–409. [Google Scholar] [CrossRef]
- US Department of Health and Human Services. The 2004 HHS Poverty Guidelines. Available online: https://aspe.hhs.gov/2004-hhs-poverty-guidelines (accessed on 3 March 2024).
- Wilkinson, G.G. The Wide Range Achievement Test: Manual, 3rd ed.; Wide Range: Wilmington, DE, USA, 1993. [Google Scholar]
- Kim, M.; Park, J.M. Factors affecting cognitive function according to gender in community-dwelling elderly individuals. Epidemiol. Health 2017, 39, e2017054. [Google Scholar] [CrossRef]
- Gil-Peinado, M.; Alacreu, M.; Ramos, H.; Sendra-Lillo, J.; García, C.; García-Lluch, G.; Lopez de Coca, T.; Sala, M.; Moreno, L. The A-to-Z factors associated with cognitive impairment. Results of the DeCo study. Front. Psychol. 2023, 14, 1152527. [Google Scholar] [CrossRef] [PubMed]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T., Jr.; et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003, 42, 1206–1252. [Google Scholar] [CrossRef] [PubMed]
- Radloff, L.S. The CES-D scale: A self-report depression scale for research in the general population. Appl. Psychol. Meas. 1977, 1, 385–401. [Google Scholar] [CrossRef]
- Austin, P.C.; White, I.R.; Lee, D.S.; van Buuren, S. Missing Data in Clinical Research: A Tutorial on Multiple Imputation. Can. J. Cardiol. 2021, 37, 1322–1331. [Google Scholar] [CrossRef] [PubMed]
- Lamport, D.J.; Saunders, C.; Butler, L.T.; Spencer, J.P. Fruits, vegetables, 100% juices, and cognitive function. Nutr. Rev. 2014, 72, 774–789. [Google Scholar] [CrossRef] [PubMed]
- Socci, V.; Tempesta, D.; Desideri, G.; De Gennaro, L.; Ferrara, M. Enhancing Human Cognition with Cocoa Flavonoids. Front. Nutr. 2017, 4, 19. [Google Scholar] [CrossRef] [PubMed]
- Desideri, G.; Kwik-Uribe, C.; Grassi, D.; Necozione, S.; Ghiadoni, L.; Mastroiacovo, D.; Raffaele, A.; Ferri, L.; Bocale, R.; Lechiara, M.C.; et al. Benefits in cognitive function, blood pressure, and insulin resistance through cocoa flavanol consumption in elderly subjects with mild cognitive impairment: The Cocoa, Cognition, and Aging (CoCoA) study. Hypertension 2012, 60, 794–801. [Google Scholar] [CrossRef] [PubMed]
- Mastroiacovo, D.; Kwik-Uribe, C.; Grassi, D.; Necozione, S.; Raffaele, A.; Pistacchio, L.; Righetti, R.; Bocale, R.; Lechiara, M.C.; Marini, C.; et al. Cocoa flavanol consumption improves cognitive function, blood pressure control, and metabolic profile in elderly subjects: The Cocoa, Cognition, and Aging (CoCoA) Study—A randomized controlled trial. Am. J. Clin. Nutr. 2015, 101, 538–548. [Google Scholar] [CrossRef]
- Brickman, A.M.; Khan, U.A.; Provenzano, F.A.; Yeung, L.K.; Suzuki, W.; Schroeter, H.; Wall, M.; Sloan, R.P.; Small, S.A. Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults. Nat. Neurosci. 2014, 17, 1798–1803. [Google Scholar] [CrossRef]
