Association between Serum Phytosterols and Lipid Levels in a Population-Based Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Sterol Assessment
2.3. Lipid Markers
2.4. Other Covariates
2.5. Statistical Analysis
3. Results
3.1. Sample Characteristics and Phytosterol Concentrations
3.2. Association between Serum Lipids and Phytosterols—Bivariate Analysis
3.3. Association between Serum Lipids and Phytosterols—Multivariable Analysis
3.4. Association with Apolipoprotein A-IV and Lp(a)
4. Discussion
4.1. Association with Serum Lipids
4.2. Association with Apolipoprotein A-IV and Lp(a)
4.3. Phytosterols, Plant-Based Diets and Cardiovascular Risk
4.4. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1151–1210. [Google Scholar] [CrossRef]
- Gylling, H.; Plat, J.; Turley, S.; Ginsberg, H.N.; Ellegard, L.; Jessup, W.; Jones, P.J.; Lutjohann, D.; Maerz, W.; Masana, L.; et al. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis 2014, 232, 346–360. [Google Scholar] [CrossRef]
- Trautwein, E.A.; Koppenol, W.P.; de Jong, A.; Hiemstra, H.; Vermeer, M.A.; Noakes, M.; Luscombe-Marsh, N.D. Plant sterols lower LDL-cholesterol and triglycerides in dyslipidemic individuals with or at risk of developing type 2 diabetes; a randomized, double-blind, placebo-controlled study. Nutr. Diabetes 2018, 8, 30. [Google Scholar] [CrossRef] [PubMed]
- Dutta, P.C. Phytosterols as Functional Food Components and Nutraceuticals; CRC Press: Boca Raton, FL, USA, 2019; p. 450. [Google Scholar]
- Jiménez-Escrig, A.; Santos-Hidalgo, A.B.; Saura-Calixto, F. Common sources and estimated intake of plant sterols in the Spanish diet. J. Agric. Food Chem. 2006, 54, 3462–3471. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Myrie, S.B. Association of Dietary Phytosterols with Cardiovascular Disease Biomarkers in Humans. Lipids 2020, 55, 569–584. [Google Scholar] [CrossRef] [PubMed]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Feng, L.; Prabahar, K.; Hernandez-Wolters, B.; Wang, Z. The effect of phytosterol supplementation on lipid profile: A critical umbrella review of interventional meta-analyses. Phytother. Res. 2023, 38, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.G.; Fogacci, F.; Giovannini, M.; Rizzoli, E.; Grandi, E.; D’Addato, S.; Borghi, C. The Effect of Dietary Supplementation with Plant Sterols on Total and LDL-Cholesterol in Plasma Is Affected by Adherence to Mediterranean Diet: Insights from the DESCO Randomized Clinical Study. Nutrients 2023, 15, 4555. [Google Scholar] [CrossRef] [PubMed]
- Jaceldo-Siegl, K.; Lütjohann, D.; Sirirat, R.; Mashchak, A.; Fraser, G.E.; Haddad, E. Variations in dietary intake and plasma concentrations of plant sterols across plant-based diets among North American adults. Mol. Nutr. Food Res. 2017, 61, 1600828. [Google Scholar] [CrossRef] [PubMed]
- Stellaard, F.; von Bergmann, K.; Sudhop, T.; Lutjohann, D. The value of surrogate markers to monitor cholesterol absorption, synthesis and bioconversion to bile acids under lipid lowering therapies. J. Steroid Biochem. Mol. Biol. 2017, 169, 111–122. [Google Scholar] [CrossRef]
