Diet Pattern Analysis in Alzheimer’s Disease Implicates Gender Differences in Folate–B12–Homocysteine Axis on Cognitive Outcomes
Abstract
:1. Introduction
2. Material & Methods
2.1. Study Design and Study Population
2.2. Clinical Assessments and Blood Chemistry Analysis
2.3. Neurobehavioral Assessments
2.4. Dietary Assessment
2.5. Statistical Analysis
3. Results
3.1. Demographic Data
3.2. Correlation Analysis among Factors
3.3. SEM for AD Patients
3.3.1. Model Path Figure and Model Fit Assessment
3.3.2. Explanation of the Influence of Each Layer
- (1)
- Influence of dietary frequency on cognitive function: dietary frequency has significant and direct impact (p = 0.041).
- (2)
- Influence of dietary frequency on blood profile: dietary frequency has no impact on the blood profile (p = 0.165).
- (3)
- Influence of blood profile on the cognitive function: blood profile has significant and direct impact on the cognitive function (p = 0.012).
3.3.3. Gender-Related Factors Selection for MMSE Prediction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ellouze, I.; Sheffler, J.; Nagpal, R.; Arjmandi, B. Dietary Patterns and Alzheimer’s Disease: An Updated Review Linking Nutrition to Neuroscience. Nutrients 2023, 15, 3204. [Google Scholar] [CrossRef]
- Scarmeas, N.; Stern, Y.; Mayeux, R.; Manly, J.J.; Schupf, N.; Luchsinger, J.A. Mediterranean diet and mild cognitive impairment. Arch. Neurol. 2009, 66, 216–225. [Google Scholar] [CrossRef]
- Stefaniak, O.; Dobrzyńska, M.; Drzymała-Czyż, S.; Przysławski, J. Diet in the Prevention of Alzheimer’s Disease: Current Knowledge and Future Research Requirements. Nutrients 2022, 14, 4564. [Google Scholar] [CrossRef] [PubMed]
- van den Brink, A.C.; Brouwer-Brolsma, E.M.; Berendsen, A.A.M.; van de Rest, O. The Mediterranean, Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) Diets Are Associated with Less Cognitive Decline and a Lower Risk of Alzheimer’s Disease-A Review. Adv. Nutr. 2019, 10, 1040–1065. [Google Scholar] [CrossRef]
- van de Rest, O.; Berendsen, A.A.; Haveman-Nies, A.; de Groot, L.C. Dietary patterns, cognitive decline, and dementia: A systematic review. Adv. Nutr. 2015, 6, 154–168. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.J.; Blumenthal, J.A.; Babyak, M.A.; Craighead, L.; Welsh-Bohmer, K.A.; Browndyke, J.N.; Strauman, T.A.; Sherwood, A. Effects of the dietary approaches to stop hypertension diet, exercise, and caloric restriction on neurocognition in overweight adults with high blood pressure. Hypertension 2010, 55, 1331–1338. [Google Scholar] [CrossRef]
- Barnes, L.L.; Dhana, K.; Liu, X.; Carey, V.J.; Ventrelle, J.; Johnson, K.; Hollings, C.S.; Bishop, L.; Laranjo, N.; Stubbs, B.J.; et al. Trial of the MIND Diet for Prevention of Cognitive Decline in Older Persons. N. Engl. J. Med. 2023, 389, 602–611. [Google Scholar] [CrossRef] [PubMed]