- Lamport, D.J.; Williams, C.M. Polyphenols and Cognition In Humans: An Overview of Current Evidence from Recent Systematic Reviews and Meta-Analyses. Brain Plast. 2021, 6, 139–153. [Google Scholar] [CrossRef]
- Kesse-Guyot, E.; Fezeu, L.; Andreeva, V.A.; Touvier, M.; Scalbert, A.; Hercberg, S.; Galan, P. Total and specific polyphenol intakes in midlife are associated with cognitive function measured 13 years later. J. Nutr. 2012, 142, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Bell, L.; Lamport, D.J.; Butler, L.T.; Williams, C.M. A Review of the Cognitive Effects Observed in Humans Following Acute Supplementation with Flavonoids, and Their Associated Mechanisms of Action. Nutrients 2015, 7, 10290–10306. [Google Scholar] [CrossRef] [PubMed]
- Crowe-White, K.M.; Evans, L.W.; Kuhnle, G.G.C.; Milenkovic, D.; Stote, K.; Wallace, T.; Handu, D.; Senkus, K.E. Flavan-3-ols and Cardiometabolic Health: First Ever Dietary Bioactive Guideline. Adv. Nutr. 2022, 13, 2070–2083. [Google Scholar] [CrossRef] [PubMed]
- Fanelli Kuczmarski, M.; Beydoun, M.A.; Georgescu, M.F.; Noren Hooten, N.; Mode, N.A.; Evans, M.K.; Zonderman, A.B. Diet Quality Trajectories over Adulthood in a Biracial Urban Sample from the Healthy Aging in Neighborhoods of Diversity across the Life Span Study. Nutrients 2023, 15, 3099. [Google Scholar] [CrossRef] [PubMed]
- Spencer, S.J.; Korosi, A.; Layé, S.; Shukitt-Hale, B.; Barrientos, R.M. Food for thought: How nutrition impacts cognition and emotion. NPJ Sci. Food 2017, 1, 7. [Google Scholar] [CrossRef]
- Ahles, S.; Joris, P.J.; Plat, J. Effects of Berry Anthocyanins on Cognitive Performance, Vascular Function and Cardiometabolic Risk Markers: A Systematic Review of Randomized Placebo-Controlled Intervention Studies in Humans. Int. J. Mol. Sci. 2021, 22, 6482. [Google Scholar] [CrossRef] [PubMed]
- Salthouse, T.A. What cognitive abilities are involved in trail-making performance? Intelligence 2011, 39, 222–232. [Google Scholar] [CrossRef] [PubMed]
- MacPherson, S.E.; Cox, S.R.; Dickie, D.A.; Karama, S.; Starr, J.M.; Evans, A.C.; Bastin, M.E.; Wardlaw, J.M.; Deary, I.J. Processing speed and the relationship between Trail Making Test-B performance, cortical thinning and white matter microstructure in older adults. Cortex 2017, 95, 92–103. [Google Scholar] [CrossRef]
- Salthouse, T.A. Cognitive correlates of cross-sectional differences and longitudinal changes in trail making performance. J. Clin. Exp. Neuropsychol. 2011, 33, 242–248. [Google Scholar] [CrossRef]
- Harada, C.N.; Natelson Love, M.C.; Triebel, K.L. Normal cognitive aging. Clin. Geriatr. Med. 2013, 29, 737–752. [Google Scholar] [CrossRef]
- Dietary Guidelines Advisory Committee. Scientific Report of the 2015 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture; U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2015.