- Ostlund, R.E., Jr.; McGill, J.B.; Zeng, C.M.; Covey, D.F.; Stearns, J.; Stenson, W.F.; Spilburg, C.A. Gastrointestinal absorption and plasma kinetics of soy Δ5-phytosterols and phytostanols in humans. Am. J. Physiol. Endocrinol. Metab. 2002, 282, E911–E916. [Google Scholar] [CrossRef]
- Klingberg, S.; Ellegård, L.; Johansson, I.; Hallmans, G.; Weinehall, L.; Andersson, H.; Winkvist, A. Inverse relation between dietary intake of naturally occurring plant sterols and serum cholesterol in northern Sweden. Am. J. Clin. Nutr. 2008, 87, 993–1001. [Google Scholar] [CrossRef] [PubMed]
- Ras, R.T.; van der Schouw, Y.T.; Trautwein, E.A.; Sioen, I.; Dalmeijer, G.W.; Zock, P.L.; Beulens, J.W. Intake of phytosterols from natural sources and risk of cardiovascular disease in the European Prospective Investigation into Cancer and Nutrition-the Netherlands (EPIC-NL) population. Eur. J. Prev. Cardiol. 2015, 22, 1067–1075. [Google Scholar] [CrossRef] [PubMed]
- Andersson, S.W.; Skinner, J.; Ellegård, L.; Welch, A.A.; Bingham, S.; Mulligan, A.; Andersson, H.; Shaw, K.T. Intake of dietary plant sterols is inversely related to serum cholesterol concentration in men and women in the EPIC Norfolk population: A cross-sectional study. Eur. J. Clin. Nutr. 2004, 58, 1378–1385. [Google Scholar] [CrossRef] [PubMed]
- Pinedo, S.; Vissers, M.N.; von Bergmann, K.; Elharchaoui, K.; Lütjohann, D.; Luben, R.; Wareham, N.J.; Kastelein, J.J.; Khaw, K.T.; Boekholdt, S.M. Plasma levels of plant sterols and the risk of coronary artery disease: The prospective EPIC-Norfolk Population Study. J. Lipid Res. 2007, 48, 139–144. [Google Scholar] [CrossRef]
- Firmann, M.; Mayor, V.; Vidal, P.M.; Bochud, M.; Pecoud, A.; Hayoz, D.; Paccaud, F.; Preisig, M.; Song, K.S.; Yuan, X.; et al. The CoLaus study: A population-based study to investigate the epidemiology and genetic determinants of cardiovascular risk factors and metabolic syndrome. BMC Cardiovasc. Disord. 2008, 8, 6. [Google Scholar] [CrossRef] [PubMed]
- Clark, C.; Gholam, M.; Zullo, L.; Kerksiek, A.; Castelao, E.; von Gunten, A.; Preisig, M.; Lütjohann, D.; Popp, J. Plant sterols and cholesterol metabolism are associated with five-year cognitive decline in the elderly population. iScience 2023, 26, 106740. [Google Scholar] [CrossRef]
- Šošic-Jurjević, B.; Lütjohann, D.; Renko, K.; Filipović, B.; Radulović, N.; Ajdžanović, V.; Trifunović, S.; Nestorović, N.; Živanović, J.; Manojlović Stojanoski, M.; et al. The isoflavones genistein and daidzein increase hepatic concentration of thyroid hormones and affect cholesterol metabolism in middle-aged male rats. J. Steroid Biochem. Mol. Biol. 2019, 190, 1–10. [Google Scholar] [CrossRef]
- Demonty, I.; Ras, R.T.; van der Knaap, H.C.; Duchateau, G.S.; Meijer, L.; Zock, P.L.; Geleijnse, J.M.; Trautwein, E.A. Continuous dose-response relationship of the LDL-cholesterol-lowering effect of phytosterol intake. J. Nutr. 2009, 139, 271–284. [Google Scholar] [CrossRef]