- Buckinx, F.; Aubertin-Leheudre, M. Nutrition to Prevent or Treat Cognitive Impairment in Older Adults: A GRADE Recommendation. J. Prev. Alzheimers Dis. 2021, 8, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, S.; Ji, L.; Wu, T.; Ji, Y.; Zhou, Y.; Zheng, M.; Zhang, M.; Xu, W.; Huang, G. Folic Acid Supplementation Mitigates Alzheimer’s Disease by Reducing Inflammation: A Randomized Controlled Trial. Mediat. Inflamm. 2016, 2016, 5912146. [Google Scholar] [CrossRef]
- Quadri, P.; Fragiacomo, C.; Pezzati, R.; Zanda, E.; Forloni, G.; Tettamanti, M.; Lucca, U. Homocysteine, folate, and vitamin B-12 in mild cognitive impairment, Alzheimer disease, and vascular dementia. Am. J. Clin. Nutr. 2004, 80, 114–122. [Google Scholar]
- Seshadri, S.; Beiser, A.; Selhub, J.; Jacques, P.F.; Rosenberg, I.H.; D’Agostino, R.B.; Wilson, P.W.; Wolf, P.A. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N. Engl. J. Med. 2002, 346, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Tinelli, C.; Di Pino, A.; Ficulle, E.; Marcelli, S.; Feligioni, M. Hyperhomocysteinemia as a Risk Factor and Potential Nutraceutical Target for Certain Pathologies. Front. Nutr. 2019, 6, 49. [Google Scholar] [CrossRef] [PubMed]
- de Toledo Ferraz Alves, T.C.; Ferreira, L.K.; Wajngarten, M.; Busatto, G.F. Cardiac disorders as risk factors for Alzheimer’s disease. J. Alzheimers Dis. 2010, 20, 749–763. [Google Scholar] [CrossRef] [PubMed]
- Hooshmand, B.; Solomon, A.; Kåreholt, I.; Rusanen, M.; Hänninen, T.; Leiviskä, J.; Winblad, B.; Laatikainen, T.; Soininen, H.; Kivipelto, M. Associations between serum homocysteine, holotranscobalamin, folate and cognition in the elderly: A longitudinal study. J. Intern. Med. 2012, 271, 204–212. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Feng, L.; Zhang, X.; Wang, Y.; Wang, Y.; Tao, L.; Qin, Z.; Xiao, R. Dietary intakes and biomarker patterns of folate, vitamin B(6), and vitamin B(12) can be associated with cognitive impairment by hypermethylation of redox-related genes NUDT15 and TXNRD1. Clin. Epigenet. 2019, 11, 139. [Google Scholar] [CrossRef] [PubMed]
- Dubois, B.; Feldman, H.H.; Jacova, C.; Hampel, H.; Molinuevo, J.L.; Blennow, K.; DeKosky, S.T.; Gauthier, S.; Selkoe, D.; Bateman, R.; et al. Advancing research diagnostic criteria for Alzheimer’s disease: The IWG-2 criteria. Lancet Neurol. 2014, 13, 614–629. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, H.T.; Lee, J.J.; Chen, H.H.; Wu, M.K.; Huang, C.W.; Chang, Y.T.; Lien, C.Y.; Wang, J.J.; Chang, H.I.; Chang, C.C. Adequacy of nutrition and body weight in patients with early stage dementia: The cognition and aging study. Clin. Nutr. 2019, 38, 2187–2194. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.L.; Hsu, W.C.; Chang, C.C.; Lin, K.J.; Hsiao, I.T.; Fan, Y.C.; Bai, C.H. Everyday cognition scales are related to cognitive function in the early stage of probable Alzheimer’s disease and FDG-PET findings. Sci. Rep. 2017, 7, 1719. [Google Scholar] [CrossRef]