- CDC. Cigarette Smoking Among Adults—United States, 2004. In MMWR Weekly; CDC: Atlanta, GA USA, 2005; Volume 54, pp. 1121–1124. [Google Scholar]
- Ott, A.; Andersen, K.; Dewey, M.E.; Letenneur, L.; Brayne, C.; Copeland, J.R.; Dartigues, J.F.; Kragh-Sorensen, P.; Lobo, A.; Martinez-Lage, J.M.; et al. Effect of smoking on global cognitive function in nondemented elderly. Neurology 2004, 62, 920–924. [Google Scholar] [CrossRef] [PubMed]
- Singh, L.; Chandra, R.; Pai, M.; Singh, A.; Mazumdar, S.; Balhara, Y.P.S.; Singh, P.K.; Singh, S. How Does Tobacco Use Affect the Cognition of Older Adults? A Propensity Score Matching Analysis based on a Large-Scale Survey. Nicotine Tob. Res. 2023, 26, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, T.C.; Meyerhoff, D.J.; Nixon, S.J. A comprehensive assessment of neurocognition in middle-aged chronic cigarette smokers. Drug Alcohol. Depend. 2012, 122, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Beydoun, M.A.; Fanelli-Kuczmarski, M.T.; Beydoun, H.A.; Dore, G.A.; Canas, J.A.; Evans, M.K.; Zonderman, A.B. Dairy product consumption and its association with metabolic disturbance in a prospective study of urban adults. Br. J. Nutr. 2018, 119, 706–719. [Google Scholar] [CrossRef] [PubMed]
- Wright, R.S.; Waldstein, S.R.; Kuczmarski, M.F.; Pohlig, R.T.; Gerassimakis, C.S.; Gaynor, B.; Evans, M.K.; Zonderman, A.B. Diet quality and cognitive function in an urban sample: Findings from the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) study. Public Health Nutr. 2017, 20, 92–101. [Google Scholar] [CrossRef]
- Cotugna, N.; Fanelli-Kuczmarski, M.; Clymer, J.; Hotchkiss, L.; Zonderman, A.B.; Evans, M.K. Sodium intake of special populations in the Healthy Aging in Neighborhoods of Diversity Across the Life Span (HANDLS) study. Prev. Med. 2013, 57, 334–338. [Google Scholar] [CrossRef]
- Ogden, C.L.; Carroll, M.D.; Curtin, L.R.; McDowell, M.A.; Tabak, C.J.; Flegal, K.M. Prevalence of overweight and obesity in the United States, 1999–2004. JAMA 2006, 295, 1549–1555. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.K.; Toth, P.P. Trends in Lipids, Obesity, Metabolic Syndrome, and Diabetes Mellitus in the United States: An NHANES Analysis (2003–2004 to 2013–2014). Obes. (Silver Spring) 2019, 27, 309–314. [Google Scholar] [CrossRef]
- Ong, K.L.; Cheung, B.M.; Man, Y.B.; Lau, C.P.; Lam, K.S. Prevalence, awareness, treatment, and control of hypertension among United States adults 1999–2004. Hypertension 2007, 49, 69–75. [Google Scholar] [CrossRef]
- Poslusna, K.; Ruprich, J.; de Vries, J.H.; Jakubikova, M.; van’t Veer, P. Misreporting of energy and micronutrient intake estimated by food records and 24 h recalls, control and adjustment methods in practice. Br. J. Nutr. 2009, 101 (Suppl. S2), S73–S85. [Google Scholar] [CrossRef]