- Wang, F.; Kohan, A.B.; Lo, C.M.; Liu, M.; Howles, P.; Tso, P. Apolipoprotein A-IV: A protein intimately involved in metabolism. J. Lipid Res. 2015, 56, 1403–1418. [Google Scholar] [CrossRef]
- Ghaedi, E.; Kord-Varkaneh, H.; Mohammadi, H.; Askarpour, M.; Miraghajani, M. Phytosterol Supplementation Could Improve Atherogenic and Anti-Atherogenic Apolipoproteins: A Systematic Review and Dose-Response Meta-Analysis of Randomized Controlled Trials. J. Am. Coll. Nutr. 2020, 39, 82–92. [Google Scholar] [CrossRef]
- Raitakari, O.; Kivelä, A.; Pahkala, K.; Rovio, S.; Mykkänen, J.; Ahola-Olli, A.; Loo, B.M.; Lyytikäinen, L.P.; Lehtimäki, T.; Kähönen, M.; et al. Long-term tracking and population characteristics of lipoprotein(a) in the Cardiovascular Risk in Young Finns Study. Atherosclerosis 2022, 356, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Najjar, R.S.; Moore, C.E.; Montgomery, B.D. Consumption of a defined, plant-based diet reduces lipoprotein(a), inflammation, and other atherogenic lipoproteins and particles within 4 weeks. Clin. Cardiol. 2018, 41, 1062–1068. [Google Scholar] [CrossRef] [PubMed]
- Dos Reis Padilha, G.; Sanches Machado d’Almeida, K.; Ronchi Spillere, S.; Correa Souza, G. Dietary Patterns in Secondary Prevention of Heart Failure: A Systematic Review. Nutrients 2018, 10, 828. [Google Scholar] [CrossRef] [PubMed]
- Zampelas, A.; Magriplis, E. Dietary patterns and risk of cardiovascular diseases: A review of the evidence. Proc. Nutr. Soc. 2020, 79, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Elliott, P.S.; Kharaty, S.S.; Phillips, C.M. Plant-Based Diets and Lipid, Lipoprotein, and Inflammatory Biomarkers of Cardiovascular Disease: A Review of Observational and Interventional Studies. Nutrients 2022, 14, 5371. [Google Scholar] [CrossRef] [PubMed]
- Witkowska, A.M.; Waskiewicz, A.; Zujko, M.E.; Mironczuk-Chodakowska, I.; Cicha-Mikolajczyk, A.; Drygas, W. Assessment of Plant Sterols in the Diet of Adult Polish Population with the Use of a Newly Developed Database. Nutrients 2021, 13, 2722. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Lampousi, A.M.; Knuppel, S.; Iqbal, K.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of all-cause mortality: A systematic review and meta-analysis of prospective studies. Am. J. Clin. Nutr. 2017, 105, 1462–1473. [Google Scholar] [CrossRef] [PubMed]
- de Abreu, D.; Guessous, I.; Vaucher, J.; Preisig, M.; Waeber, G.; Vollenweider, P.; Marques-Vidal, P. Low compliance with dietary recommendations for food intake among adults. Clin. Nutr. 2013, 32, 783–788. [Google Scholar] [CrossRef]
- Chatelan, A.; Beer-Borst, S.; Randriamiharisoa, A.; Pasquier, J.; Blanco, J.M.; Siegenthaler, S.; Paccaud, F.; Slimani, N.; Nicolas, G.; Camenzind-Frey, E.; et al. Major Differences in Diet across Three Linguistic Regions of Switzerland: Results from the First National Nutrition Survey menuCH. Nutrients 2017, 9, 1163. [Google Scholar] [CrossRef]
