Black Trumpet [Craterellus cornucopioides (L.) Pers.]—Bioactive Properties and Prospects for Application in Medicine and Production of Health-Promoting Food
Abstract
:1. Introduction
2. Characteristics and Occurrence
3. Chemical Composition
3.1. Proximate Composition
3.2. β-Glucans
3.3. Fatty Acids
3.4. Mineral Composition
3.5. Vitamins
3.5.1. Ascorbic Acid
3.5.2. Tocopherols
3.5.3. Other Vitamins
3.5.4. β-Carotene
3.6. Lycopene
3.7. Phenolic Compounds, Flavonoids, and Tannins
3.8. Ingredients Influencing the Sensory Properties of Black Trumpet
3.8.1. Sugars and Polyols
3.8.2. Amino Acids and Free Nucleotides
3.9. Other Ingredients
4. Bioactivity of Black Trumpet Fruiting Bodies
4.1. Antioxidant Activity
4.2. Immunostimulating and Anti-Inflammatory Effects
4.3. Antibacterial, Antifungal, and Antiviral Effects
4.4. Anticancer Effect
4.5. Antihyperglycemic Effect
4.6. Other Activity
5. Possibilities of Using Black Trumpet Fruiting Bodies in Food Production
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bumbu, M.-G.; Niculae, M.; Ielciu, I.; Hanganu, D.; Oniga, I.; Benedec, D.; Nechita, M.-A.; Nechita, V.-I.; Marcus, I. Comprehensive review of functional and nutraceutical properties of Craterellus cornucopioides (L.) Pers. Nutrients 2024, 16, 831. [Google Scholar] [CrossRef] [PubMed]
- Dahlman, M.; Danell, E.; Spatafora, J.W. Molecular systematics of Craterellus: Cladistic analysis of nuclear LSU rDNA sequence data. Mycol. Res. 2000, 104, 388–394. [Google Scholar] [CrossRef]
- Pilz, D.; Norvell, L.; Danell, E.; Molina, R. Ecology and Management of Commercially Harvested Chanterelle Mushrooms; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Jefferson Way: Corvallis, OR, USA, 2002; p. 35.
- Škubla, P. Wielki Atlas Grzybów; Elipsa: Poznań, Poland, 2007; ISBN 978-83-245-9550-1. [Google Scholar]
- Gry, J.; Andersson, C. Mushrooms Traded as Food. Vol II Sec. 2. Nordic Risk Assessments and Background on Edible Mushrooms, Suitable for Commercial Marketing and Background Lists for Industry, Trade and Food Inspection. Risk Assessments of Mushrooms on the Four Guidance Lists; Norden Nordic Council of Ministers: Copenhagen, Denmark, 2014; pp. 169–170. [Google Scholar]
- Anusiya, G.; Gowthama Prabu, U.; Yamini, N.V.; Sivarajasekar, N.; Rambabu, K.; Bharath, G.; Banat, F. A review of the therapeutic and biological effects of edible and wild mushrooms. Bioengineered 2021, 12, 11239–11268. [Google Scholar] [CrossRef] [PubMed]
- ColFungi. Useful Fungi of Colombia. Facilitated by the Royal Botanic Gardens, Kew. Available online: https://colfungi.org/taxon/urn:lsid:indexfungorum.org:names:153130 (accessed on 13 February 2024).