- Scarmeas, N.; Anastasiou, C.A.; Yannakoulia, M. Nutrition and prevention of cognitive impairment. Lancet Neurol. 2018, 17, 1006–1015. [Google Scholar] [CrossRef] [PubMed]
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [CrossRef] [PubMed]
Characteristic | All Adults (n = 1947) | White Adults (n = 823) | African American Adults (n = 1124) |
---|---|---|---|
Energy Intake (kcal/d) | 2015 ± 22 | 2036 ± 32 | 1999 ± 30 |
Age, years | 48.06 ± 0.21 | 48.28 ± 0.33 | 47.90 ± 0.28 |
WRAT3 score | 43.09 ± 0.16 | 45.89 ± 0.23 | 41.05 ± 0.21 |
CES-D | 14.58 ± 0.25 | 14.80 ± 0.40 | 14.41 ± 0.32 |
Body Mass Index | 29.98 ± 0.18 | 30.05 ± 0.26 | 29.93 ± 0.23 |
Education (yrs) | 12.31 ± 0.06 | 12.56 ± 0.10 | 12.13 ± 0.07 |
% ± SE | % ± SE | % ± SE | |
Male Sex | 41.60 ± 1.12 | 40.58 ± 1.71 | 42.35 ± 1.47 |
Poverty < 125% a | 42.01 ± 1.12 | 31.11 ± 1.61 | 50.00 ± 1.49 |
High Cholesterol | 49.25 ± 1.18 | 56.37 ± 1.81 | 44.03 ± 1.56 |
Diabetes | 15.83 ± 0.83 | 15.80 ± 1.29 | 15.85 ± 1.10 |
Hypertension | 44.58 ± 1.14 | 38.13 ± 1.72 | 49.31 ± 1.50 |
Current smoker | 47.24 ± 1.16 | 43.78 ± 1.80 | 49.78 ± 1.54 |
Current drug user b | 17.84 ± 0.89 | 12.29 ± 1.18 | 21.90 ± 1.27 |
Characteristic | Median | IQR (Q1–Q3) | |
---|---|---|---|
Total | 253.31 ± 11.54 | 68.11 | (19.66–297.47) |
Flavonols | 18.14 ± 0.46 | 12.85 | (6.18–23.69) |
Flavones | 0.62 ± 0.02 | 0.32 | (0.11–0.76) |
Flavanones | 12.44 ± 0.62 | 0.38 | (0.00–11.82) |
Flavan-3-ols | 214.43 ± 11.13 | 14.73 | (3.30–248.11) |
Anthocyanins | 6.61 ± 0.45 | 0.36 | (0.00–3.39) |
TMT-A | 37.88 ± 1.06 | 31.00 | (25.00–41.00) |
TMT-B | 144.58 ± 3.53 | 87.00 | (62.00–139.00) |
Basic Model b | Demographic Model c | Lifestyle Model d | Clinical Model e | |||||
---|---|---|---|---|---|---|---|---|
SE | p-Value | SE | p-Value | SE | p-Value | SE | p-Value | |
Flavonoid Main Effect: Association between visit 1 flavonoid intake and visit 1 ln(TMT-A) | ||||||||
Total Flavonoids | −0.00034 ± 0.00019 | 0.065 | 0.00011 ± 0.00017 | 0.523 | 0.00014 ± 0.00017 | 0.401 | 0.00005 ± 0.00017 | 0.759 |
Flavones | −0.20026 ± 0.09613 | 0.037 | 0.08503 ± 0.08817 | 0.335 | 0.13137 ± 0.08862 | 0.138 | 0.08991 ± 0.08762 | 0.305 |
Flavonols | −0.01021 ± 0.00468 | 0.029 | 0.00131 ± 0.00426 | 0.759 | 0.00491 ± 0.00433 | 0.256 | 0.00067 ± 0.00424 | 0.874 |
Flavonones | −0.00209 ± 0.00350 | 0.549 | −0.00461 ± 0.00316 | 0.144 | −0.00308 ± 0.00318 | 0.332 | −0.00399 ± 0.00314 | 0.205 |
Flavan-3-ols | −0.00032 ± 0.00019 | 0.096 | 0.00013 ± 0.00018 | 0.453 | 0.00015 ± 0.00018 | 0.381 | 0.00007 ± 0.00017 | 0.697 |
Anthocyanidins | −0.01301 ± 0.00473 | 0.006 | −0.00395 ± 0.00432 | 0.361 | −0.00199 ± 0.00434 | 0.647 | −0.00281 ± 0.00431 | 0.514 |