- van Heerden, C.; Magwete, A.; Mabuza, D. Evaluating the need for free glycerol blanking for serum triglyceride measurements at Charlotte Maxeke Johannesburg Academic Hospital. Clin. Chem. Lab. Med. 2020, 58, 1257–1264. [Google Scholar] [CrossRef] [PubMed]
First Follow-Up | Second Follow-Up | |
---|---|---|
Sample size | 910 | 721 |
Women (%) | 538 (59.1) | 434 (60.2) |
Age (years) | 70.4 ± 4.7 | 75.1 ± 4.7 |
BMI (kg/m2) | 26.7 ± 4.7 | 26.5 ± 4.6 |
BMI categories (%) | ||
Normal | 348 (38.2) | 290 (40.2) |
Overweight | 373 (41.0) | 295 (40.9) |
Obese | 189 (20.8) | 136 (18.9) |
Smoking status (%) | ||
Never | 370 (40.7) | 305 (42.3) |
Former | 406 (44.6) | 330 (45.8) |
Current | 134 (14.7) | 86 (11.9) |
Diabetes (%) | 154 (16.9) | 100 (13.9) |
Lipid-lowering drugs (%) | ||
Statins | 189 (20.8) | 179 (24.8) |
Ezetimibe | 7 (0.8) | 7 (1.0) |
Lipid values | ||
Total cholesterol (mmol/L) | 5.8 ± 1.1 | 5.3 ± 1.0 |
HDL cholesterol (mmol/L) | 1.7 ± 0.5 | 1.7 ± 0.5 |
LDL cholesterol (mmol/L) | 3.5 ± 1.0 | 3.0 ± 0.9 |
Triglycerides (mmol/L) | 0.4 [1.6–0.48] | 0.4 [1.4–0.48] |
Apolipoprotein A-IV (mg/dL) | 17.6 ± 5.0 | NA |
Lp(a) (mg/dL) | 13.4 [6.4–37.0] | NA |
First Follow-Up, n = 910 | Second Follow-Up, n = 721 | |||
---|---|---|---|---|
Average ± SD | Median [IQR] | Average ± SD | Median [IQR] | |
Campesterol [mg/dL] | 0.32 ± 0.20 | 0.28 [0.19–0.41] | 0.29 ± 0.15 | 0.26 [0.18–0.37] |
Campestanol [µg/dL] | 6.05 ± 4.15 | 5.16 [3.28–7.52] | 3.94 ± 1.39 | 3.71 [3.07–4.54] |
Stigmasterol [µg/dL] | 6.31 ± 4.00 | 5.28 [3.34–8.26] | 7.85 ± 3.57 | 7.10 [5.46–9.25] |
Sitosterol [mg/dL] | 0.25 ± 0.13 | 0.22 [0.16–0.31] | 0.25 ± 0.12 | 0.22 [0.17–0.31] |
Sitostanol [µg/dL] | 7.25 ± 4.15 | 6.23 [4.56–8.83] | 4.09 ± 1.86 | 3.76 [3.27–4.46] |
Brassicasterol [µg/dL] | 19.4 ± 11.0 | 17.2 [11.6–24.1] | 20.7 ± 10.7 | 18.5 [13.5–24.9] |
Total cholesterol GC [mg/dL] | 210 ± 40 | 209 [184–237] | 188 ± 38 | 191 [163–214] |
Total Cholesterol | Total Cholesterol GC | LDL Cholesterol | HDL Cholesterol | Triglycerides | ApoA-IV | Lp(a) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
First | Second | First | Second | First | Second | First | Second | First | Second | First | First | |
Campesterol | 0.323 | 0.253 | 0.341 | 0.222 | 0.253 | 0.155 | 0.266 | 0.297 | −0.066 | −0.128 | 0.087 | 0.039 |
Campestanol | 0.344 | 0.265 | 0.374 | 0.238 | 0.300 | 0.213 | 0.138 | 0.159 | 0.071 | −0.010 | 0.031 | 0.057 |
Stigmasterol | 0.225 | 0.247 | 0.238 | 0.204 | 0.173 | 0.182 | 0.118 | 0.212 | 0.043 | −0.103 | 0.083 | 0.031 |
Sitosterol | 0.300 | 0.261 | 0.321 | 0.241 | 0.226 | 0.172 | 0.268 | 0.302 | −0.077 | −0.153 | 0.092 | 0.041 |
Sitostanol | 0.217 | 0.176 | 0.249 | 0.151 | 0.170 | 0.115 | 0.106 | 0.150 | 0.066 | −0.016 | 0.065 | 0.021 |
Brassicasterol | 0.242 | 0.233 | 0.257 | 0.217 | 0.194 | 0.157 | 0.145 | 0.207 | 0.024 | −0.048 | 0.071 | 0.019 |
Total Cholesterol | Total Cholesterol-GC | LDL Cholesterol | HDL Cholesterol | Triglycerides | ||||||
