The Association of Total Meat Intake with Cardio-Metabolic Disease Risk Factors and Measures of Sub-Clinical Atherosclerosis in an Urbanising Community of Southern India: A Cross-Sectional Analysis for the APCAPS Cohort
Abstract
:1. Introduction
2. Methods
2.1. Study Sample
2.2. Diet Assessment
2.3. Clinical Assessment
2.4. Assessment of Subclinical Atherosclerosis Measures
2.5. Statistical Analyses
3. Results
3.1. Primary Outcomes: Males
3.2. Secondary Outcome: Males
3.3. Primary Outcomes: Females
3.4. Secondary Outcome: Females
4. Discussion
4.1. Comparison with Previous Studies
4.2. Possible Mechanisms or Pathways
4.3. Lowered Threshold for CVDs in Indians
4.4. Strengths and Limitations
4.5. Public Health Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prabhakaran, D.; Jeemon, P.; Roy, A. Cardiovascular Diseases in India: Current Epidemiology and Future Directions. Circulation 2016, 133, 1605–1620. [Google Scholar] [CrossRef]
- Vasan, S.K.; Antonisamy, B.; Gowri, M.; Selliah, H.Y.; Geethanjali, F.S.; Jebasingh, F.S.; Paul, T.V.; Thomas, N.; Karpe, F.; Johnson, M.; et al. Prevalence, incidence and predictors of cardiovascular risk factors: Longitudinal data from rural and urban South India and comparison with global data. BMJ Open Diabetes Res. Care 2020, 8, e001782. [Google Scholar] [CrossRef]
- Yusuf, S.; Joseph, P.; Rangarajan, S.; Islam, S.; Mente, A.; Hystad, P.; Brauer, M.; Kutty, V.R.; Gupta, R.; Wielgosz, A.; et al. Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): A prospective cohort study. Lancet 2020, 395, 795–808. [Google Scholar] [CrossRef]
- Leroy, F.; Smith Nick, W.; Adesogan Adegbola, T.; Beal, T.; Iannotti, L.; Moughan Paul, J.; Mann, N. The role of meat in the human diet: Evolutionary aspects and nutritional value. Anim. Front. 2023, 13, 11–18. [Google Scholar] [CrossRef]
- Rohrmann, S.; Overvad, K.; Bueno-de-Mesquita, H.B.; Jakobsen, M.U.; Egeberg, R.; Tjønneland, A.; Nailler, L.; Boutron-Ruault, M.-C.; Clavel-Chapelon, F.; Krogh, V.; et al. Meat consumption and mortality—Results from the European Prospective Investigation into Cancer and Nutrition. BMC Med. 2013, 11, 63. [Google Scholar] [CrossRef]
- Zhong, V.W.; Van Horn, L.; Greenland, P.; Carnethon, M.R.; Ning, H.; Wilkins, J.T.; Lloyd-Jones, D.M.; Allen, N.B. Associations of Processed Meat, Unprocessed Red Meat, Poultry, or Fish Intake With Incident Cardiovascular Disease and All-Cause Mortality. JAMA Intern. Med. 2020, 180, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Bechthold, A.; Boeing, H.; Schwedhelm, C.; Hoffmann, G.; Knüppel, S.; Iqbal, K.; De Henauw, S.; Michels, N.; Devleesschauwer, B.; Schlesinger, S.; et al. Food groups and risk of coronary heart disease, stroke and heart failure: A systematic review and dose-response meta-analysis of prospective studies. Crit. Rev. Food Sci. Nutr. 2019, 59, 1071–1090. [Google Scholar] [CrossRef] [PubMed]
- Micha, R.; Michas, G.; Mozaffarian, D. Unprocessed red and processed meats and risk of coronary artery disease and type 2 diabetes--an updated review of the evidence. Curr. Atheroscler. Rep. 2012, 14, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, R.; Dehghan, M.; Mente, A.; Rangarajan, S.; Wielgosz, A.; Avezum, A.; Seron, P.; AlHabib, K.F.; Lopez-Jaramillo, P.; Swaminathan, S.; et al. Associations of unprocessed and processed meat intake with mortality and cardiovascular disease in 21 countries [Prospective Urban Rural Epidemiology (PURE) Study]: A prospective cohort study. Am. J. Clin. Nutr. 2021, 114, 1049–1058. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Je, Y. Meat Consumption and Risk of Metabolic Syndrome: Results from the Korean Population and a Meta-Analysis of Observational Studies. Nutrients 2018, 10, 390. [Google Scholar] [CrossRef] [PubMed]
- Damigou, E.; Kosti, R.I.; Panagiotakos, D.B. White Meat Consumption and Cardiometabolic Risk Factors: A Review of Recent Prospective Cohort Studies. Nutrients 2022, 14, 5213. [Google Scholar] [CrossRef] [PubMed]
- Bronzato, S.; Durante, A. A Contemporary Review of the Relationship between Red Meat Consumption and Cardiovascular Risk. Int. J. Prev. Med. 2017, 8, 40. [Google Scholar] [PubMed]
- Lescinsky, H.; Afshin, A.; Ashbaugh, C.; Bisignano, C.; Brauer, M.; Ferrara, G.; Hay, S.I.; He, J.; Iannucci, V.; Marczak, L.B.; et al. Health effects associated with consumption of unprocessed red meat: A Burden of Proof study. Nat. Med. 2022, 28, 2075–2082. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M. Campos HJNEjom: Dietary therapy in hypertension. Curr. Probl. Cardiol. 2010, 362, 2102–2112. [Google Scholar]
- Karwowska, M.; Kononiuk, A. Nitrates/Nitrites in Food-Risk for Nitrosative Stress and Benefits. Antioxidants 2020, 9, 241. [Google Scholar] [CrossRef]
- Dietary Guidelines for Americans, 2020–2025 and Online Materials|Dietary Guidelines for Americans. Available online: https://asphn.org/wp-content/uploads/2021/03/Dietary-Guidelines-for-Americans-2020-2025.pdf (accessed on 22 September 2023).
- United Nations. Department of Economic and Social Affairs—Sustainable Development. Transforming our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 22 September 2023).
- International Institute for Population Sciences (IIPS) and ICF. 2017. National Family Health Survey (NFHS-5), 2019–2021, India. Mumbai: IIPS. Available online: https://dhsprogram.com/pubs/pdf/FR375/FR375.pdf (accessed on 22 September 2023).
- National Investment Promotion and Facilitation Agency. Animal Husbandry and Dairying. India is the Largest Producer of Milk and Buffalo Meat. Available online: https://www.investindia.gov.in/sector/animal-husbandry-and-dairying#:~:text=India%20is%20the%20largest%20producer%20of%20Milk%20and%20Buffalo%20Meat&text=The%20livestock%20sector%20grew%20at,Mn%20to%20over%2057%20countries (accessed on 22 September 2023).