Flavonoid*Time Interaction: Association between visit 1 flavonoid intake and change in ln(TMT-A) over time | ||||||||
Total Flavonoids | −0.00001 ± 0.00002 | 0.823 | −0.00001 ± 0.00002 | 0.618 | −0.00001 ± 0.00002 | 0.634 | −0.00001 ± 0.00002 | 0.631 |
Flavones | −0.02099 ± 0.01207 | 0.082 | −0.02334 ± 0.01195 | 0.051 | −0.02449 ± 0.01196 | 0.041 | −0.02318 ± 0.01195 | 0.052 |
Flavonols | 0.00003 ± 0.00059 | 0.964 | −0.00012 ± 0.00059 | 0.838 | −0.00010 ± 0.00059 | 0.863 | −0.00015 ± 0.00059 | 0.798 |
Flavonones | −0.00017 ± 0.00043 | 0.690 | −0.00027 ± 0.00043 | 0.526 | −0.00028 ± 0.00043 | 0.506 | −0.00024 ± 0.00043 | 0.569 |
Flavan-3-ols | 0.00000 ± 0.00002 | 0.864 | −0.00001 ± 0.00002 | 0.673 | −0.00001 ± 0.00002 | 0.688 | −0.00001 ± 0.00002 | 0.682 |
Anthocyanidins | −0.00003 ± 0.00050 | 0.953 | −0.00018 ± 0.00049 | 0.719 | −0.00018 ± 0.00049 | 0.717 | −0.00014 ± 0.00049 | 0.770 |
Basic Model b | Demographic Model c | Lifestyle Model d | Clinical Model e | |||||
---|---|---|---|---|---|---|---|---|
p-Value | p-Value | p-Value | p-Value | |||||
Flavonoid Main Effect: Association between visit 1 flavonoid intake and visit 1 ln(TMT-B) | ||||||||
Total Flavonoids | −0.00105 ± 0.00031 | 0.001 | −0.00015 ± 0.00027 | 0.586 | −0.00011 ± 0.00027 | 0.684 | −0.00022 ± 0.00026 | 0.410 |
Flavones | −0.88659 ± 0.16112 | <0.001 | −0.15912 ± 0.13936 | 0.254 | −0.10337 ± 0.14033 | 0.461 | −0.13482 ± 0.13754 | 0.327 |
Flavonols | −0.03028 ± 0.00787 | <0.001 | −0.00363 ± 0.00673 | 0.590 | 0.00078 ± 0.00685 | 0.910 | −0.00422 ± 0.00665 | 0.526 |
Flavonones | 0.00860 ± 0.00589 | 0.144 | 0.00591 ± 0.00499 | 0.237 | 0.00813 ± 0.00502 | 0.106 | 0.00738 ± 0.00493 | 0.134 |
Flavan-3-ols | −0.00103 ± 0.00033 | 0.002 | −0.00016 ± 0.00028 | 0.569 | −0.00014 ± 0.00028 | 0.621 | −0.00025 ± 0.00027 | 0.372 |
Anthocyanidins | −0.03067 ± 0.00799 | <0.001 | −0.00381 ± 0.00686 | 0.578 | −0.00120 ± 0.00689 | 0.862 | −0.00115 ± 0.00678 | 0.865 |
Flavonoid*Time Interaction: Association between visit 1 flavonoid intake and change in ln(TMT-B) over time | ||||||||
Total Flavonoids | 0.00007 ± 0.00003 | 0.033 | 0.00006 ± 0.00003 | 0.070 | 0.00006 ± 0.00003 | 0.067 | 0.00005 ± 0.00003 | 0.091 |
Flavones | 0.01514 ± 0.01644 | 0.358 | 0.01254 ± 0.01630 | 0.442 | 0.01169 ± 0.01633 | 0.474 | 0.01189 ± 0.01629 | 0.466 |
Flavonols | 0.00177 ± 0.00082 | 0.031 | 0.00152 ± 0.00081 | 0.059 | 0.00154 ± 0.00081 | 0.057 | 0.00131 ± 0.00081 | 0.105 |
Flavonones | −0.00038 ± 0.00059 | 0.521 | −0.00052 ± 0.00059 | 0.370 | −0.00054 ± 0.00059 | 0.360 | −0.00055 ± 0.00059 | 0.345 |
Flavan-3-ols | 0.00007 ± 0.00003 | 0.033 | 0.00006 ± 0.00003 | 0.067 | 0.00006 ± 0.00003 | 0.064 | 0.00006 ± 0.00003 | 0.085 |
Anthocyanidins | 0.00044 ± 0.00068 | 0.520 | 0.00027 ± 0.00067 | 0.684 | 0.00026 ± 0.00067 | 0.697 | 0.00025 ± 0.00067 | 0.714 |
