Relation between Body Composition Trajectories from Childhood to Adolescence and Nonalcoholic Fatty Liver Disease Risk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
- Previous history of chronic liver disease other than NAFLD
- Significant alcohol consumption: approximately 20 g/day
- Elevation of liver enzymes secondary to drug therapy
- Any type of malignant disease
2.2. Anthropometric and Body Composition Assessment
2.3. Hattori Charts
2.4. Abdominal Ultrasound and NAFLD Diagnosis
2.5. Ethics
2.6. Statistical Analysis
3. Results
3.1. Nutritional and NAFLD Diagnosis
3.2. Anthropometry and Body Composition Trajectories from Childhood to Adolescence
3.3. Higher Fat Mass Index during Childhood and the Risk of Developing NAFLD in Adolescence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Organización Mundial de la Salud (OMS). (s.f.). Sobrepeso y Obesidad Infantiles. Available online: https://www.who.int/health-topics/obesity (accessed on 14 May 2021).
- JUNAEB. Mapa Nutricional 2022. Available online: https://www.junaeb.cl/wp-content/uploads/2023/06/Mapa-Nutricional-2022.pdf (accessed on 20 December 2023).
- Panera, N.; Barbaro, B.; Della Corte, C.; Mosca, A.; Nobili, V.; Alisi, A. A review of the pathogenic and therapeutic role of nutrition in pediatric nonalcoholic fatty liver disease. Nutr. Res. 2018, 58, 1–16. [Google Scholar] [CrossRef]
- Tricò, D.; Caprio, S.; Rosaria Umano, G.; Pierpont, B.; Nouws, J.; Galderisi, A.; Santoro, N. Metabolic Features of Nonalcoholic Fatty Liver (NAFL) in Obese Adolescents: Findings From a Multiethnic Cohort. Hepatology 2018, 68, 1376–1390. [Google Scholar] [CrossRef]
- Anderson, E.L.; Howe, L.D.; Jones, H.E.; Higgins, J.P.T.; Lawlor, D.A.; Fraser, A. The Prevalence of Non-Alcoholic Fatty Liver Disease in Children and Adolescents: A Systematic Review and Meta-Analysis. PLoS ONE. 2015, 10, e0140908. [Google Scholar] [CrossRef]
- Schwimmer, J.B.; Deutsch, R.; Kahen, T.; Lavine, J.E.; Stanley, C.; Behling, C. Prevalence of fatty liver in children and adolescents. Pediatrics 2006, 118, 1388–1393. [Google Scholar] [CrossRef]
- Samuel, V.T.; Shulman, G.I. Nonalcoholic Fatty Liver Disease as a Nexus of Metabolic and Hepatic Diseases. Cell Metab. 2018, 27, 22–41. [Google Scholar] [CrossRef]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; NAFLD Nomenclature consensus group. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2023, 78, 1966–1986. [Google Scholar] [CrossRef]
- Weber, D.R.; Leonard, M.B.; Zemel, B.S. Body composition analysis in the pediatric population. Pediatr. Endocrinol. Rev. 2012, 10, 130–139. [Google Scholar] [PubMed]
- Zimmermann, E.; Gamborg, M.; Holst, C.; Baker, J.L.; Sørensen, T.I.; Berentzen, T.L. Body mass index in school-aged children and the risk of routinely diagnosed non-alcoholic fatty liver disease in adulthood: A prospective study based on the Copenhagen School Health Records Register. BMJ Open 2015, 5, e006998. [Google Scholar] [CrossRef] [PubMed]
- Cuzmar, V.; Alberti, G.; Uauy, R.; Pereira, A.; García, C.; De Barbieri, F.; Corvalán, C.; Santos, J.L.; Mericq, V.; Villarroel, L. Early Obesity: Risk Factor for Fatty Liver Disease. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Corvalán, C.; Uauy, R.; Stein, A.D.; Kain, J.; Martorell, R. Effect of growth on cardiometabolic status at 4 y of age. Am. J. Clin. Nutr. 2009, 90, 547–555. [Google Scholar] [CrossRef] [PubMed]
