Concurrent Ingestion of Alkaline Water and L-Glutamine Enhanced Salivary α-Amylase Activity and Testosterone Concentration in Boxing Athletes
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Analysis of Salivary Proteins
2.4. Statistical Analysis
3. Results
3.1. Effects of Co-Supplementation with Alkaline Water and L-Glutamine on Heart Rate and Rate of Perceived Exertion during Boxing Training
3.2. Effects of Co-Supplementation with Alkaline Water and L-Glutamine on Changes in Salivary Immune-Related Proteins after Boxing Training
3.3. Effects of Co-Supplementation with Alkaline Water and L-Glutamine on Changes in Salivary Hormones after Training
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaabene, H.; Tabben, M.; Mkaouer, B.; Franchini, E.; Negra, Y.; Hammami, M.; Amara, S.; Chaabene, R.B.; Hachana, Y. Amateur boxing: Physical and physiological attributes. Sports Med. 2015, 45, 337–352. [Google Scholar] [CrossRef]
- Vasconcelos, B.B.; Protzen, G.V.; Galliano, L.M.; Kirk, C.; Del Vecchio, F.B. Effects of High-Intensity Interval Training in Combat Sports: A Systematic Review with Meta-Analysis. J. Strength. Cond. Res. 2020, 34, 888–900. [Google Scholar] [CrossRef]
- da Silva, R.P.; de Oliveira, L.F.; Saunders, B.; de Andrade Kratz, C.; de Salles Painelli, V.; da Eira Silva, V.; Marins, J.C.B.; Franchini, E.; Gualano, B.; Artioli, G.G. Effects of beta-alanine and sodium bicarbonate supplementation on the estimated energy system contribution during high-intensity intermittent exercise. Amino Acids 2019, 51, 83–96. [Google Scholar] [CrossRef]
- Tobias, G.; Benatti, F.B.; de Salles Painelli, V.; Roschel, H.; Gualano, B.; Sale, C.; Harris, R.C.; Lancha, A.H., Jr.; Artioli, G.G. Additive effects of beta-alanine and sodium bicarbonate on upper-body intermittent performance. Amino Acids 2013, 45, 309–317. [Google Scholar] [CrossRef]
- Siegler, J.C.; Hirscher, K. Sodium bicarbonate ingestion and boxing performance. J. Strength. Cond. Res. 2010, 24, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K.; Bruunsgaard, H.; Jensen, M.; Toft, A.D.; Hansen, H.; Ostrowski, K. Exercise and the immune system—Influence of nutrition and ageing. J. Sci. Med. Sport 1999, 2, 234–252. [Google Scholar] [CrossRef] [PubMed]
- Simpson, R.J.; Campbell, J.P.; Gleeson, M.; Kruger, K.; Nieman, D.C.; Pyne, D.B.; Turner, J.E.; Walsh, N.P. Can exercise affect immune function to increase susceptibility to infection? Exerc. Immunol. Rev. 2020, 26, 8–22. [Google Scholar] [PubMed]
- Fortes, M.B.; Diment, B.C.; Di Felice, U.; Walsh, N.P. Dehydration decreases saliva antimicrobial proteins important for mucosal immunity. Appl. Physiol. Nutr. Metab. 2012, 37, 850–859. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Chang, C.; Gershwin, M.E. IgA deficiency and autoimmunity. Autoimmun. Rev. 2014, 13, 163–177. [Google Scholar] [CrossRef] [PubMed]
- Shinjo, T.; Sakuraba, K.; Nakaniida, A.; Ishibashi, T.; Kobayashi, M.; Aono, Y.; Suzuki, Y. Oral lactoferrin influences psychological stress in humans: A single-dose administration crossover study. Biomed. Rep. 2018, 8, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Ide, B.N.; Souza-Junior, T.P.; McAnulty, S.R.; de Faria, M.A.C.; Costa, K.A.; Nunes, L.A.S. Immunological Responses to a Brazilian Jiu-Jitsu High-Intensity Interval Training Session. J. Hum. Kinet. 2019, 70, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Hsu, G.S.; Suzuki, K.; Ko, M.H.; Fang, S.H. Salivary Immuno Factors, Cortisol and Testosterone Responses in Athletes of a Competitive 5000 m Race. Chin. J. Physiol. 2015, 58, 263–269. [Google Scholar] [CrossRef] [PubMed]