Basic Model b | Demographic Model c | Lifestyle Model d | Clinical Model e | |||||
---|---|---|---|---|---|---|---|---|
p-Value | p-Value | p-Value | p-Value | |||||
Flavonoid Main Effect: Association between visit 1 flavonoid intake and visit 1 ln(TMT-B) | ||||||||
Total Flavonoids | −0.00027 ± 0.00030 | 0.371 | −0.00018 ± 0.00026 | 0.505 | −0.00016 ± 0.00026 | 0.539 | −0.00024 ± 0.00026 | 0.364 |
Flavones | −0.74494 ± 0.17815 | <0.001 | −0.34641 ± 0.15731 | 0.028 | −0.31370 ± 0.15890 | 0.048 | −0.33389 ± 0.15590 | 0.032 |
Flavonols | −0.01483 ± 0.00817 | 0.070 | −0.00545 ± 0.00705 | 0.439 | −0.00389 ± 0.00713 | 0.585 | −0.00635 ± 0.00700 | 0.364 |
Flavonones | −0.01065 ± 0.00967 | 0.271 | −0.00173 ± 0.00845 | 0.838 | −0.00008 ± 0.00850 | 0.992 | 0.00119 ± 0.00839 | 0.887 |
Flavan-3-ols | −0.00019 ± 0.00032 | 0.538 | −0.00015 ± 0.00027 | 0.588 | −0.00014 ± 0.00027 | 0.610 | −0.00022 ± 0.00027 | 0.420 |
Anthocyanidins | −0.04363 ± 0.00896 | <0.001 | −0.02208 ± 0.00802 | 0.006 | −0.02080 ± 0.00806 | 0.010 | −0.02031 ± 0.00797 | 0.011 |
Flavonoid*Time Interaction: Association between visit 1 flavonoid intake and change in ln(TMT-B) over time | ||||||||
Total Flavonoids | 0.00005 ± 0.00003 | 0.118 | 0.00004 ± 0.00003 | 0.211 | 0.00004 ± 0.00003 | 0.204 | 0.00004 ± 0.00003 | 0.221 |
Flavones | 0.02941 ± 0.01983 | 0.138 | 0.02882 ± 0.01967 | 0.143 | 0.02839 ± 0.01973 | 0.150 | 0.03199 ± 0.01963 | 0.103 |
Flavonols | 0.00161 ± 0.00087 | 0.063 | 0.00133 ± 0.00086 | 0.120 | 0.00135 ± 0.00086 | 0.117 | 0.00125 ± 0.00086 | 0.145 |
Flavonones | −0.00033 ± 0.00117 | 0.778 | −0.00042 ± 0.00115 | 0.713 | −0.00046 ± 0.00116 | 0.693 | −0.00050 ± 0.00115 | 0.664 |
Flavan-3-ols | 0.00005 ± 0.00003 | 0.133 | 0.00004 ± 0.00003 | 0.230 | 0.00004 ± 0.00003 | 0.221 | 0.00004 ± 0.00003 | 0.237 |
Anthocyanidins | 0.00112 ± 0.00081 | 0.169 | 0.00091 ± 0.00080 | 0.259 | 0.00088 ± 0.00081 | 0.274 | 0.00085 ± 0.00080 | 0.287 |
Basic Model b | Demographic Model c | Lifestyle Model d | Clinical Model e | |||||
---|---|---|---|---|---|---|---|---|
p-Value | p-Value | p-Value | p-Value | |||||
Flavonoid Main Effect: Association between visit 1 flavonoid intake and visit 1 ln(TMT-B) | ||||||||
Total Flavonoids | −0.00044 ± 0.00078 | 0.572 | 0.00028 ± 0.00069 | 0.689 | 0.00041 ± 0.00069 | 0.552 | 0.00037 ± 0.00068 | 0.584 |
Flavones | −0.30104 ± 0.27141 | 0.268 | 0.12748 ± 0.24401 | 0.601 | 0.21299 ± 0.24538 | 0.385 | 0.15898 ± 0.24035 | 0.508 |
Flavonols | −0.00647 ± 0.01531 | 0.673 | 0.00451 ± 0.01380 | 0.744 | 0.01712 ± 0.01434 | 0.233 | 0.00721 ± 0.01360 | 0.596 |
Flavonones | 0.00499 ± 0.00705 | 0.479 | 0.00868 ± 0.00629 | 0.168 | 0.01140 ± 0.00634 | 0.072 | 0.00915 ± 0.00620 | 0.140 |