- de Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- Wells, J.C. A Hattori chart analysis of body mass index in infants and children. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 325–329. [Google Scholar] [CrossRef]
- Hattori, K.; Tatsumi, N.; Tanaka, S. Assessment of body composition by using a new chart method. Am. J. Hum. Biol. 1997, 9, 573–578. [Google Scholar] [CrossRef]
- Strauss, S.; Gavish, E.; Gottlieb, P.; Katsnelson, L. Interobserver and intraobserver variability in the sonographic assessment of fatty liver. AJR Am. J. Roentgenol. 2007, 189, W320–W323. [Google Scholar] [CrossRef] [PubMed]
- Armellini, F.; Zamboni, M.; Rigo, L.; Todesco, T.; Bosello, O.; Bergamo-Andreis, I.A.; Procacci, C. The contribution of sonography to the measurement of intra-abdominal fat. J. Clin. Ultrasound 1990, 18, 563–567. [Google Scholar] [CrossRef]
- Mook-Kanamori, D.O.; Holzhauer, S.; Hollestein, L.M.; Durmus, B.; Manniesing, R.; Koek, M.; Jaddoe, V.W. Abdominal fat in children measured by ultrasound and computed tomography. Ultrasound Med. Biol. 2009, 35, 1938–1946. [Google Scholar] [CrossRef] [PubMed]
- Sakuno, T.; Tomita, L.M.; Tomita, C.M.; Giuliano, I.D.C.B.; Ibagy, A.; Perin, N.M.M.; Poeta, L.S. Sonographic evaluation of visceral and subcutaneous fat in obese children. Radiol. Bras. 2014, 47, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef] [PubMed]
- Galic, S.; Oakhill, J.S.; Steinberg, G.R. Adipose tissue as an endocrine organ. Mol. Cell. Endocrinol. 2010, 316, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Rutkowski, J.M.; Stern, J.H.; Scherer, P.E. The cell biology of fat expansion. J. Cell Biol. 2015, 208, 501–512. [Google Scholar] [CrossRef]
- Matsuzawa, Y.; Shimomura, I.; Nakamura, T.; Keno, Y.; Tokunaga, K. Pathophysiology and pathogenesis of visceral fat obesity. Ann. N. Y. Acad. Sci. 1995, 748, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, W.Y.; Abbate, S.L.; Kahn, S.E.; Hokanson, J.E.; Brunzell, J.D. The visceral adiposity syndrome in Japanese-American men. Obes. Res. 1994, 2, 364–371. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, T.; Lamendola, C.; Liu, A.; Abbasi, F. Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity. J. Clin. Endocrinol. Metab. 2011, 96, E1756–E1760. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.C.; De Klerk, N.H.; Smith, A.; Kendall, G.E.; Landau, L.I.; Mori, T.A.; Newnham, J.P.; Stanley, F.J.; Oddy, W.H.; Hands, B.; et al. Lifecourse childhood adiposity trajectories associated with adolescent insulin resistance. Diabetes Care 2011, 34, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Ayonrinde, O.T.; Olynyk, J.K.; Marsh, J.A.; Beilin, L.J.; Mori, T.A.; Oddy, W.H.; Adams, L.A. Childhood adiposity trajectories and risk of nonalcoholic fatty liver disease in adolescents. J. Gastroenterol. Hepatol. 2015, 30, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Turcato, E.; Bosello, O.; Di Francesco, V.; Harris, T.B.; Zoico, E.; Bissoli, L.; Zamboni, M. Waist circumference and abdominal sagittal diameter as surrogates of body fat distribution in the elderly: Their relation with cardiovascular risk factors. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 1005–1010. [Google Scholar] [CrossRef] [PubMed]