- He, C.S.; Tsai, M.L.; Ko, M.H.; Chang, C.K.; Fang, S.H. Relationships among salivary immunoglobulin A, lactoferrin and cortisol in basketball players during a basketball season. Eur. J. Appl. Physiol. 2010, 110, 989–995. [Google Scholar] [CrossRef]
- Tsai, M.L.; Ko, M.H.; Chang, C.K.; Chou, K.M.; Fang, S.H. Impact of intense training and rapid weight changes on salivary parameters in elite female Taekwondo athletes. Scand. J. Med. Sci. Sports 2011, 21, 758–764. [Google Scholar] [CrossRef]
- Tsai, M.L.; Chou, K.M.; Chang, C.K.; Fang, S.H. Changes of mucosal immunity and antioxidation activity in elite male Taiwanese taekwondo athletes associated with intensive training and rapid weight loss. Br. J. Sports Med. 2011, 45, 729–734. [Google Scholar] [CrossRef]
- Hayes, L.D.; Grace, F.M.; Baker, J.S.; Sculthorpe, N. Exercise-induced responses in salivary testosterone, cortisol, and their ratios in men: A meta-analysis. Sports Med. 2015, 45, 713–726. [Google Scholar] [CrossRef] [PubMed]
- Herbst, K.L.; Bhasin, S. Testosterone action on skeletal muscle. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 271–277. [Google Scholar] [CrossRef]
- Ali, K.; Verma, S.; Ahmad, I.; Singla, D.; Saleem, M.; Hussain, M.E. Comparison of Complex Versus Contrast Training on Steroid Hormones and Sports Performance in Male Soccer Players. J. Chiropr. Med. 2019, 18, 131–138. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Ratamess, N.A. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005, 35, 339–361. [Google Scholar] [CrossRef]
- Hough, J.P.; Papacosta, E.; Wraith, E.; Gleeson, M. Plasma and salivary steroid hormone responses of men to high-intensity cycling and resistance exercise. J. Strength Cond. Res. 2011, 25, 23–31. [Google Scholar] [CrossRef]
- Gatti, R.; De Palo, E.F. An update: Salivary hormones and physical exercise. Scand. J. Med. Sci. Sports 2011, 21, 157–169. [Google Scholar] [CrossRef]
- Papacosta, E.; Nassis, G.P. Saliva as a tool for monitoring steroid, peptide and immune markers in sport and exercise science. J. Sci. Med. Sport 2011, 14, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K. Recent Progress in Applicability of Exercise Immunology and Inflammation Research to Sports Nutrition. Nutrients 2021, 13, 4299. [Google Scholar] [CrossRef] [PubMed]
- Rawson, E.S.; Miles, M.P.; Larson-Meyer, D.E. Dietary Supplements for Health, Adaptation, and Recovery in Athletes. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 188–199. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jager, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN exercise & sports nutrition review update: Research & recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 38. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, M.; Takahashi, T.; Shimoyama, K.; Toyoshima, Y.; Ueno, T. Effects of rehydration and food consumption on salivary flow, pH and buffering capacity in young adult volunteers during ergometer exercise. J. Int. Soc. Sports Nutr. 2013, 10, 49. [Google Scholar] [CrossRef]
- Watanabe, T.; Pan, I.; Fukuda, Y.; Murasugi, E.; Kamata, H.; Uwatoko, K. Influences of alkaline ionized water on milk yield, body weight of offspring and perinatal dam in rats. J. Toxicol. Sci. 1998, 23, 365–371. [Google Scholar] [CrossRef]
- Chycki, J.; Kurylas, A.; Maszczyk, A.; Golas, A.; Zajac, A. Alkaline water improves exercise-induced metabolic acidosis and enhances anaerobic exercise performance in combat sport athletes. PLoS ONE 2018, 13, e0205708. [Google Scholar] [CrossRef]
- Maszczyk, A. Anaerobic Performance and Acid-Base Balance in Basketball Players after the Consumption of Highly Alkaline Water. Int. J. Food Nutr. Sci. 2018, 5, 134–139. [Google Scholar] [CrossRef]