- Bulam, S.; Üstün, N.S.; Pekşen, A. The Most Popular Edible Wild Mushrooms in Vezirköprü District of Samsun Province. Turk. J. Agric.-Food Sci. Technol. 2018, 6, 189–194. [Google Scholar] [CrossRef]
- Yamada, A. Cultivation studies of edible ectomycorrhizal mushrooms: Successful establishment of ectomycorrhizal associations in vitro and efficient production of fruiting bodies. Mycoscience 2022, 63, 235–246. [Google Scholar] [CrossRef]
- Barros, L.; Cruz, T.; Baptista, P.; Estevinho, L.M.; Ferreira, I.C.F.R. Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food Chem. Toxicol. 2008, 46, 2742–2747. [Google Scholar] [CrossRef]
- Colak, A.; Faiz, Ö.; Sesli, E. Nutritional Composition of Some Wild Edible Mushrooms. Turk. J. Biochem. 2009, 34, 25–31. [Google Scholar]
- Beluhan, S.; Ranogajec, A. Chemical composition and non-volatile components of Croatian wild edible mushrooms. Food Chem. 2011, 124, 1076–1082. [Google Scholar] [CrossRef]
- Radović, J.; Leković, A.; Tačić, A.; Dodevska, M.; Stanojković, T.; Marinković, T.; Jelić, Č.; Kundaković-Vasović, T. Black Trumpet, Craterellus cornucopioides (L.) Pers.: Culinary mushroom with Angiotensin Converting Enzyme Inhibitory and Cytotoxic Activity. Polish J. Food Nutr. Sci. 2022, 72, 171–181. [Google Scholar] [CrossRef]
- Odoh, R.; Ugwuja, D.I.; Udegbunam, I.S. Proximate composition and mineral profiles of selected edible mushroom consumed in northern part of Nigeria. Acad. J. Sci. Res. 2017, 5, 349–364. [Google Scholar] [CrossRef]
- Dimopoulou, M.; Kolonas, A.; Mourtakos, S.; Androutsos, O.; Gortzi, O. Nutritional Composition and Biological Properties of Sixteen Edible Mushroom Species. Appl. Sci. 2022, 12, 8074. [Google Scholar] [CrossRef]
- Ouali, Z.; Chaar, H.; Venturella, G.; Cirlincione, F.; Gargano, M.L.; Jaouani, A. Chemical composition and nutritional value of nine wild edible mushrooms from Northwestern Tunisia. Ital. J. Mycol. 2023, 52, 32–49. [Google Scholar] [CrossRef]
- Turfan, N.; Pekşen, A.; Kibar, B.; Ünal, S. Determination of nutritional and bioactive properties in some selected wild growing and cultivated mushrooms from Turkey. Acta Sci. Pol. Hortorum Cultus 2018, 17, 57–72. [Google Scholar] [CrossRef]
- Vetter, J. Chemische Zusammensetzung von acht ebaren Pilzarten. Z. Lebensm. Unters. Forsch. 1993, 196, 224–227. [Google Scholar] [CrossRef] [PubMed]
- Özcan, Ö.; Ertan, F. Beta-glucan Content, Antioxidant and Antimicrobial Activities of Some Edible Mushroom Species. Food Sci. Technol. 2018, 6, 47–55. [Google Scholar] [CrossRef]
- Mirończuk-Chodakowska, I.; Witkowska, A.M.; Zujko, M.E.; Terlikowska, K.M. Quantitative evaluation of 1,3-1,6-β-D-glucan contents in wild-growing species of edible polish mushrooms. Rocz. Panstw. Zakl. Hig. 2017, 68, 281–290. [Google Scholar] [PubMed]
- Guo, M.-Z.; Meng, M.; Duan, S.-Q.; Feng, C.-C.; Wang, C.-L. Structure characterization, physicochemical property and immunomodulatory activity on RAW264.7 cells of a novel triple-helix polysaccharide from Craterellus cornucopioides. Int. J. Biol. Macromol. 2019, 126, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.-Z.; Meng, M.; Feng, C.-C.; Wang, X.; Wang, C.-L. A novel polysaccharide obtained from Craterellus cornucopioides enhances immunomodulatory activity in immunosuppressive mice models via regulation of the TLR4-NF-κB pathway. Food Funct. 2019, 10, 4792–4801. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, S.; Gürgen, A.; Ϛevik, U. Accumulation of metals in some wild and cultivated mushroom species. Sigma J. Eng. Nat. Sci. 2019, 37, 1375–1384. [Google Scholar]