- Manco, M.; Bedogni, G.; Marcellini, M.; DeVito, R.; Ciampalini, P.; Sartorelli, M.R.; Nobili, V. Waist circumference correlates with liver fibrosis in children with non-alcoholic steatohepatitis. Gut 2008, 57, 1283–1287. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, P.A.; Antunes, B.M.; Silveira, L.S.; Christofaro, D.G.; Fernandes, R.A.; Freitas Junior, I.F. Body composition variables as predictors of NAFLD by ultrasound in obese children and adolescents. BMC Pediatr. 2014, 14, 25. [Google Scholar] [CrossRef]
- Goran, M.I.; Gower, B.A. Longitudinal study on pubertal insulin resistance. Diabetes 2001, 50, 2444–2450. [Google Scholar] [CrossRef]
- Ariya, M.; Koohpayeh, F.; Ghaemi, A.; Osati, S.; Davoodi, S.H.; Razzaz, J.M.; Homayounfar, R. Assessment of the association between body composition and risk of non-alcoholic fatty liver. PLoS ONE 2021, 16, e0249223. [Google Scholar] [CrossRef]
- Yang, H.R.; Chang, E.J. Insulin resistance, body composition, and fat distribution in obese children with nonalcoholic fatty liver disease. Asia Pac. J. Clin. Nutr. 2016, 25, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Vajro, P.; Lenta, S.; Socha, P.; Dhawan, A.; McKiernan, P.; Baumann, U.; Nobili, V. Diagnosis of nonalcoholic fatty liver disease in children and adolescents: Position paper of the ESPGHAN Hepatology Committee. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 700–713. [Google Scholar] [CrossRef] [PubMed]
- Vos, M.B.; Abrams, S.H.; Barlow, S.E.; Caprio, S.; Daniels, S.R.; Kohli, R.; Mouzaki, M.; Sathya, P.; Schwimmer, J.B.; Sundaram, S.S.; et al. NASPGHAN Clinical Practice Guideline for the Diagnosis and Treatment of Nonalcoholic Fatty Liver Disease in Children: Recommendations from the Expert Committee on NAFLD (ECON) and the North American Society of Pediatric Gastroenterology, Hepatology and Nutrition (NASPGHAN). J. Pediatr. Gastroenterol. Nutr. 2017, 64, 319–334. [Google Scholar] [CrossRef] [PubMed]
Males | Females | |||||
---|---|---|---|---|---|---|
Characteristics | NAFLD Group (n = 35) | Control Group (n = 345) | p-Value | NAFLD Group (n = 42) | Control Group (n = 362) | p-Value |
Age (years) | 14.9 ± 0.9 | 15.0 ± 0.94 | 0.517 | 15.8 ± 0.9 | 15.8 ± 0.9 | 0.985 |
BMI (kg/m2) | 28.6 ± 4.7 | 21.7 ± 3.7 | <0.001 | 30.8 ± 6.7 | 23.7 ± 3.8 | <0.001 |
BMI z-score | 2.2 ± 0.8 | 0.5 ± 1.1 | <0.001 | 2.2 ± 1.1 | 0.8 ± 0.9 | <0.001 |
Waist circumference (cm) | 92.7 ± 12.1 | 74.4 ± 9.3 | <0.001 | 88.7 ± 15.3 | 73.9 ± 8.8 | <0.001 |
Subcutaneous fat (mm) | 30.7 (40–22.6) | 10.4 (18.7–6) | <0.001 | 34.2 (49–21.4) | 21.6 (29–15) | <0.001 |
Visceral fat (mm) | 45.7 (63.1–39) | 37 (45–30.5) | <0.001 | 45.9 (58.5–34) | 34.9 (44–27) | <0.001 |
Age (Years) | Measurements | Males | p-Value | Females | p-Value | ||
---|---|---|---|---|---|---|---|
NAFLD Group (n) | Control Group (n) | NAFLD Group (n) | Control Group (n) | ||||
6 | WC (cm) | (24) 65.3 (9.6) | (242) 58.0 (5.8) | <0.001 | (32) 62.5 (7.2) | (251) 57.3 (5.3) | <0.001 |