---|---|---|---|---|---|---|---|---|---|---|
First | Second | First | Second | First | Second | First | Second | First | Second | |
Campesterol | 1.594 (1.273; 1.915) | 1.257 (0.965; 1.548) | 59.8 (47.8; 71.9) | 64.0 (47.8; 80.2) | 1.343 (0.955; 1.730) | 1.915 (1.499; 2.330) | 0.269 (0.134; 0.405) | 1.301 (0.999; 1.604) | 0.062 (−0.086; 0.209) | −0.150 (−0.353; 0.054) |
Campestanol | 0.073 (0.058; 0.088) | 0.066 (0.052; 0.079) | 3.092 (2.536; 3.648) | 6.617 (4.856; 8.379) | 0.169 (0.127; 0.210) | 0.207 (0.162; 0.252) | −0.003 (−0.009; 0.004) | 0.023 (0.002; 0.045) | 0.016 (0.009; 0.023) | 0.020 (−0.002; 0.042) |
Stigmasterol | 0.060 (0.044; 0.076) | 0.049 (0.034; 0.063) | 2.246 (1.646; 2.845) | 1.947 (1.243; 2.65) | 0.052 (0.036; 0.069) | 0.063 (0.045; 0.081) | 0.003 (−0.003; 0.010) | 0.009 (0.001; 0.018) | 0.012 (0.005; 0.019) | 0.001 (−0.008; 0.010) |
Sitosterol | 2.333 (1.836; 2.830) | 1.834 (1.382; 2.285) | 89.1 (70.5; 107.7) | 79.0 (57.7; 100.3) | 1.757 (1.251; 2.263) | 2.264 (1.713; 2.815) | 0.393 (0.184; 0.602) | 0.588 (0.327; 0.849) | 0.117 (−0.111; 0.345) | −0.238 (−0.505; 0.029) |
Sitostanol | 0.049 (0.033; 0.064) | 0.043 (0.029; 0.057) | 2.207 (1.632; 2.783) | 1.944 (0.600; 3.289) | 0.055 (0.024; 0.087) | 0.070 (0.036; 0.105) | −0.003 (−0.010; 0.003) | 0.011 (−0.006; 0.027) | 0.014 (0.007; 0.021) | 0.006 (−0.010; 0.022) |
Brassicasterol | 0.022 (0.017; 0.028) | 0.018 (0.012; 0.023) | 0.840 (0.624; 1.055) | 0.932 (0.705; 1.159) | 0.017 (0.012; 0.023) | 0.025 (0.019; 0.031) | 0.002 (0.000; 0.005) | 0.007 (0.004; 0.010) | 0.003 (0.001; 0.006) | 0.000 (−0.003; 0.003) |
Apolipoprotein A-IV | Lp(a), Log-Transformed | |
---|---|---|
Campesterol | 2.138 (0.454; 3.822) | 0.036 (−0.370; 0.442) |
Campestanol | 0.015 (−0.064; 0.093) | 0.007 (−0.012; 0.026) |
Stigmasterol | 0.027 (−0.056; 0.110) | −0.001 (−0.021; 0.019) |
Sitosterol | 2.299 (−0.301; 4.899) | 0.044 (−0.581; 0.670) |
Sitostanol | 0.051 (−0.028; 0.130) | 0.001 (−0.018; 0.020) |
Brassicasterol | 0.026 (−0.004; 0.055) | 0 (−0.007; 0.007) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanasila, L.; Lütjohann, D.; Popp, J.; Marques-Vidal, P. Association between Serum Phytosterols and Lipid Levels in a Population-Based Study. Nutrients 2024, 16, 775. https://doi.org/10.3390/nu16060775
Stanasila L, Lütjohann D, Popp J, Marques-Vidal P. Association between Serum Phytosterols and Lipid Levels in a Population-Based Study. Nutrients. 2024; 16(6):775. https://doi.org/10.3390/nu16060775
Chicago/Turabian StyleStanasila, Laura, Dieter Lütjohann, Julius Popp, and Pedro Marques-Vidal. 2024. "Association between Serum Phytosterols and Lipid Levels in a Population-Based Study" Nutrients 16, no. 6: 775. https://doi.org/10.3390/nu16060775
APA StyleStanasila, L., Lütjohann, D., Popp, J., & Marques-Vidal, P. (2024). Association between Serum Phytosterols and Lipid Levels in a Population-Based Study. Nutrients, 16(6), 775. https://doi.org/10.3390/nu16060775