- Liu, Y.T.; Sun, J.; Luo, Z.Y.; Rao, S.Q.; Su, Y.J.; Xu, R.R.; Yang, Y.J. Chemical composition of five wild edible mushrooms collected from Southwest China and their antihyperglycemic and antioxidant activity. Food Chem. Toxicol. 2012, 50, 1238–1244. [Google Scholar] [CrossRef]
- Cağlarirmak, N. Edible mushrooms: An alternative food item. In Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products (ICMBMP7), Arcachon, France, 4–7 October 2011; pp. 548–554. [Google Scholar]
- Vamanu, E.; Nita, S. Biological activity of fluidized bed ethanol extracts from several edible mushrooms. Food Sci. Biotechnol. 2014, 23, 1483–1490. [Google Scholar] [CrossRef]
- Gil-Ramirez, A.; Clavijo, C.; Palanisamy, M.; Soler-Rivas, C.; Ruiz-Rodriguez, A.; Marin, F.R.; Reglero, G.; Perez, M. Edible mushrooms as potential sources of new hypocholesterolemic compounds. In Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products (ICMBMP7), Arcachon, France, 4–7 October 2011; pp. 110–119. [Google Scholar]
- Villares, A.; Mateo-Vivaracho, L.; García-Lafuente, A.; Guillamón, E. Storage temperature and UV-irradiation influence on the ergosterol content in edible mushrooms. Food Chem. 2014, 147, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Dospatliev, L.; Petkova, Z.; Antova, G.; Angelova-Romova, M.; Ivanova, M.; Mustafa, S. Proximate composition of wild edible mushrooms from the Batak Mountain, Bulgaria. J. Microbiol. Biotech. Food Sci. 2023, 12, e4718. [Google Scholar] [CrossRef]
- Judprasong, K.; Chheng, S.; Chimkerd, C.; Jittinandana, S.; Tangsuphoom, N.; Sridonpai, P. Effect of Ultraviolet Irradiation on Vitamin D in Commonly Consumed Mushrooms in Thailand. Foods 2023, 12, 3632. [Google Scholar] [CrossRef] [PubMed]
- Cardwell, G.; Bornman, J.F.; James, A.P.; Black, L.J. A Review of Mushrooms as a Potential Source of Dietary Vitamin D. Nutrients 2018, 10, 1498. [Google Scholar] [CrossRef] [PubMed]
- Sridonpai, P.; Suthipibul, P.; Boonyingsathit, K.; Chimkerd, C.; Jittinandana, S.; Judprasong, K. Vitamin D Content in Commonly Consumed Mushrooms in Thailand and Its True Retention after Household Cooking. Foods 2023, 12, 2141. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, F.; Schwarz, J.; Takenaka, S.; Miyamoto, E.; Ohishi, N.; Nelle, E.; Hochstrasser, R.; Yabuta, Y. Characterization of vitamin B12 compound in the wild edible mushrooms blact trumpet (Craterellus cornucopioides) and golden chanterelle (Cantharellus cibarius). J. Nutr. Sci. Vitaminol. 2012, 58, 438–441. [Google Scholar] [CrossRef] [PubMed]
- Kol, S.; Bostanci, A.; Kocabas, A.; Uzun, Y.; Sadi, G. Cell growth inhibitory potential of Craterellus cornucopioides (L.) Pers. together with antioxidant and antimicrobial properties. Ant. J. Bot. 2018, 2, 60–64. [Google Scholar] [CrossRef]
- Dospatliev, L.K.; Petkova, Z.Y.; Bojilov, D.G.; Ivanova, M.T.; Antova, G.A.; Angelova-Romova, M.Y. A comparative study on the methods of antioxidant activity in wild edible mushrooms from the Batak Mountain, Bulgaria. Bulg. Chem. Commun. 2019, 51, 245–250. [Google Scholar]