- Sharma, M.; Kishore, A.; Roy, D.; Joshi, K. A comparison of the Indian diet with the EAT-Lancet reference diet. BMC Public Health 2020, 20, 812. [Google Scholar] [CrossRef]
- Kehoe, S.H.; Dhurde, V.; Bhaise, S.; Kale, R.; Kumaran, K.; Gelli, A.; Rengalakshmi, R.; Lawrence, W.; Bloom, I.; Sahariah, S.A.; et al. Barriers and Facilitators to Fruit and Vegetable Consumption Among Rural Indian Women of Reproductive Age. Food Nutr. Bull. 2019, 40, 87–98. [Google Scholar] [CrossRef]
- Kalra, A.; Jose, A.P.; Prabhakaran, P.; Kumar, A.; Agrawal, A.; Roy, A.; Bhargava, B.; Tandon, N.; Prabhakaran, D. The burgeoning cardiovascular disease epidemic in Indians—Perspectives on contextual factors and potential solutions. Lancet Reg. Health Southeast Asia 2023, 12, 100156. [Google Scholar] [CrossRef]
- Orlich, M.J.; Chiu, T.H.T.; Dhillon, P.K.; Key, T.J.; Fraser, G.E.; Shridhar, K.; Agrawal, S.; Kinra, S. Vegetarian Epidemiology: Review and Discussion of Findings from Geographically Diverse Cohorts. Adv. Nutr. 2019, 10, S284–S295. [Google Scholar] [CrossRef]
- Agrawal, S.; Millett, C.J.; Dhillon, P.K.; Subramanian, S.V.; Ebrahim, S. Type of vegetarian diet, obesity and diabetes in adult Indian population. Nutr. J. 2014, 13, 89. [Google Scholar] [CrossRef]
- Agrawal, S.; Millett, C.; Subramanian, S.V.; Ebrahim, S. Frequency of fish intake and diabetes among adult Indians. J. Am. Coll. Nutr. 2014, 33, 215–230. [Google Scholar] [CrossRef] [PubMed]
- Shridhar, K.; Satija, A.; Dhillon, P.K.; Agrawal, S.; Gupta, R.; Bowen, L.; Kinra, S.; Bharathi, A.V.; Prabhakaran, D.; Srinath Reddy, K.; et al. Association between empirically derived dietary patterns with blood lipids, fasting blood glucose and blood pressure in adults—The India migration study. Nutr. J. 2018, 17, 15. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, H.; Lieber, J.; Carson Mallinson, P.A.; Bhogadi, S.; Banjara, S.K.; Kinra, S.; Kulkarni, B. The higher dietary inflammation is associated with a higher burden of multimorbidity of cardio-metabolic and mental health disorders in an urbanizing community of southern India: A cross-sectional analysis for the APCAPS cohort. Hum. Nutr. Metab. 2024, 36, 200254. [Google Scholar] [CrossRef]
- Kinra, S.; Radha Krishna, K.; Kuper, H.; Rameshwar Sarma, K.; Prabhakaran, P.; Gupta, V.; Walia, G.K.; Bhogadi, S.; Kulkarni, B.; Kumar, A.; et al. Cohort Profile: Andhra Pradesh Children and Parents Study (APCAPS). Int. J. Epidemiol. 2013, 43, 1417–1424. [Google Scholar] [CrossRef] [PubMed]
- Bowen, L.; Bharathi, A.V.; Kinra, S.; Destavola, B.; Ness, A.; Ebrahim, S. Development and evaluation of a semi-quantitative food frequency questionnaire for use in urban and rural India. Asia Pac. J. Clin. Nutr. 2012, 21, 355–360. [Google Scholar]
- Gopalan, C.; Ramasastri, B.V.; Balasubramanian, S.C.; Narsinagarao, B.S.; Deosthale, Y.G.; Pant, K.C. Nutritive Value of Indian Foods; India National Institute of Nutrition: Hyderabad, India, 1999. [Google Scholar]
- United States Department of Agriculture. Nutrient Data Laboratory; United States Department of Agriculture: Washington, DC, USA, 2006. [Google Scholar]
- Welch, A.A.; Unwin, I.D.; Buss, D.H.; Paul, A.A.; Southgate, D.A.T. McCance and Widdowson’s the Composition of Foods, 5th ed.; Royal Society of Chemistry: Cambridge, UK, 1995. [Google Scholar]
- Indian Institute of Population Sciences. National Family Health Survey 3. Mumbai: IIPS. 2006. Available online: https://rchiips.org/nfhs/nfhs3.shtml (accessed on 25 September 2023).
- Matsuzaki, M.; Sullivan, R.; Ekelund, U.; Krishna, K.V.R.; Kulkarni, B.; Collier, T.; Ben-Shlomo, Y.; Kinra, S.; Kuper, H. Development and evaluation of the Andhra Pradesh Children and Parent Study Physical Activity Questionnaire (APCAPS-PAQ): A cross-sectional study. BMC Public Health 2016, 16, 48. [Google Scholar]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Cecelja, M.; Sriswan, R.; Kulkarni, B.; Kinra, S.; Nitsch, D. Association of pulse wave velocity and intima-media thickness with cardiovascular risk factors in young adults. J. Clin. Hypertens. 2020, 22, 174–184. [Google Scholar] [CrossRef]
- Oliver, J.J.; Webb, D.J. Noninvasive assessment of arterial stiffness and risk of atherosclerotic events. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 554–566. [Google Scholar] [CrossRef]
- Kinra, S.; Johnson, M.; Kulkarni, B.; Rameshwar Sarma, K.V.; Ben-Shlomo, Y.; Smith, G.D. Socio-economic position and cardiovascular risk in rural Indian adolescents: Evidence from the Andhra Pradesh children and parents study (APCAPS). Public Health 2014, 128, 852–859. [Google Scholar] [CrossRef]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S; discussion 1229S–1231S. [Google Scholar] [CrossRef] [PubMed]
- Willcox, B.J.; Yano, K.; Chen, R.; Willcox, D.C.; Rodriguez, B.L.; Masaki, K.H.; Donlon, T.; Tanaka, B.; Curb, J.D. How much should we eat? The association between energy intake and mortality in a 36-year follow-up study of Japanese-American men. J. Gerontol. A Biol. Sci. Med. Sci. 2004, 59, 789–795. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- European Commission. Knowledge for Policy. Food-Based Dietary Guidelines in Europe—Table 8. Summary of FBDG Recommendations for Meat for the EU, Iceland, Norway, Switzerland and the United Kingdom. Available online: https://knowledge4policy.ec.europa.eu/health-promotion-knowledge-gateway/food-based-dietary-guidelines-europe-table-8_en (accessed on 5 November 2023).