- Farias, S.T.; Mungas, D.; Reed, B.R.; Cahn-Weiner, D.; Jagust, W.; Baynes, K.; Decarli, C. The measurement of everyday cognition (ECog): Scale development and psychometric properties. Neuropsychology 2008, 22, 531–544. [Google Scholar] [CrossRef]
- Hsiao, H.T.; Ma, M.C.; Chang, H.I.; Lin, C.H.; Hsu, S.W.; Huang, S.H.; Lee, C.C.; Huang, C.W.; Chang, C.C. Cognitive Decline Related to Diet Pattern and Nutritional Adequacy in Alzheimer’s Disease Using Surface-Based Morphometry. Nutrients 2022, 14, 5300. [Google Scholar] [CrossRef]
- Loughrey, D.G.; Lavecchia, S.; Brennan, S.; Lawlor, B.A.; Kelly, M.E. The Impact of the Mediterranean Diet on the Cognitive Functioning of Healthy Older Adults: A Systematic Review and Meta-Analysis. Adv. Nutr. 2017, 8, 571–586. [Google Scholar] [CrossRef] [PubMed]
- Sachdev, P.S.; Valenzuela, M.; Wang, X.L.; Looi, J.C.; Brodaty, H. Relationship between plasma homocysteine levels and brain atrophy in healthy elderly individuals. Neurology 2002, 58, 1539–1541. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Quan, M.; Li, T.; Jia, J. Serum Homocysteine, Vitamin B12, Folate, and Their Association with Mild Cognitive Impairment and Subtypes of Dementia. J. Alzheimer’s Dis. 2022, 90, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Lanyau-Domínguez, Y.; Macías-Matos, C.; Jesús, J.; María, G.; Suárez-Medina, R.; Eugenia, M.; Noriega-Fernández, L.; Guerra-Hernández, M.; Calvo-Rodríguez, M.; Sánchez-Gil, Y.; et al. Levels of Vitamins and Homocysteine in Older Adults with Alzheimer Disease or Mild Cognitive Impairment in Cuba. MEDICC Rev. 2020, 22, 40–47. [Google Scholar] [PubMed]
- Malouf, M.; Grimley, E.J.; Areosa, S.A. Folic acid with or without vitamin B12 for cognition and dementia. Cochrane Database Syst. Rev. 2003, 4, Cd004514. [Google Scholar]
- Zaric, B.L.; Obradovic, M.; Bajic, V.; Haidara, M.A.; Jovanovic, M.; Isenovic, E.R. Homocysteine and Hyperhomocysteinaemia. Curr. Med. Chem. 2019, 26, 2948–2961. [Google Scholar] [CrossRef]
- Shen, L.; Ji, H.F. Associations between Homocysteine, Folic Acid, Vitamin B12 and Alzheimer’s Disease: Insights from Meta-Analyses. J. Alzheimers Dis. 2015, 46, 777–790. [Google Scholar] [CrossRef]
- Smith, A.D.; Refsum, H.; Bottiglieri, T.; Fenech, M.; Hooshmand, B.; McCaddon, A.; Miller, J.W.; Rosenberg, I.H.; Obeid, R. Homocysteine and Dementia: An International Consensus Statement. J. Alzheimers Dis. 2018, 62, 561–570. [Google Scholar] [CrossRef]
- Granic, A.; Davies, K.; Adamson, A.; Kirkwood, T.; Hill, T.R.; Siervo, M.; Mathers, J.C.; Jagger, C. Dietary Patterns High in Red Meat, Potato, Gravy, and Butter Are Associated with Poor Cognitive Functioning but Not with Rate of Cognitive Decline in Very Old Adults. J. Nutr. 2016, 146, 265–274. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, L. The Neuroprotective Effects of Moderate and Regular Caffeine Consumption in Alzheimer’s Disease. Oxid. Med. Cell. Longev. 2021, 2021, 5568011. [Google Scholar] [CrossRef]