- Palacios, I.; Lozano, M.; Moro, C.; D’Arrigo, M.; Rostagno, M.A.; Martínez, J.A.; García-Lafuente, A.; Guillamón, A.E.; Villares, A. Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chem. 2011, 128, 674–678. [Google Scholar] [CrossRef]
- Arora, D. All That the Rain Promises and More: A Hip Pocket Guide to Western Mushrooms; Ten Speed Press: Berkeley, CA, USA, 2022; Volume 263, p. 1991. [Google Scholar]
- Litchfield, J.H. Morel mushroom mycelium as a food-flavouring material. Biotechnol. Bioeng. 1967, 9, 289–304. [Google Scholar] [CrossRef]
- Yang, J.-H.; Lin, H.-C.; Mau, J.-L. Non-volatile taste components of several commercial mushrooms. Food Chem. 2001, 72, 465–471. [Google Scholar] [CrossRef]
- Dospatliev, L.; Lozanov, V.; Ivanova, M.; Papazov, P.; Sugareva, P. Amino acids in edible wild mushroom from the Batak Mountain, Bulgaria. Bulg. Chem. Commun. 2019, 51, 92–96. [Google Scholar]
- Valchev, N. Nutritional and amino acid content of stem and cap of Agaricus bisporus, Bulgaria. Bulg. J. Agric. Sci. 2020, 26 (Suppl. S1), 192–201. [Google Scholar]
- Kirimura, J.; Shimizu, A.; Kimizuka, A.; Nimomiya, T.; Katsuya, N. The contribution of peptides and amino acids to the taste of foodstuffs. J. Agric. Food Chem. 1969, 17, 689–695. [Google Scholar] [CrossRef]
- Kuramitsu, R.; Takahashi, M.; Tahara, K.; Nakamura, K.; Okai, H. Tastes Produced by Peptides Containing Ionic Groups and by Related Compounds. Biosci. Biotechnol. Biochem. 1996, 60, 1637–1642. [Google Scholar] [CrossRef]
- Fons, F.; Rapior, S.; Eyssartier, G.; Bessiere, J.-M. Les substances volatiles dans les genres Cantharellus, Craterellus et Hydnum. Cryptogam. Mycol. 2003, 24, 367–376. [Google Scholar]
- Belitz, H.-D.; Grosch, W. Food Chemistry; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Kalać, P. Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chem. 2009, 113, 9–16. [Google Scholar] [CrossRef]
- Ritota, M.; Manzi, P. Edible mushrooms: Functional foods or functional ingredients? A Focus on Pleurotus spp. AIMS Agric. Food 2023, 8, 391–439. [Google Scholar] [CrossRef]
- Chen, H.K. Studies on the Characteristics of Taste-Active Components in Mushroom Concentrate and Its Powderization. Master’s Thesis, National ChungHsing University, Taichung, Taiwan, 1986. [Google Scholar]
- Liu, R.; Zhou, Z.-Y.; Liu, J.-K. Three New Keto Esters from Cultures of the Basidiomycete Craterellus cornucopioides. Chin. J. Nat. Med. 2010, 8, 88–90. [Google Scholar] [CrossRef]
- Guo, H.; Diao, Q.-P.; Hou, D.-Y.; Li, Z.-H.; Zhou, Z.-Y.; Feng, T.; Liu, J.-K. Sesquiterpenoids from cultures of the edible mushroom Craterellus cornucopioides. Phytochem. Lett. 2017, 21, 114–117. [Google Scholar] [CrossRef]
- Queirós, B.; Barreira, J.C.M.; Sarmento, A.C.; Ferreira, I.C.F.R. In search of synergistic effects in antioxidant capacity of combined edible mushrooms. Int. J. Food Sci. Nutr. 2009, 60, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Vasdekis, E.P.; Karkabounas, A.; Giannakopoulos, J.; Savvas, D.; Lekka, M.E. Screening of mushrooms bioactivity: Piceatannol was identified as a bioactive ingredient in the order Cantharellales. Eur. Food Res. Technol. 2018, 244, 861–871. [Google Scholar] [CrossRef]