- Lloyd-Jones, D.M.; Hong, Y.; Labarthe, D.; Mozaffarian, D.; Appel, L.J.; Van Horn, L.; Greenlund, K.; Daniels, S.; Nichol, G.; Tomaselli, G.F.J.C. Defining and setting national goals for cardiovascular health promotion and disease reduction: The American Heart Association’s strategic Impact Goal through 2020 and beyond. Circulation 2010, 121, 586–613. [Google Scholar] [CrossRef] [PubMed]
- Wolk, A. Potential health hazards of eating red meat. J. Intern. Med. 2017, 281, 106–122. [Google Scholar] [CrossRef]
- Barnard, N.; Levin, S.; Trapp, C. Meat consumption as a risk factor for type 2 diabetes. Nutrients 2014, 6, 897–910. [Google Scholar] [CrossRef] [PubMed]
- Hamdy, O.; Porramatikul, S.; Al-Ozairi, E.J.C.d.R. Metabolic obesity: The paradox between visceral and subcutaneous fat. Curr. Diabetes Rev. 2006, 2, 367–373. [Google Scholar] [PubMed]
- Krssak, M.; Falk Petersen, K.; Dresner, A.; DiPietro, L.; Vogel, S.; Rothman, D.; Shulman, G.; Roden, M.J.D. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: A 1H NMR spectroscopy study. Diabetologia 1999, 42, 113–116. [Google Scholar] [CrossRef]
- Wittenbecher, C.; Mühlenbruch, K.; Kröger, J.; Jacobs, S.; Kuxhaus, O.; Floegel, A.; Fritsche, A.; Pischon, T.; Prehn, C.; Adamski, J.; et al. Amino acids, lipid metabolites, and ferritin as potential mediators linking red meat consumption to type 2 diabetes. Am. J. Clin. Nutr. 2015, 101, 1241–1250. [Google Scholar] [CrossRef]
- Portha, B.; Giroix, M.; Cros, J.; Picon, L. Diabetogenic effect of N-nitrosomethylurea and N-nitrosomethylurethane in the adult rat. In Annales de la Nutrition et de l’Alimentation; JSTOR: New York, NY, USA, 1980; pp. 1143–1151. [Google Scholar]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Richardson, R.I.; Sheard, P.R. Manipulating meat quality and composition. Proc. Nutr. Soc. 1999, 58, 363–370. [Google Scholar] [CrossRef]
- Ahmadmehrabi, S.; Tang, W.H.W. Gut microbiome and its role in cardiovascular diseases. Curr. Opin. Cardiol. 2017, 32, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Alisson-Silva, F.; Kawanishi, K.; Varki, A. Human risk of diseases associated with red meat intake: Analysis of current theories and proposed role for metabolic incorporation of a non-human sialic acid. Mol. Aspects Med. 2016, 51, 16–30. [Google Scholar] [CrossRef]
- Czerwonka, M.; Tokarz, A. Iron in red meat-friend or foe. Meat Sci. 2017, 123, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Staimez, L.R.; Deepa, M.; Ali, M.K.; Mohan, V.; Hanson, R.L.; Narayan, K.M.V. Tale of two Indians: Heterogeneity in type 2 diabetes pathophysiology. Diabetes Metab. Res. Rev. 2019, 35, e3192. [Google Scholar] [CrossRef] [PubMed]
- Enas, E.A.; Varkey, B.; Dharmarajan, T.S.; Pare, G.; Bahl, V.K. Lipoprotein(a): An underrecognized genetic risk factor for malignant coronary artery disease in young Indians. Indian. Heart J. 2019, 71, 184–198. [Google Scholar] [CrossRef]
- Volgman, A.S.; Palaniappan, L.S.; Aggarwal, N.T.; Gupta, M.; Khandelwal, A.; Krishnan, A.V.; Lichtman, J.H.; Mehta, L.S.; Patel, H.N.; Shah, K.S.; et al. Atherosclerotic Cardiovascular Disease in South Asians in the United States: Epidemiology, Risk Factors, and Treatments: A Scientific Statement from the American Heart Association. Circulation 2018, 138, e1–e34. [Google Scholar] [CrossRef]
Characteristics | Overall (n = 6012) | Male (n = 3184) | Female (2828) | |
---|---|---|---|---|
Socio-demographic | ||||
Age, year (mean, SD) | 34.17 (14.29) | 34.09 (15.55) | 34.27 (12.73) | |
Education (n, %) | No formal education | 2120 (35.3) | 749 (23.5) | 1371 (48.5) |
Primary | 1417 (23.6) | 817 (25.7) | 600 (21.2) | |
Secondary | 2009 (33.4) | 1294 (40.6) | 715 (25.3) | |
Beyond secondary | 466 (7.7) | 324 (10.2) | 142 (5.0) | |
Occupation (n, %) | Unemployed and unskilled labourer | 2533 (42.1) | 1186 (37.2) | 1347 (47.6) |
Housewife and retired and student | 1889 (31.4) | 738 (23.2) | 1151 (40.7) | |
Manual (semi-skilled and skilled) | 1265 (21.0) | 998 (31.3) | 267 (9.4) | |
Skilled non-manual and Semi-professional and professional | 325 (5.4) | 262 (8.2) | 63 (2.2) | |
Standard of Living Index (mean, SD) | 28.65 (8.43) | 29.10 (8.34) | 28.14 (8.50) | |
Dietary and Behavioural | ||||
Total meat intake, g/day (mean, SD) | 19.59 (23.05) | 24.62 (27.72) | 13.92 (14.28) | |
Total meat intake, g/day (median, IQR) | 14.56 (6.11, 25.31) | 17.79 (8.90, 30.26) | 8.90 (4.15, 18.82) | |