PCSI (mm) | (24) 11.8 (16.2–5.6) | (241) 5.2 (8.7–4) | <0.001 | (32) 9.9 (15.5–6.8) | (251) 6.8 (9.9–5.2) | <0.001 | |
PCSE (mm) | (24) 8.2 (12.6–6.0) | (241) 5.7 (7.3–4.9) | <0.001 | (32) 8.8 (12.7–6.8) | (251) 6.5 (8–5.17) | <0.001 | |
PCB (mm) | (24) 8.3 (9.9–5.6) | (242) 5.0 (6.7–4) | <0.001 | (32) 7.5 (9.2- 5.3) | (251) 5.8 (7.3–4.5) | <0.001 | |
PCT (mm) | (24) 11.2 (15.6–8) | (242) 8.2 (10.7–6.8) | <0.001 | (32) 1.5 (14.2–9.4) | (251) 9.7 (11.6–7.7) | 0.002 | |
9 | WC (cm) | (25) 77.7 (9.4) | (247) 66.6 (8.7) | <0.001 | (51) 73.1 (9.4) | (346) 66.1 (8.3) | <0.001 |
PCSI (mm) | (25) 24.3(31–18.2) | (247) 13(21.7–7.2) | <0.001 | (51) 8.2(36–16) | (346) 16.8 (26.8–10) | <0.001 | |
PCSE (mm) | (25) 13.3(19.7–10.5) | (247) 7 (11–5.2) | <0.001 | (51) 12.7(17.8–8) | (346) 8.7 (12.2–6.2) | <0.001 | |
PCB (mm) | (25) 11 (15.3–10) | (247) 7 (10.8–4.7) | <0.001 | (51) 10.8 (15.5–7) | (346) 7.8 (11–5.8) | <0.001 | |
PCT (mm) | (25) 18.3(26.2–15.3) | (247) 13 (18–8.8) | <0.001 | (51) 18 (22–14.8) | (346) 14 (18.2- 10.5) | <0.001 | |
12 | WC (cm) | (35) 88.6 (10.5) | (312) 74.3 (9.8) | <0.001 | (37) 84.9 (12.2) | (225) 73.8 (9.3) | <0.001 |
PCSI (mm) | (34) 32.5 (42–23) | (304) 16 (24–10) | <0.001 | (36) 33 (47- 23.5) | (222) 23 (31–14.3) | <0.001 | |
PCSE (mm) | (34) 13.5 (17–11) | (304) 8 (11.75–6) | <0.001 | (36) 19.8 (25–13) | (222) 12 (17–8.5) | <0.001 | |
PCB (mm) | (34) 18.5 (25–15) | (304) 11 (16–7) | <0.001 | (36) 14.5 (19–11) | (222) 9.8 (13–7) | <0.001 | |
PCT (mm) | (34) 22.5 (26–16) | (304) 15 (21–10) | <0.001 | (36) 24.9 (31–21) | (222) 18.2 (22.7–14) | <0.001 |
FMI Tertile (kg/m2) | OR | 95% CI | Adjusted OR * | 95% CI |
---|---|---|---|---|
2nd | 1.92 | [1.34–2.74] | 2.19 | [1.48–3.25] |
3rd | 6.12 | [4.46–8.39] | 6.94 | [4.79–10.04] |
Age (Years) | OR | 95% CI | Adjusted OR * | 95% CI |
---|---|---|---|---|
5–10 | 1.55 | [1.47–1.63] | 1.66 | [1.55–1.76] |
5–5.9 | 2.90 | [1.77–4.76] | 2.89 | [1.69–4.95] |
6–6.9 | 1.87 | [1.54–2.26] | 1.80 | [1.45–2.22] |
7–7.9 | 1.71 | [1.47- 2.00] | 1.68 | [1.42–2.00] |
8–8.9 | 1.70 | [1.50–1.92] | 1.73 | [1.50–2.00] |
9–9.9 | 1.50 | [1.34–1.68] | 1.48 | [1.31–1.68] |
10–10.9 | 1.55 | [1.41–1.71] | 1.64 | [1.46–1.83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alberti, G.; Faune, M.; Santos, J.L.; De Barbieri, F.; García, C.; Pereira, A.; Becerra, F.; Gana, J.C. Relation between Body Composition Trajectories from Childhood to Adolescence and Nonalcoholic Fatty Liver Disease Risk. Nutrients 2024, 16, 785. https://doi.org/10.3390/nu16060785
Alberti G, Faune M, Santos JL, De Barbieri F, García C, Pereira A, Becerra F, Gana JC. Relation between Body Composition Trajectories from Childhood to Adolescence and Nonalcoholic Fatty Liver Disease Risk. Nutrients. 2024; 16(6):785. https://doi.org/10.3390/nu16060785
Chicago/Turabian StyleAlberti, Gigliola, Mariana Faune, José L. Santos, Florencia De Barbieri, Cristián García, Ana Pereira, Fernando Becerra, and Juan Cristóbal Gana. 2024. "Relation between Body Composition Trajectories from Childhood to Adolescence and Nonalcoholic Fatty Liver Disease Risk" Nutrients 16, no. 6: 785. https://doi.org/10.3390/nu16060785