- Mešić, A.; Šamec, D.; Jadan, M.; Bahun, V.; Tkalčec, Z. Integrated morphological with molecular identification and bioactive compounds of 23 Croatian wild mushrooms samples. Food Biosci. 2020, 37, 100720. [Google Scholar] [CrossRef]
- Costea, T.; Hudiţă, A.; Olaru, O.T.; Gălăţeanu, B.; Gîrd, C.E.; Mocanu, M.M. Chemical composition, antioxidant activity and cytotoxic effects of romanian Craterellus cornucopioides (L.) pers. mushroom. Farmacia 2020, 68, 340–347. [Google Scholar] [CrossRef]
- Novaković, S.M. The Impact of the Addition of Porcini (Boletus edulis), Chanterelle (Cantharellus cibarius) and Horn of Plenty (Craterellus cornucopioides) on the Overall Quality of Cooked Sausages in the Type of Frankfurters. Ph.D. Thesis, University of Belgrade, Beograd, Serbia, 2020. [Google Scholar]
- Kosanić, M.; Ranković, B.; Stanojković, T.; Radović-Jakovljević, M.; Cirić, A.; Grujičić, D.; Milošević-Djordjević, O. Craterellus cornucopioides edible mushroom as source of biologically active compounds. Nat. Product. Commun. 2019, 14, 1934578–19843610. [Google Scholar] [CrossRef]
- Yang, W.-W.; Li-Ming Wang, L.-M.; Gong, L.-L.; Lu, Y.-M.; Pan, W.-J.; Wang, Y.; Zhang, W.-N.; Chen, Y. Structural characterization and antioxidant activities of a novel polysaccharide fraction from the fruiting bodies of Craterellus cornucopioides. Int. J. Biol. Macromol. 2018, 117, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Sumba, J.D. GACOCA Formulation of East African Wild Mushrooms Show Promise in Combating Kaposi’s Sarcoma and HIV/AIDS. Int. J. Med. Mushrooms 2005, 7, 473–474. [Google Scholar] [CrossRef]
- Guo, M.; Meng, M.; Zhao, J.; Wang, X.; Wang, C. Immunomodulatory effects of the polysaccharide from Craterellus cornucopioides via activating the TLR4-NFκB signaling pathway in peritoneal macrophages of BALB/c mice. Int. J. Biol. Macromol. 2020, 160, 871–879. [Google Scholar] [CrossRef]
- Ding, X.; Zhu, M.; Hou, Y. Comparative studies on the structure, biological activity and molecular mechanisms of polysaccharides from Craterellus cornucopioides (CC-M) and Dictyophora indusiata (Vent.ex Pers) Fisch (DI-Z). Food Sci. Technol. 2022, 42, e40421. [Google Scholar] [CrossRef]
- Xu, J.-J.; Gong, L.-L.; Li, Y.-Y.; Zhou, Z.B.; Yang, W.-W.; Wan, C.-X.; Zhang, W.-N. Anti-inflammatory effect of a polysaccharide fraction from Craterellus cornucopioides in LPS-stimulated macrophages. J. Food Biochem. 2021, 45, e13842. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Shu, Y.; Li, Y.; Guo, M. Extraction and immunomodulatory activity of the polysaccharide obtained from Craterellus cornucopioides. Front. Nutr. 2022, 9, 1017431. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, Y.C.; O’Brien, N.M.; Kenny, O.; Harrington, T.; Brunton, N.; Smyth, T.J. Anti-inflammatory effects of wild Irish mushroom extracts in RAW264.7 mouse macrophage cells. J. Med. Food 2015, 18, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Moro, C.; Palacios, I.; Lozano, M.; D’Arrigo, M.; Guillamón, E.; Villar, A.; Martinez, J.A.; Garcia-Lafuente, A.G. Anti-inflammatory activity of methanolic extracts from edible mushrooms in LPS activated RAW 264.7 macrophages. Food Chem. 2012, 130, 350–355. [Google Scholar] [CrossRef]