Chicken intake, g/day (median, IQR) | 10.40 (3.94, 19.30) | 15.91 (7.53, 23.38) | 8.43 (3.15, 16.87) | |
Red meat intake, g/day (median (IQR) | 1.42 (0.43, 5.28) | 2.64 (0.66, 6.90) | 0.92 (0.22, 3.41) | |
Calorie intake, kcal/day (median, IQR) | 2102.38 (1626.33, 2713.28) | 2443.95 (1903.59, 3111.90) | 1810.93 (1447.83, 2224.59) | |
Antioxidants, g/day (median, IQR) | 207.14 (135.98, 324.44) | 222.99 (148.46, 347.94) | 186.57 (124.28, 295.17) | |
Current tobacco consumption (n, %) | 1338 (22.3) | 1019 (32.0) | 319 (11.3) | |
Alcohol (n, %) | Never | 2558 (42.6) | 1663 (52.2) | 895 (31.7) |
Sometimes | 3079 (51.2) | 1215 (38.2) | 1864 (65.9) | |
Daily | 375 (6.2) | 306 (9.6) | 69 (2.4) | |
Physical activity level (mean, SD) | 1.61 (0.21) | 1.58 (0.21) | 1.65 (0.21) | |
Moderate to vigorously active (n, %) | 1816 (30.2) | 801 (25.2) | 1015 (35.9) | |
CVD Risk Factors | ||||
SBP, mmHg (mean, SD) | 118.75 (15.70) | 121.93 (16.07) | 115.18 (14.46) | |
DBP, mmHg (mean, SD) | 77.53 (12.67) | 79.30 (13.20) | 75.53 (11.74) | |
Hypertension (n, %) | 1063 (17.9) | 672 (21.1) | 391 (13.8) | |
Fasting plasma glucose, mg/dL (mean, SD) | 93.51 (20.71) | 94.10 (20.78) | 92.85 (20.61) | |
Diabetes (n, %) | 229 (3.8) | 126 (4.0) | 103 (3.6) | |
HOMA-IR (median, IQR) | 1.17 (0.68, 1.92) | 1.11 (0.61, 1.86) | 1.25 (0.75, 1.96) | |
HDL-C, mg/dL (mean, SD) | 43.72 (12.80) | 42.54 (12.93) | 45.03 (12.52) | |
LDL-C, mg/dL (mean, SD) | 96.17 (30.97) | 93.89 (30.97) | 98.74 (30.78) | |
Triglyceride, mg/dL (median, IQR) | 100.70 (74.60, 141.20) | 106.40 (78.95, 152.3) | 93.7 (70.8, 129.05) | |
Total cholesterol, mg/dL (mean, SD) | 163.27 (37.78) | 161.41 (37.97) | 165.36 (37.46) | |
BMI, kg/m2 (mean, SD) | 20.59 (3.80) | 20.37 (3.57) | 20.83 (4.03) | |
WC, mm (mean, SD) | 715.16 (103.96) | 736.15 (100.67) | 691.53 (102.55) | |
C-reactive protein, mg/dL (median, IQR) | 0.96 (0.39, 2.47) | 0.90 (0.38, 2.31) | 1.03 (0.41, 2.61) | |
CIMT, mm (mean, SD) (n = 3303) | 0.816 (0.25) | 0.788 (0.25) | 0.847 (0.24) | |
PWV, m/s (mean, SD) (n = 3277) | 6.871 (1.46) | 6.870 (1.55) | 6.872 (1.34) | |
AIx, % (mean SD) (n = 3111) | 22.48 (11.05) | 21.11 (10.65) | 23.99 (11.30) |
CVD Risk Factor | Regression Models | Per SD Change | 10 g/1000 kcal/Day | ||
---|---|---|---|---|---|
β-Coef (95% CI) | p-Value | β-Coef (95% CI) | p-Value | ||
SBP (n = 3184) | Model 1 | 0.67 (0.15, 1.18) | 0.011 * | 0.96 (0.32, 1.60) | 0.003 * |
Model 2 | 0.45 (−0.07, 0.96) | 0.091 | 0.70 (0.59, 1.34) | 0.032 | |
Model 3 | 0.31 (−0.24, 0.85) | 0.270 | 0.51 (−0.15, 1.16) | 0.132 | |
Model 4 | 0.18 (−0.39, 0.75) | 0.546 | 0.52 (−0.13, 1.17) | 0.117 | |
DBP (n = 3184) | Model 1 | 0.99 (0.57, 1.41) | <0.001 * | 1.15 (0.63, 1.68) | <0.001 * |
Model 2 | 0.75 (0.33, 1.18) | 0.001 * | 0.87 (0.33, 1.41) | 0.001 * | |
Model 3 | 0.61 (0.17, 1.06) | 0.007 * | 0.71 (0.17, 1.25) | 0.010 * | |
Model 4 | 0.49 (0.02, 0.97) | 0.041 | 0.71 (0.18, 1.24) | 0.009 * | |
BMI (n = 3184) | Model 1 | 0.55 (0.43, 0.67) | <0.001 * | 0.61 (0.46, 0.77) | <0.001 * |
Model 2 | 0.43 (0.31, 0.55) | <0.001 * | 0.47 (0.32, 0.62) | <0.001 * | |
Model 3 | 0.42 (0.29, 0.55) | <0.001 * | 0.42 (0.27, 0.57) | <0.001 * | |
Model 4 | 0.31 a (0.18, 0.44) | <0.001 * | 0.43 b (0.28, 0.58) | <0.001 * | |
WC (n = 3184) | Model 1 | 14.91 (11.57, 18.25) | <0.001 * | 16.56 (12.38, 20.74) | <0.001 * |
Model 2 | 11.07 (7.78, 14.35) | <0.001 * | 11.94 (7.84, 16.04) | <0.001 * | |
Model 3 | 10.57 (7.12, 14.00) | <0.001 * | 10.41 (6.31, 14.51) | <0.001 * | |
Model 4 | 7.58 (3.99, 11.16) | <0.001 * | 10.65 (6.57, 14.72) | <0.001 * | |
Fasting Glucose (log) (n = 3184) | Model 1 | −0.002 (−0.007, 0.004) | 0.604 | −0.001 (−0.007, 0.007) | 0.970 |
Model 2 | −0.004 (−0.010, 0.002) | 0.188 | −0.003 (−0.010, 0.004) | 0.438 | |
Model 3 | −0.004 (−0.010, 0.003) | 0.259 | −0.004 (−0.011, 0.004) | 0.323 | |
Model 4 | −0.003 (−0.009, 0.003) | 0.351 | −0.004 (−0.011, 0.004) | 0.317 | |
HOMA-IR (log) (n = 3184) | Model 1 | 0.054 (0.022, 0.086) | 0.001 * | 0.066 (0.026, 0.106) | 0.001 * |
Model 2 | 0.036 (0.004, 0.069) | 0.027 * | 0.045 (0.004, 0.085) | 0.030 | |
Model 3 | 0.037 (0.004, 0.071) | 0.029 | 0.038 (−0.002, 0.078) | 0.064 | |
Model 4 | 0.029 (−0.006, 0.064) | 0.104 | 0.039 (−0.002, 0.079) | 0.059 | |
Total cholesterol (n = 3184) | Model 1 | 3.33 (2.08, 4.58) | <0.001 * | 4.22 (2.66, 5.78) | <0.001 * |
Model 2 | 2.90 (1.64, 4.16) | <0.001 * | 3.70 (2.13, 5.28) | <0.001 * | |