- Abbel, D.; Åsvold, B.O.; Kolberg, M.; Selbæk, G.; Noordam, R.; Skjellegrind, H.K. The Association between Coffee and Tea Consumption at Midlife and Risk of Dementia Later in Life: The HUNT Study. Nutrients 2023, 15, 2469. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, M.C.; Weintraub, S.; Morris, M.C. Caffeinated Coffee and Tea Consumption, Genetic Variation and Cognitive Function in the UK Biobank. J. Nutr. 2020, 150, 2164–2174. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Kwak, S.M.; Myung, S.K. Caffeine intake from coffee or tea and cognitive disorders: A meta-analysis of observational studies. Neuroepidemiology 2015, 44, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.; Bennett, D.; Parish, S.; Lewington, S.; Skeaff, M.; Eussen, S.J.; Lewerin, C.; Stott, D.J.; Armitage, J.; Hankey, G.J.; et al. Effects of homocysteine lowering with B vitamins on cognitive aging: Meta-analysis of 11 trials with cognitive data on 22,000 individuals. Am. J. Clin. Nutr. 2014, 100, 657–666. [Google Scholar] [CrossRef]
Male (n = 246) | Female (n = 346) | MW U Test | |
---|---|---|---|
Mean ± SD | Mean ± SD | p-Value | |
Age at study | 71.87 ± 9.00 | 73.27 ± 7.87 | 0.026 * |
Age of onset | 67.49 ± 9.13 | 69.38 ± 8.20 | 0.029 * |
Educational year | 9.86 ± 4.44 | 6.76 ± 4.55 | <0.001 *** |
Body mass index (kg/m2) | 24.46 ± 3.53 | 23.35 ± 3.44 | <0.001 *** |
Mini-mental state examination | 21.74 ± 6.96 | 18.88 ± 7.89 | <0.001 *** |
Symptom speed | 3.38 ± 1.23 | 3.24 ± 1.30 | 0.219 |
Every Cognition (E-Cog) | |||
total | 17.61 ± 8.28 | 19.02 ± 8.23 | 0.009 ** |
memory | 2.37 ± 1.01 | 2.59 ± 0.99 | 0.007 ** |
language | 1.83 ± 0.97 | 1.97 ± 0.98 | 0.029 * |
visuospatial | 1.84 ± 1.04 | 2.01 ± 1.08 | 0.025 * |
plan ability | 2.10 ± 1.06 | 2.27 ± 1.03 | 0.036 * |
organization ability | 2.01 ± 1.12 | 2.20 ± 1.11 | 0.013 * |
divided attention | 2.38 ± 1.02 | 2.58 ± 1.03 | 0.034 * |
direction | 1.79 ± 0.92 | 1.93 ± 0.90 | 0.009 ** |
judgement | 1.84 ± 0.98 | 2.02 ± 0.99 | 0.004 ** |
care | 1.42 ± 0.89 | 1.45 ± 0.93 | 0.853 |
Male (n = 246) | Female (n = 346) | MW U Test | |
---|---|---|---|
Mean ± SD | Mean ± SD | p-Value | |
Fried food | 1.72 ± 0.91 | 1.60 ± 0.96 | 0.012 * |
Coffee/Tea | 3.44 ± 2.17 | 2.70 ± 2.07 | <0.001 *** |
Thin Pork | 3.50 ± 1.25 | 3.24 ± 1.30 | 0.040 * |
Fat Pork | 2.65 ± 1.32 | 2.20 ± 1.28 | <0.001 *** |
Processed Food | 1.71 ± 0.91 | 1.55 ± 0.78 | 0.031 * |
Entrails | 1.36 ± 0.62 | 1.23 ± 0.52 | 0.004 ** |
Oyster | 1.96 ± 0.92 | 1.88 ± 0.86 | 0.276 |
Octopus | 1.89 ± 0.85 | 1.82 ± 0.81 | 0.36 |
Soy Products | 2.02 ± 1.03 | 2.12 ± 1.21 | 0.564 |
Beans | 2.60 ± 1.35 | 2.73 ± 1.49 | 0.459 |
Full-fat milk | 2.71 ± 2.03 | 2.77 ± 2.09 | 0.941 |
Low-fat milk | 1.42 ± 1.05 | 1.66 ± 1.51 | 0.536 |
Skimmed milk | 1.56 ± 1.35 | 1.65 ± 1.57 | 0.478 |
Egg | 4.63 ± 1.40 | 4.49 ± 1.44 | 0.261 |
Vegetable | 5.67 ± 0.91 | 5.79 ± 0.77 | 0.094 |
Mushroom | 2.61 ± 1.20 | 2.71 ± 1.22 | 0.291 |