- Liu, Y.; Duan, X.; Duan, S.; Li, C.; Hu, B.; Liu, A.; Wu, Y.; Wu, H.; Chen, H.; Wu, W. Effects of in vitro digestion and fecal fermentation on the stability and metabolic behavior of polysaccharides from Craterellus cornucopioides. Food Funct. 2020, 11, 6899–6910. [Google Scholar] [CrossRef] [PubMed]
- Sevindik, M.; Bal, C.; Eraslan, E.C.; Uysal, I.; Mohammed, F.S. Medicinal mushrooms: A comprehensive study on their antiviral potential. Prospect. Pharm. Sci. 2023, 21, 42–56. [Google Scholar] [CrossRef]
- Liu, H.; Liu, X.; Xie, J.; Chen, S. Structure, function and mechanism of edible fungus polysaccharides in human beings chronic diseases. Food Sci. Technol. 2023, 43, e111022. [Google Scholar] [CrossRef]
- Giavasis, I. Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals. Curr. Opin. Biotechnol. 2014, 26, 162–173. [Google Scholar] [CrossRef]
- Perez-Moreno, J.; Martinez-Reyes, M. Edible Ectomycorrhizal Mushrooms: Biofactories for Sustainable Development. In Biosystems Engineering: Biofactories for Food Production in the Century XXI; Guevara-Gonzalez, R., Torres-Pacheco, I., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 151–233. [Google Scholar] [CrossRef]
- Palanisamy, M.; Gil-Ramirez, A.; Ruiz-Rodriguez, A.; Marin, F.R.; Regelo, G.; Soler-Rivas, C. Testing edible mushrooms to inhibit the pancreatic lipase activity by an in vitro digestion model. Int. J. Food Sci. Technol. 2012, 47, 1004–1010. [Google Scholar] [CrossRef]
- Jezierska, M. Lexicon of Mushrooms; Firma Księgarska Jacek i Krzysztof Olesiejuk Inwestycje: Warszawa, Poland, 2006; ISBN 3-89836-604-9. [Google Scholar]
- Novakovic, S. The potential of the application of Boletus edulis, Cantharellus cibarius and Craterellus cornucopioides in frankfurters: A review. In IOP Conference Series: Earth and Environmental Science 21, Proceedings of the 61st International Meat Industry Conference, Jaipur, Rajasthan, India, 5–6 March 2021; IOP Publishing: Bristol, UK, 2021; Volume 854, p. 012068. [Google Scholar] [CrossRef]
Minerals | Ouali et al. [16] mg/kg dw | Dimopoulou et al. [15] mg/kg dw | Yildiz et al. [23] mg/kg dw | Turfan et al. [17] mg/kg dw | Odoh et al. [14] mg/g dw | Vetter [18] mg/kg dw |
---|---|---|---|---|---|---|
K | 35,800.0 | Nt | Nt | 5471.9 | 10.02 | 37,100.0 |
P | 2500.0 | Nt | Nt | 1462.4 | Nt | 6300.0 |
Mg | 1000.0 | 978.0 | 151.6 | 17.6 | 10.82 | Nt |
Ca | 800.0 | Nt | 935.5 | 163.6 | 20.89 | 240.0 |
Na | 400.0 | Nt | Nt | 10.0 | 5.00 | Nt |
Fe | 600.0 | 413.0 | 255.3 | 598.3 | 1.32 | Nt |
Cu | 20.0 | 43.0 | 40.5 | 108.5 | 2.37 | Nt |
Zn | 50.0 | 61.0 | 91.5 | 378.5 | 40.19 | Nt |
Mn | T | Nt | 13.7 | 147.6 | 0.20 | Nt |
Cr | T | Nt | 0.142 | 11.01 | Nt | Nt |
Se | Nt | 14.0 | 3.08 | Nd | Nt | Nt |
Al | Nt | Nt | 56.1 | 177.54 | Nt | Nt |
Assay | Extract | Antioxidant Activity | Source |
---|---|---|---|
DPPH free radicals scavenging ability (DPPH) | Methanol extract | EC50 6.33 ± 0.48 mg/mL Revealed antioxidant properties EC50 < 7.5 mg/mL | [51] |
EC50 > 40 mg dry extract/mL Ascorbic acid 0.1 mg/mL | [52] | ||
31 µmol TE/g d.w. | [53] | ||
20.1487 ± 0.7872 AAE/g | [54] | ||
IC50 1.8 mg/mL | [54] | ||
EC50 8.65 mg/mL | [55] | ||
Ethanol extract | 18.105 ± 0.744 AAE/g | [56] | |
IC50 >> 1.8 mg/mL | [54] | ||
EC50 40.64 mg/mL | [24] | ||
Water extract | 27.6787 ± 0.8780 AAE/g | [54] | |