Model 3 | 2.93 (1.61, 4.26) | <0.001 * | 3.33 (1.75, 4.91) | <0.001 * | |
Model 4 | 2.35 (0.97, 3.73) | 0.001 * | 3.39 (1.81, 4.97) | <0.001 * | |
HDL-C (n = 3184) | Model 1 | −0.09 (−0.52, 0.33) | 0.669 | 0.13 (−0.41, 0.66) | 0.639 |
Model 2 | 0.09 (−0.34, 0.52) | 0.695 | 0.34 (−0.20, 0.88) | 0.217 | |
Model 3 | 0.15 (−0.30, 0.60) | 0.512 | 0.41 (−0.13, 0.96) | 0.135 | |
Model 4 | 0.12 (−0.36, 0.59) | 0.635 | 0.42 (−0.13, 0.96) | 0.132 | |
LDL-C (n = 3184) | Model 1 | 2.29 (1.25, 3.33) | <0.001 * | 3.12 (1.82, 4.43) | <0.001 * |
Model 2 | 1.81 (0.76, 2.87) | 0.001 * | 2.56 (1.25, 3.88) | <0.001 * | |
Model 3 | 1.87 (0.76, 2.97) | 0.001 * | 2.28 (0.96, 3.60) | 0.001 * | |
Model 4 | 1.57 (0.41, 2.73) | 0.008 * | 2.31 (0.99, 3.63) | 0.001 * | |
TG (log) (n = 3184) | Model 1 | 0.046 (0.029, 0.062) | <0.001 * | 0.044 (0.023, 0.064) | <0.001 * |
Model 2 | 0.041 (0.024, 0.057) | <0.001 * | 0.037 (0.017, 0.058) | <0.001 * | |
Model 3 | 0.038 (0.021, 0.055) | <0.001 * | 0.032 (0.011, 0.053) | 0.003 * | |
Model 4 | 0.030 (0.012, 0.049) | 0.001 * | 0.032 (0.012, 0.053) | 0.002 * | |
CRP (log) (n = 3184) | Model 1 | −0.001 (−0.046, 0.043) | 0.959 | 0.042 (−0.014, 0.097) | 0.140 |
Model 2 | −0.015 (−0.060, 0.030) | 0.517 | 0.027 (−0.029, 0.083) | 0.350 | |
Model 3 | −0.013 (−0.061, 0.034) | 0.578 | 0.019 (−0.038, 0.075) | 0.516 | |
Model 4 | 0.002 (−0.047, 0.052) | 0.931 | 0.018 (−0.039, 0.074) | 0.537 | |
CIMT (n = 1730) | Model 1 | −0.011 (−0.020, −0.002) | 0.022 * | −0.013 (−0.025, 0.0001) | 0.053 |
Model 2 | −0.008 (−0.018, 0.001) | 0.080 | −0.009 (−0.022, 0.004) | 0.171 | |
Model 3 | −0.007 (−0.017, 0.003) | 0.153 | −0.008 (−0.021, 0.005) | 0.124 | |
Model 4 | −0.004 (−0.015, 0.007) | 0.466 | −0.008 (−0.021, 0.005) | 0.203 | |
PWV (log) (n = 1707) | Model 1 | 0.009 (0.002, 0.016) | 0.014 * | 0.008 (−0.001, 0.017) | 0.084 |
Model 2 | 0.007 (0.001, 0.014) | 0.045 | 0.006 (−0.004, 0.015) | 0.219 | |
Model 3 | 0.004 (−0.004, 0.011) | 0.319 | 0.003 (−0.006, 0.013) | 0.527 | |
Model 4 | 0.001 (−0.007, 0.009) | 0.849 | 0.003 (−0.006, 0.013) | 0.484 | |
AIx (log) (n = 1631) | Model 1 | 0.043 (0.020, 0.065) | <0.001 * | 0.029 (−0.002, 0.060) | 0.063 |
Model 2 | 0.043 (0.020, 0.066) | <0.001 * | 0.029 (−0.002, 0.060) | 0.063 | |
Model 3 | 0.039 (0.014, 0.063) | 0.002 * | 0.024 (−0.007, 0.055) | 0.125 | |
Model 4 | 0.032 (0.006, 0.057) | 0.018 * | 0.025 (−0.006, 0.056) | 0.111 |
CVD Risk Factor | Regression Models | Red Meat | Chicken | ||
---|---|---|---|---|---|
β-Coef (95% CI) | p-Value | β-Coef (95% CI) | p-Value | ||
SBP (n = 3183) | Model 1 | 0.52 (−0.04, 1.07) | 0.068 | 0.33 (−0.24, 0.89) | 0.255 |
Model 2 | 0.35 (−0.21, 0.90) | 0.221 | 0.22 (−0.34, 0.78) | 0.443 | |
Model 3 | 0.25 (−0.32, 0.81) | 0.394 | 0.15 (−0.42, 0.72) | 0.605 | |
Model 4 | 0.19 (−0.38, 0.76) | 0.514 | 0.06 (−0.53, 0.76) | 0.856 | |
DBP (n = 3183) | Model 1 | 0.81 (0.35, 1.26) | 0.001 | 0.45 (−0.01, 0.91) | 0.056 |
Model 2 | 0.63 (0.17, 1.09) | 0.007 | 0.34 (−0.13, 0.80) | 0.153 | |
Model 3 | 0.53 (0.07, 0.99) | 0.026 | 0.27 (−0.19, 0.74) | 0.252 | |
Model 4 | 0.48 (0.01, 0.94) | 0.046 | 0.18 (−0.30, 0.66) | 0.452 | |
BMI (n = 3183) | Model 1 | 0.29 (0.16, 0.43) | <0.001 | 0.37 (0.23, 0.50) | <0.001 |
Model 2 | 0.20 (0.07, 0.33) | 0.002 | 0.31 (0.17, 0.44) | <0.001 | |
Model 3 | 0.19 (0.06, 0.32) | 0.004 | 0.31 (0.18, 0.44) | <0.001 | |
Model 4 | 0.14 a (0.01, 0.27) | 0.035 | 0.22 b (0.09, 0.36) | 0.001 | |
WC (n = 3183) | Model 1 | 9.30 (5.70, 12.89) | <0.001 | 8.93 (5.28, 12.58) | <0.001 |
Model 2 | 6.46 (2.95, 9.98) | <0.001 | 6.97 (3.41, 10.53) | <0.001 | |
Model 3 | 5.94 (2.39, 9.50) | 0.001 | 6.90 (3.31, 10.49) | <0.001 | |
Model 4 | 4.66 (1.09, 8.23) | 0.010 | 4.69 (1.03, 8.35) | 0.012 | |
Fasting Glucose (log) (n = 3183) | Model 1 | 0.005 (−0.001, 0.011) | 0.096 | −0.006 (−0.012, 0.001) | 0.089 |
Model 2 | 0.004 (−0.003, 0.010) | 0.265 | −0.007 (−0.013, −0.001) | 0.038 | |
Model 3 | 0.004 (−0.003, 0.010) | 0.226 | −0.006 (−0.013, 0.000) | 0.051 | |
Model 4 | 0.004 (−0.002, 0.011) | 0.204 | −0.006 (−0.012, 0.001) | 0.073 | |
HOMA-IR (log) (n = 3183) | Model 1 | 0.017 (−0.018, 0.051) | 0.337 | 0.045 (0.010, 0.080) | 0.013 |
Model 2 | 0.003 (−0.032, 0.037) | 0.873 | 0.036 (0.001, 0.071) | 0.042 | |
Model 3 | 0.005 (−0.029, 0.040) | 0.771 | 0.036 (0.001, 0.071) | 0.047 | |
Model 4 | 0.002 (−0.033, 0.036) | 0.932 | 0.029 (−0.007, 0.065) | 0.110 | |
Total cholesterol (n = 3183) | Model 1 | 0.87 (−0.48, 2.21) | 0.206 | 2.88 (1.52, 4.25) | <0.001 |