Fruit | 5.31 ± 1.32 | 5.35 ± 1.24 | 0.95 |
Dessert | 2.32 ± 1.46 | 2.26 ± 1.33 | 0.979 |
Sweet drink | 1.57 ± 1.20 | 1.61 ± 1.21 | 0.439 |
Sugar | 1.46 ± 1.00 | 1.49 ± 0.99 | 0.533 |
Fish | 4.16 ± 1.53 | 4.13 ± 1.59 | 0.857 |
Chicken | 3.27 ± 1.14 | 3.15 ± 1.24 | 0.135 |
Unstandardized | ||||||
---|---|---|---|---|---|---|
Coefficients | z | p Value | 95% Confidence Interval | |||
B | Std. Error | Lower Bound | Upper Bound | |||
All patients (n = 449, AIC = 2992.8) | ||||||
(Constant) | 15.013 | 4.127 | 3.638 | <0.001 | 6.926 | 23.101 |
Age | −0.120 | 0.043 | −2.790 | 0.005 ** | −0.204 | −0.036 |
Education | 0.444 | 0.077 | 5.749 | <0.001 *** | 0.293 | 0.595 |
Body mass index | 0.324 | 0.094 | 3.441 | <0.001 *** | 0.140 | 0.509 |
Homocysteine | −0.073 | 0.066 | −1.102 | 0.271 | −0.204 | 0.057 |
B12 | 0.001 | 0.001 | 2.537 | 0.011 * | <0.001 | 0.002 |
Coffee/tea | 0.589 | 0.160 | 3.669 | <0.001 *** | 0.274 | 0.903 |
Male patients (n = 182, AIC = 1196) | ||||||
(Constant) | 17.312 | 6.255 | 2.768 | 0.006 | 5.053 | 29.572 |
Age | −0.130 | 0.057 | −2.276 | 0.023 * | −0.242 | −0.018 |
Education | 0.264 | 0.118 | 2.239 | 0.025 * | 0.033 | 0.495 |
Body mass index | 0.295 | 0.131 | 2.255 | 0.024 * | 0.039 | 0.552 |
B12 | 0.003 | <0.001 | 3.236 | 0.001 ** | 0.001 | 0.004 |
Coffee/tea | 0.425 | 0.213 | 2.001 | 0.045 * | 0.009 | 0.842 |
Female patients (n = 269, AIC = 1824.7) | ||||||
(Constant) | 14.228 | 5.485 | 2.594 | 0.009 | 3.479 | 24.978 |
Age | −0.090 | 0.060 | −1.498 | 0.134 | −0.207 | 0.028 |
Education | 0.527 | 0.107 | 4.901 | <0.001 *** | 0.316 | 0.737 |
Body mass index | 0.353 | 0.131 | 2.704 | 0.007 ** | 0.097 | 0.609 |
Homocysteine | −0.281 | 0.109 | −2.594 | 0.010 * | −0.494 | −0.069 |
Coffee/tea | 0.783 | 0.223 | 3.505 | <0.001 *** | 0.345 | 1.221 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ting, C.-P.; Ma, M.-C.; Chang, H.-I.; Huang, C.-W.; Chou, M.-C.; Chang, C.-C. Diet Pattern Analysis in Alzheimer’s Disease Implicates Gender Differences in Folate–B12–Homocysteine Axis on Cognitive Outcomes. Nutrients 2024, 16, 733. https://doi.org/10.3390/nu16050733
Ting C-P, Ma M-C, Chang H-I, Huang C-W, Chou M-C, Chang C-C. Diet Pattern Analysis in Alzheimer’s Disease Implicates Gender Differences in Folate–B12–Homocysteine Axis on Cognitive Outcomes. Nutrients. 2024; 16(5):733. https://doi.org/10.3390/nu16050733
Chicago/Turabian StyleTing, Chi-Ping, Mi-Chia Ma, Hsin-I Chang, Chi-Wei Huang, Man-Chun Chou, and Chiung-Chih Chang. 2024. "Diet Pattern Analysis in Alzheimer’s Disease Implicates Gender Differences in Folate–B12–Homocysteine Axis on Cognitive Outcomes" Nutrients 16, no. 5: 733. https://doi.org/10.3390/nu16050733
APA StyleTing, C. -P., Ma, M. -C., Chang, H. -I., Huang, C. -W., Chou, M. -C., & Chang, C. -C. (2024). Diet Pattern Analysis in Alzheimer’s Disease Implicates Gender Differences in Folate–B12–Homocysteine Axis on Cognitive Outcomes. Nutrients, 16(5), 733. https://doi.org/10.3390/nu16050733