Flavan-3-ols | −0.00057 ± 0.00081 | 0.481 | 0.00008 ± 0.00072 | 0.914 | 0.00014 ± 0.00072 | 0.847 | 0.00015 ± 0.00071 | 0.828 |
Anthocyanidins | 0.01909 ± 0.01283 | 0.137 | 0.02348 ± 0.01144 | 0.040 | 0.02879 ± 0.01153 | 0.013 | 0.02559 ± 0.01127 | 0.023 |
Flavonoid*Time Interaction: Association between visit 1 flavonoid intake and change in ln(TMT-B) over time | ||||||||
Total Flavonoids | 0.00008 ± 0.00008 | 0.293 | 0.00008 ± 0.00008 | 0.329 | 0.00008 ± 0.00008 | 0.318 | 0.00006 ± 0.00008 | 0.444 |
Flavones | −0.01426 ± 0.02592 | 0.582 | −0.01687 ± 0.02578 | 0.513 | −0.01925 ± 0.02584 | 0.456 | −0.02176 ± 0.02583 | 0.399 |
Flavonols | 0.00108 ± 0.00159 | 0.497 | 0.00110 ± 0.00158 | 0.486 | 0.00113 ± 0.00158 | 0.475 | 0.00056 ± 0.00158 | 0.723 |
Flavonones | −0.00025 ± 0.00071 | 0.727 | −0.00040 ± 0.00071 | 0.577 | −0.00041 ± 0.00071 | 0.563 | −0.00041 ± 0.00071 | 0.562 |
Flavan-3-ols | 0.00010 ± 0.00008 | 0.241 | 0.00009 ± 0.00008 | 0.264 | 0.00009 ± 0.00008 | 0.255 | 0.00008 ± 0.00008 | 0.359 |
Anthocyanidins | −0.00108 ± 0.00109 | 0.321 | −0.00106 ± 0.00108 | 0.325 | −0.00108 ± 0.00108 | 0.317 | −0.00109 ± 0.00108 | 0.313 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fanelli Kuczmarski, M.; Crawford, S.B.; Sebastian, R.S.; Beydoun, M.A.; Goldman, J.D.; Moshfegh, A.J.; Evans, M.K.; Zonderman, A.B. Association between Flavonoid Intake and Cognitive Executive Function among African American and White Adults in the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) Study. Nutrients 2024, 16, 1360. https://doi.org/10.3390/nu16091360
Fanelli Kuczmarski M, Crawford SB, Sebastian RS, Beydoun MA, Goldman JD, Moshfegh AJ, Evans MK, Zonderman AB. Association between Flavonoid Intake and Cognitive Executive Function among African American and White Adults in the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) Study. Nutrients. 2024; 16(9):1360. https://doi.org/10.3390/nu16091360
Chicago/Turabian StyleFanelli Kuczmarski, Marie, Sara B. Crawford, Rhonda S. Sebastian, May A. Beydoun, Joseph D. Goldman, Alanna J. Moshfegh, Michele K. Evans, and Alan B. Zonderman. 2024. "Association between Flavonoid Intake and Cognitive Executive Function among African American and White Adults in the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) Study" Nutrients 16, no. 9: 1360. https://doi.org/10.3390/nu16091360
APA StyleFanelli Kuczmarski, M., Crawford, S. B., Sebastian, R. S., Beydoun, M. A., Goldman, J. D., Moshfegh, A. J., Evans, M. K., & Zonderman, A. B. (2024). Association between Flavonoid Intake and Cognitive Executive Function among African American and White Adults in the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) Study. Nutrients, 16(9), 1360. https://doi.org/10.3390/nu16091360