Model 2 | 0.51 (−0.83, 1.86) | 0.455 | 2.68 (1.32, 4.05) | <0.001 | |
Model 3 | 0.45 (0.91, 1.82) | 0.515 | 2.75 (1.36, 4.13) | <0.001 | |
Model 4 | 0.20 (−1.17, 1.58) | 0.774 | 2.31 (0.90, 3.73) | 0.001 | |
HDL-C (n = 3183) | Model 1 | −0.59 (−1.05, −0.13) | 0.011 | 0.34 (−0.13, 0.81) | 0.154 |
Model 2 | −0.47 (−0.93, −0.01) | 0.045 | 0.44 (−0.03, 0.91) | 0.068 | |
Model 3 | −0.46 (−0.93, 0.003) | 0.051 | 0.48 (0.01, 0.96) | 0.046 | |
Model 4 | −0.48 (−0.95, −0.01) | 0.045 | 0.45 (−0.03, 0.94) | 0.068 | |
LDL-C (n = 3183) | Model 1 | 0.58 (−0.54, 1.71) | 0.309 | 2.00 (0.85, 3.14) | 0.001 |
Model 2 | 0.20 (0.93, 1.32) | 0.729 | 1.77 (0.63, 2.91) | 0.002 | |
Model 3 | 0.19 (−0.95, 1.33) | 0.747 | 1.82 (0.67, 2.98) | 0.002 | |
Model 4 | 0.06 (−1.09, 1.21) | 0.100 | 1.59 (0.41, 2.78) | 0.008 | |
TG (log) (n = 3183) | Model 1 | 0.033 (0.016, 0.051) | <0.001 | 0.024 (0.006, 0.042) | 0.009 |
Model 2 | 0.030 (0.012, 0.047) | 0.001 | 0.021 (0.003, 0.039) | 0.020 | |
Model 3 | 0.028 (0.010, 0.046) | 0.003 | 0.021 (0.002, 0.039) | 0.028 | |
Model 4 | 0.024 (0.006, 0.043) | 0.009 | 0.015 (−0.004, 0.034) | 0.116 | |
CRP (log) (n = 3183) | Model 1 | 0.003 (−0.045, 0.051) | 0.902 | −0.004 (−0.052, 0.045) | 0.890 |
Model 2 | −0.009 (−0.057, 0.040) | 0.725 | −0.009 (−0.058, 0.039) | 0.706 | |
Model 3 | −0.009 (−0.058, 0.040) | 0.718 | −0.008 (−0.057, 0.042) | 0.758 | |
Model 4 | −0.003 (−0.052, 0.047) | 0.926 | 0.004 (−0.047, 0.055) | 0.880 | |
CIMT (n = 1730) | Model 1 | −0.005 (−0.016, 0.005) | 0.323 | −0.007 (−0.018, 0.004) | 0.189 |
Model 2 | −0.004 (−0.014, 0.007) | 0.530 | −0.006 (−0.017, 0.005) | 0.262 | |
Model 3 | −0.002 (−0.013, 0.009) | 0.718 | −0.006 (−0.017, 0.005) | 0.272 | |
Model 4 | −0.001 (−0.012, 0.010) | 0.877 | −0.004 (−0.015, 0.008) | 0.547 | |
PWV (log) (n = 1707) | Model 1 | 0.007 (−0.001, 0.015) | 0.079 | 0.004 (−0.004, 0.012) | 0.367 |
Model 2 | 0.006 (−0.002, 0.014) | 0.143 | 0.003 (−0.005, 0.011) | 0.468 | |
Model 3 | 0.003 (−0.005, 0.011) | 0.421 | 0.002 (−0.007, 0.010) | 0.714 | |
Model 4 | 0.002 (−0.006, 0.010) | 0.581 | −0.001 (−0.009, 0.007) | 0.835 | |
AIx (log) (n = 1631) | Model 1 | 0.025 (−0.001, 0.050) | 0.059 | 0.025 (−0.001, 0.052) | 0.058 |
Model 2 | 0.025 (−0.001, 0.051) | 0.056 | 0.026 (0.000, 0.052) | 0.052 | |
Model 3 | 0.023 (−0.003, 0.049) | 0.086 | 0.023 (−0.003, 0.050) | 0.088 | |
Model 4 | 0.021 (−0.006, 0.047) | 0.128 | 0.017 (−0.010, 0.045) | 0.214 |
CVD Risk Factor | Regression Models | Per SD Change | 10 g/1000 kcal/Day | ||
---|---|---|---|---|---|
β-Coef (95% CI) | p-Value | β-Coef (95% CI) | p-Value | ||
SBP (n = 2828) | Model 1 | 0.52 (0.05, 0.99) | 0.030 | 1.19 (0.49, 1.88) | <0.001 * |
Model 2 | 0.45 (−0.02, 0.93) | 0.062 | 1.11 (0.41, 1.81) | 0.002 * | |
Model 3 | 0.41 (−0.10, 0.92) | 0.116 | 1.08 (0.38, 1.79) | 0.003 * | |
Model 4 | 0.51 (−0.01, 1.02) | 0.056 | 1.04 (0.33, 1.75) | 0.004 * | |
DBP (n = 2828) | Model 1 | 0.51 (0.12, 0.90) | 0.010 * | 0.93 (0.35, 1.51) | 0.002 * |
Model 2 | 0.43 (0.04, 0.83) | 0.033 | 0.84 (0.26, 1.42) | 0.005 * | |
Model 3 | 0.41 (−0.01, 0.83) | 0.057 | 0.82 (0.24, 1.41) | 0.006 * | |
Model 4 | 0.47 (0.04, 0.90) | 0.032 | 0.80 (0.21, 1.39) | 0.008 * | |
BMI (n = 2828) | Model 1 | 0.26 (0.12, 0.40) | <0.001 * | 0.27 (0.06, 0.47) | 0.013 * |
Model 2 | 0.17 (0.03, 0.31) | 0.018 * | 0.17 (−0.04, 0.37) | 0.117 | |
Model 3 | 0.12 (−0.03, 0.27) | 0.124 | 0.15 (−0.06, 0.35) | 0.166 | |
Model 4 | 0.11 (−0.05, 0.26) | 0.179 | 0.16 (−0.05, 0.37) | 0.132 | |
WC (n = 2828) | Model 1 | 7.17 (3.72, 10.62) | <0.001 * | 6.60 (1.48, 11.72) | 0.012 * |
Model 2 | 5.06 (1.62, 8.51) | 0.004 * | 4.19 (−0.89, 9.27) | 0.106 | |
Model 3 | 3.29 (−0.38, 6.97) | 0.079 | 3.43 (−1.65, 8.52) | 0.186 | |
Model 4 | 2.66 (−1.08, 6.41) | 0.163 | 3.98 (−1.12, 9.09) | 0.126 | |
Fasting Glucose (log) (n = 2828) | Model 1 | 0.004 (−0.002, 0.010) | 0.193 | 0.013 (0.004, 0.022) | 0.004 * |
Model 2 | 0.002 (−0.004, 0.008) | 0.498 | 0.011 (0.002, 0.020) | 0.016 * | |
Model 3 | 0.005 (−0.002, 0.011) | 0.143 | 0.012 (0.003, 0.021) | 0.007 * | |
Model 4 | 0.006 (−0.001, 0.013) | 0.070 | 0.012 (0.003, 0.021) | 0.011 * | |
HOMA-IR (log) (n = 2828) | Model 1 | 0.057 (0.026, 0.088) | <0.001 * | 0.087 (0.041, 0.132) | <0.001 * |
Model 2 | 0.042 (0.011, 0.073) | 0.008 * | 0.071 (0.025, 0.116) | 0.002 * | |
Model 3 | 0.045 (0.012, 0.078) | 0.007 * | 0.072 (0.026, 0.118) | 0.002 * | |