IC50 1.0 mg/mL | [54] | ||
EC50 8.65 mg/mL | [55] | ||
EC50 26.37 mg/mL | [24] | ||
Acetone extract | IC50 19.7 ± 1.1 µg/mL Ascorbic acid 6.41 ± 0.2 µg/mL | [56] | |
ABTS scavenging ability (ABTS) | Methanol extract | 273.13 ± 0.5861 AAE/g | [54] |
IC50 0.1 mg/mL | [54] | ||
Ethanol extract | 295.34 ± 0.4906 AAE/g | [54] | |
IC50 0.2 mg/mL | [54] | ||
Water extract | 559.29 ± 0.1967 AAE/g | [54] | |
IC50 0.04 mg/mL | [54] | ||
EC50 2.6 mg/mL | [55] | ||
Ferric reducing power (FRAP) | Methanol extract | 3.69 ± 0.03 mg/mL Revealed antioxidant properties EC50 < 7.5 mg/mL | [51] |
31 µmol Fe3+ Eq/g d.w. | [53] | ||
5.5682 ± 1.0493 AAE/g | [54] | ||
Abs700nm 0.08–0.35 | [54] | ||
Ethanol extract | 4.2750 ± 0.2629 AAE/g | [54] | |
Abs700nm 0.06–0.3 | [54] | ||
Water extract | 17.3972 ± 1.7329 AAE/g | [54] | |
Abs700nm 0.16–0.65 | [54] | ||
Abs700nm 0.03–0.89 for 0.625–10 mg/mL, respectively Abs700nm 1.5–2.0 for ascorbic acid (0.625 and ≥1.25 mg/mL) | [55] | ||
Acetone extract | Abs700 nm 0.1 ± 0.0, 0.1 ± 0.0 and 0.1 ± 0.0 for 0.5, 1 and 2 mg/mL, respectively Abs 700 nm 3.9 ± 0.9, 2.1 ± 0.0, 1.6 ± 0.0 for ascorbic acid (0.5, 1 and 2 mg/mL, respectively) | [56] | |
Copper reducing power (CUPRAC) | Water extract | Abs450nm 0.14–0.81 for 0.625–10 mg/mL, respectively Abs450nm 0.9–4.1 for BHT (0.625–10 mg/mL) and 0.44–2.1 for α-tocopherol (0.625–10 mg/mL) | [55] |
Ferrous metal chelating activity | Methanol extract | 66.59 ± 0.7418 Na2-EDTA Eq/g | [54] |
IC50 1.1 mg/mL | [54] | ||
Ethanol extract | 35.1287 ± 0.8974 Na2-EDTA Eq/g | [54] | |
IC50 2.0 mg/mL | [54] | ||
Water extract | 40.46 ± 0.3143 Na2-EDTA Eq/g | [54] | |
IC50 1.8 mg/mL | [54] | ||
Superoxide anion scavenging | Acetone extract | IC50 221.8 ± 3.1 µg/mL Ascorbic acid 115.6 ± 1.2 µg/mL | [56] |
Inhibition of β-carotene bleaching | Methanol extract | EC50 1.79 ± 0.51 mg/mL Revealed antioxidant properties EC50 < 7.5 mg/mL | [51] |
Inhibition of linoleic acid oxidation | Methanol extract | 70% | [36] |
Water extract | 10 mg/mL—70%, 6 mg/mL—10% | [55] | |
Extract of polysaccharides | |||
DPPH | Methanol extract | EC50 0.10 mg/mL | [57] |
ABTS | Methanol extract | EC50 0.15 mg/mL | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamska, I.; Felisiak, K. Black Trumpet [Craterellus cornucopioides (L.) Pers.]—Bioactive Properties and Prospects for Application in Medicine and Production of Health-Promoting Food. Nutrients 2024, 16, 1325. https://doi.org/10.3390/nu16091325
Adamska I, Felisiak K. Black Trumpet [Craterellus cornucopioides (L.) Pers.]—Bioactive Properties and Prospects for Application in Medicine and Production of Health-Promoting Food. Nutrients. 2024; 16(9):1325. https://doi.org/10.3390/nu16091325
Chicago/Turabian StyleAdamska, Iwona, and Katarzyna Felisiak. 2024. "Black Trumpet [Craterellus cornucopioides (L.) Pers.]—Bioactive Properties and Prospects for Application in Medicine and Production of Health-Promoting Food" Nutrients 16, no. 9: 1325. https://doi.org/10.3390/nu16091325
APA StyleAdamska, I., & Felisiak, K. (2024). Black Trumpet [Craterellus cornucopioides (L.) Pers.]—Bioactive Properties and Prospects for Application in Medicine and Production of Health-Promoting Food. Nutrients, 16(9), 1325. https://doi.org/10.3390/nu16091325