Model 4 | 0.044 (0.010, 0.077) | 0.011 * | 0.075 (0.029, 0.121) | 0.001 * | |
Total cholesterol (n = 2828) | Model 1 | 2.08 (0.82, 3.33) | 0.001 * | 2.98 (1.12, 4.84) | 0.002 * |
Model 2 | 1.96 (0.69, 3.23) | 0.002 * | 2.84 (0.97, 4.71) | 0.003 * | |
Model 3 | 2.20 (0.84, 3.55) | 0.002 * | 2.89 (1.01, 4.77) | 0.003 * | |
Model 4 | 2.22 a (0.84, 3.61) | 0.002 * | 2.97 b (1.08, 4.86) | 0.002 * | |
HDL-C (n = 2828) | Model 1 | 0.10 (−0.35, 0.56) | 0.655 | −0.35 (−1.02, 0.33) | 0.306 |
Model 2 | 0.19 (−0.27, 0.64) | 0.426 | −0.26 (−0.94, 0.41) | 0.444 | |
Model 3 | 0.14 (−0.35, 0.63) | 0.579 | −0.32 (−1.00, 0.36) | 0.352 | |
Model 4 | 0.06 (−0.44, 0.56) | 0.804 | −0.27 (−0.95, 0.41) | 0.439 | |
LDL-C (n = 2828) | Model 1 | 1.64 (0.59, 2.68) | 0.002 * | 2.48 (0.93, 4.03) | 0.002 * |
Model 2 | 1.46 (0.41, 2.52) | 0.007 * | 2.28 (0.72, 3.83) | 0.004 * | |
Model 3 | 1.61 (0.48, 2.73) | 0.005 * | 2.33 (0.77, 3.89) | 0.003 * | |
Model 4 | 1.67 (0.52, 2.82) | 0.004 * | 2.36 (0.79, 3.93) | 0.003 * | |
TG (log) (n = 2828) | Model 1 | 0.015 (−0.001, 0.031) | 0.063 | 0.032 (0.008, 0.056) | 0.008 * |
Model 2 | 0.015 (−0.001, 0.031) | 0.072 | 0.032 (0.008, 0.056) | 0.009 * | |
Model 3 | 0.019 (0.002, 0.036) | 0.032 | 0.033 (0.010, 0.057) | 0.006 * | |
Model 4 | 0.019 (0.002, 0.037) | 0.032 | 0.034 (0.010, 0.058) | 0.006 * | |
CRP (log) (n = 2828) | Model 1 | 0.053 (0.007, 0.099) | 0.024 * | 0.047 (−0.021, 0.115) | 0.173 |
Model 2 | 0.036 (−0.011, 0.082) | 0.130 | 0.028 (−0.041, 0.096) | 0.427 | |
Model 3 | 0.043 (−0.006, 0.093) | 0.088 | 0.031 (−0.038, 0.099) | 0.381 | |
Model 4 | 0.037 (−0.013, 0.088) | 0.146 | 0.036 (−0.033, 0.104) | 0.306 | |
CIMT (n = 1573) | Model 1 | 0.001 (−0.008, 0.010) | 0.778 | 0.004 (−0.010, 0.017) | 0.586 |
Model 2 | 0.003 (−0.007, 0.012) | 0.607 | 0.005 (−0.008, 0.019) | 0.483 | |
Model 3 | 0.004 (−0.007, 0.014) | 0.493 | 0.006 (−0.008, 0.019) | 0.436 | |
Model 4 | 0.004 (−0.007, 0.014) | 0.500 | 0.006 (−0.008, 0.020) | 0.424 | |
PWV (log) (n = 1570) | Model 1 | −0.006 (−0.013, 0.001) | 0.079 | −0.010 (−0.020, 0.0001) | 0.047 |
Model 2 | −0.007 (−0.014, −0.0001) | 0.048 | −0.011 (−0.021, −0.001) | 0.034 | |
Model 3 | −0.006 (−0.013, 0.002) | 0.137 | −0.009 (−0.019, 0.001) | 0.075 | |
Model 4 | −0.005 (−0.013, 0.003) | 0.189 | −0.010 (−0.020, −0.000) | 0.050 | |
AIx (log) (n = 1480) | Model 1 | 0.022 (−0.0006, 0.0450) | 0.057 | 0.016 (−0.016, 0.049) | 0.316 |
Model 2 | 0.023 (−0.0005, 0.0455) | 0.055 | 0.017 (−0.016, 0.049) | 0.314 | |
Model 3 | 0.018 (−0.007, 0.043) | 0.150 | 0.012 (−0.020, 0.045) | 0.458 | |
Model 4 | 0.018 (−0.007, 0.043) | 0.154 | 0.013 (−0.020, 0.046) | 0.440 |
CVD Risk Factor | Regression Models | Red Meat | Chicken | ||
---|---|---|---|---|---|
β-Coef (95% CI) | p-Value | β-Coef (95% CI) | p-Value | ||
SBP (n = 2828) | Model 1 | 0.13 (−0.35, 0.61) | 0.599 | 0.48 (−0.01, 0.97) | 0.054 |
Model 2 | 0.08 (−0.40, 0.56) | 0.735 | 0.44 (−0.05, 0.93) | 0.079 | |
Model 3 | 0.05 (−0.44, 0.54) | 0.856 | 0.42 (−0.09, 0.92) | 0.107 | |
Model 4 | 0.09 (−0.41, 0.58) | 0.729 | 0.49 (−0.02, 1.00) | 0.060 | |
DBP (n = 2828) | Model 1 | 0.26 (−0.14, 0.65) | 0.207 | 0.37 (−0.04, 0.78) | 0.074 |
Model 2 | 0.21 (−0.20, 0.61) | 0.316 | 0.32 (−0.09, 0.73) | 0.124 | |
Model 3 | 0.19 (−0.22, 0.59) | 0.374 | 0.31 (−0.11, 0.73) | 0.144 | |
Model 4 | 0.21 (−0.20, 0.62) | 0.311 | 0.36 (−0.07, 0.78) | 0.096 | |
BMI (n = 2828) | Model 1 | 0.15 (0.01, 0.29) | 0.040 | 0.17 (0.03, 0.32) | 0.022 |
Model 2 | 0.09 (−0.05, 0.24) | 0.192 | 0.12 (−0.03, 0.26) | 0.114 | |
Model 3 | 0.07 (−0.08, 0.21) | 0.360 | 0.08 (−0.07, 0.23) | 0.294 | |
Model 4 | 0.06 (−0.08, 0.21) | 0.404 | 0.07 (−0.08, 0.22) | 0.366 | |
WC (n = 2828) | Model 1 | 4.06 (0.57, 7.55) | 0.023 | 4.81 (1.24, 8.38) | 0.008 |
Model 2 | 2.71 (−0.76, 6.19) | 0.126 | 3.52 (−0.03, 7.06) | 0.052 | |
Model 3 | 1.72 (−1.82, 5.25) | 0.342 | 2.33 (−1.31, 5.97) | 0.209 | |
Model 4 | 1.44 (−2.11, 4.99) | 0.426 | 1.85 (−1.84, 5.52) | 0.326 | |
Fasting Glucose (log) (n = 2828) | Model 1 | 0.002 (−0.004, 0.008) | 0.451 | 0.003 (−0.004, 0.009) | 0.409 |
Model 2 | 0.001 (−0.005, 0.007) | 0.360 | 0.002 (−0.005, 0.008) | 0.460 | |
Model 3 | 0.003 (−0.004, 0.009) | 0.405 | 0.003 (−0.003, 0.010) | 0.309 | |
Model 4 | 0.003 (−0.003, 0.009) | 0.317 | 0.004 (−0.002, 0.011) | 0.193 | |
HOMA-IR (log) (n = 2828) | Model 1 | −0.002 (−0.034, 0.029) | 0.883 | 0.065 (0.033, 0.100) | <0.001 |
Model 2 | −0.012 (−0.044, 0.020) | 0.443 | 0.056 (0.024, 0.088) | 0.001 | |
Model 3 | −0.012 (−0.044, 0.020) | 0.477 | 0.058 (0.026, 0.091) | <0.001 | |
Model 4 | −0.012 (−0.044, 0.020) | 0.449 | 0.057 (0.024, 0.090) | 0.001 | |
Total cholesterol (n = 2828) | Model 1 | 0.36 (−0.90, 1.63) | 0.572 | 2.02 (0.73, 3.31) | 0.002 |
Model 2 | 0.29 (−0.98, 1.55) | 0.660 | 1.95 (0.66, 3.25) | 0.003 | |
Model 3 | 0.37 (−0.93, 1.66) | 0.581 | 2.13 (0.80, 3.50) | 0.002 | |
Model 4 | 0.38 a (−0.92, 1.68) | 0.570 | 2.15 b (0.80, 3.51) | 0.002 | |
HDL-C (n = 2828) | Model 1 | 0.00 (−0.45, 0.46) | 0.993 | 0.11 (−0.35, 0.58) | 0.635 |
Model 2 | 0.05 (−0.40, 0.51) | 0.819 | 0.16 (−0.30, 0.63) | 0.491 | |
Model 3 | 0.03 (−0.43, 0.50) | 0.892 | 0.13 (−0.35, 0.61) | 0.604 | |
Model 4 | 0.00 (−0.47, 0.47) | 1.000 | 0.07 (−0.42, 0.56) | 0.781 | |
LDL-C (n = 2828) | Model 1 | 0.29 (−0.76, 1.34) | 0.587 | 1.59 (0.51, 2.67) | 0.004 |
Model 2 | 0.18 (−0.88, 1.23) | 0.330 | 1.48 (0.40, 2.56) | 0.007 | |
Model 3 | 0.21 (−0.87, 1.28) | 0.707 | 1.61 (0.50, 2.72) | 0.005 | |
Model 4 | 0.24 (−0.85, 1.31) | 0.671 | 1.66 (0.54, 2.78) | 0.004 | |
TG (log) (n = 2828) | Model 1 | 0.000 (−0.017, 0.016) | 0.980 | 0.017 (0.000, 0.033) | 0.046 |
Model 2 | −0.001 (−0.017, 0.016) | 0.957 | 0.017 (0.000, 0.032) | 0.049 | |
Model 3 | 0.002 (−0.015, 0.019) | 0.839 | 0.020 (0.002, 0.037) | 0.027 | |
Model 4 | 0.002 (−0.015, 0.019) | 0.822 | 0.020 (0.002, 0.037) | 0.026 | |
CRP (log) (n = 2828) | Model 1 | 0.041 (−0.006, 0.088) | 0.085 | 0.027 (−0.021, 0.075) | 0.267 |
Model 2 | 0.029 (−0.018, 0.076) | 0.219 | 0.017 (−0.030, 0.064) | 0.487 | |
Model 3 | 0.034 (−0.014, 0.082) | 0.163 | 0.022 (−0.027, 0.071) | 0.383 | |
Model 4 | 0.032 (−0.017, 0.080) | 0.197 | 0.017 (−0.032, 0.067) | 0.493 | |
CIMT (n = 1573) | Model 1 | −0.0001 (−0.011, 0.009) | 0.810 | 0.002 (−0.008, 0.013) | 0.643 |
Model 2 | 0.000 (−0.010, 0.010) | 0.958 | 0.003 (−0.007, 0.013) | 0.574 | |
Model 3 | 0.001 (−0.009, 0.011) | 0.868 | 0.003 (−0.007, 0.014) | 0.545 | |
Model 4 | 0.001 (−0.009, 0.011) | 0.869 | 0.003 (−0.007, 0.014) | 0.550 | |
PWV (log) (n = 1570) | Model 1 | −0.002 (−0.009, 0.006) | 0.637 | −0.006 (−0.013, 0.002) | 0.146 |
Model 2 | −0.002 (−0.010, 0.005) | 0.524 | −0.006 (−0.014, 0.002) | 0.116 | |
Model 3 | −0.002 (−0.009, 0.006) | 0.679 | −0.005 (−0.013, 0.003) | 0.197 | |
Model 4 | −0.001 (−0.009, 0.006) | 0.724 | −0.005 (−0.012, 0.003) | 0.250 | |
AIx (log) (n = 1480) | Model 1 | −0.007 (−0.030, 0.017) | 0.587 | 0.029 (0.005, 0.053) | 0.019 |
Model 2 | −0.007 (−0.030, 0.017) | 0.593 | 0.029 (0.005, 0.053) | 0.018 | |
Model 3 | −0.010 (−0.034, 0.015) | 0.441 | 0.026 (0.001, 0.051) | 0.039 | |
Model 4 | −0.010 (−0.034, 0.015) | 0.443 | 0.026 (0.001, 0.052) | 0.040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahajan, H.; Mallinson, P.A.C.; Lieber, J.; Bhogadi, S.; Banjara, S.K.; Reddy, V.S.; Reddy, G.B.; Kulkarni, B.; Kinra, S. The Association of Total Meat Intake with Cardio-Metabolic Disease Risk Factors and Measures of Sub-Clinical Atherosclerosis in an Urbanising Community of Southern India: A Cross-Sectional Analysis for the APCAPS Cohort. Nutrients 2024, 16, 746. https://doi.org/10.3390/nu16050746
Mahajan H, Mallinson PAC, Lieber J, Bhogadi S, Banjara SK, Reddy VS, Reddy GB, Kulkarni B, Kinra S. The Association of Total Meat Intake with Cardio-Metabolic Disease Risk Factors and Measures of Sub-Clinical Atherosclerosis in an Urbanising Community of Southern India: A Cross-Sectional Analysis for the APCAPS Cohort. Nutrients. 2024; 16(5):746. https://doi.org/10.3390/nu16050746
Chicago/Turabian StyleMahajan, Hemant, Poppy Alice Carson Mallinson, Judith Lieber, Santhi Bhogadi, Santosh Kumar Banjara, Vadde Sudhakar Reddy, Geereddy Bhanuprakash Reddy, Bharati Kulkarni, and Sanjay Kinra. 2024. "The Association of Total Meat Intake with Cardio-Metabolic Disease Risk Factors and Measures of Sub-Clinical Atherosclerosis in an Urbanising Community of Southern India: A Cross-Sectional Analysis for the APCAPS Cohort" Nutrients 16, no. 5: 746. https://doi.org/10.3390/nu16050746
APA StyleMahajan, H., Mallinson, P. A. C., Lieber, J., Bhogadi, S., Banjara, S. K., Reddy, V. S., Reddy, G. B., Kulkarni, B., & Kinra, S. (2024). The Association of Total Meat Intake with Cardio-Metabolic Disease Risk Factors and Measures of Sub-Clinical Atherosclerosis in an Urbanising Community of Southern India: A Cross-Sectional Analysis for the APCAPS Cohort. Nutrients, 16(5), 746. https://doi.org/10.3390/nu16050746