- Cruzat, V.; Macedo Rogero, M.; Noel Keane, K.; Curi, R.; Newsholme, P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients 2018, 10, 1564. [Google Scholar] [CrossRef]
- Krieger, J.W.; Crowe, M.; Blank, S.E. Chronic glutamine supplementation increases nasal but not salivary IgA during 9 days of interval training. J. Appl. Physiol. (1985) 2004, 97, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Kargotich, S.; Goodman, C.; Dawson, B.; Morton, A.R.; Keast, D.; Joske, D.J. Plasma glutamine responses to high-intensity exercise before and after endurance training. Res. Sports Med. 2005, 13, 287–300. [Google Scholar] [CrossRef] [PubMed]
- Master, P.B.Z.; Macedo, R.C.O. Effects of dietary supplementation in sport and exercise: A review of evidence on milk proteins and amino acids. Crit. Rev. Food Sci. Nutr. 2021, 61, 1225–1239. [Google Scholar] [CrossRef] [PubMed]
- Legault, Z.; Bagnall, N.; Kimmerly, D.S. The Influence of Oral L-Glutamine Supplementation on Muscle Strength Recovery and Soreness Following Unilateral Knee Extension Eccentric Exercise. Int. J. Sport. Nutr. Exerc. Metab. 2015, 25, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Durkalec-Michalski, K.; Kusy, K.; Glowka, N.; Zielinski, J. The effect of multi-ingredient intra- versus extra-cellular buffering supplementation combined with branched-chain amino acids and creatine on exercise-induced ammonia blood concentration and aerobic capacity in taekwondo athletes. J. Int. Soc. Sports Nutr. 2021, 18, 48. [Google Scholar] [CrossRef] [PubMed]
- Sarshin, A.; Fallahi, V.; Forbes, S.C.; Rahimi, A.; Koozehchian, M.S.; Candow, D.G.; Kaviani, M.; Khalifeh, S.N.; Abdollahi, V.; Naderi, A. Short-term co-ingestion of creatine and sodium bicarbonate improves anaerobic performance in trained taekwondo athletes. J. Int. Soc. Sports Nutr. 2021, 18, 10. [Google Scholar] [CrossRef]
- Kang, M.; Ragan, B.G.; Park, J.H. Issues in outcomes research: An overview of randomization techniques for clinical trials. J. Athl. Train. 2008, 43, 215–221. [Google Scholar] [CrossRef]
- Favano, A.; Santos-Silva, P.R.; Nakano, E.Y.; Pedrinelli, A.; Hernandez, A.J.; Greve, J.M. Peptide glutamine supplementation for tolerance of intermittent exercise in soccer players. Clinics 2008, 63, 27–32. [Google Scholar] [CrossRef]
- Coqueiro, A.Y.; Rogero, M.M.; Tirapegui, J. Glutamine as an Anti-Fatigue Amino Acid in Sports Nutrition. Nutrients 2019, 11, 864. [Google Scholar] [CrossRef]
- Borg, G. Psychophysical scaling with applications in physical work and the perception of exertion. Scand. J. Work. Environ. Health 1990, 16 (Suppl. S1), 55–58. [Google Scholar] [CrossRef]
- Shen, J.L.; Hung, B.L.; Fang, S.H. Horticulture therapy affected the mental status, sleep quality, and salivary markers of mucosal immunity in an elderly population. Sci. Rep. 2022, 12, 10246. [Google Scholar] [CrossRef]
- Li, T.L.; Lin, H.C.; Ko, M.H.; Chang, C.K.; Fang, S.H. Effects of prolonged intensive training on the resting levels of salivary immunoglobulin A and cortisol in adolescent volleyball players. J. Sports Med. Phys. Fitness 2012, 52, 569–573. [Google Scholar] [PubMed]
- Gillum, T.; Kuennen, M.; Miller, T.; Riley, L. The effects of exercise, sex, and menstrual phase on salivary antimicrobial proteins. Exerc. Immunol. Rev. 2014, 20, 23–38. [Google Scholar] [PubMed]
- Gleeson, M. Dosing and efficacy of glutamine supplementation in human exercise and sport training. J. Nutr. 2008, 138, 2045S–2049S. [Google Scholar] [CrossRef] [PubMed]
- Caris, A.V.; Tavares-Silva, E.; Thomatieli-Santos, R.V. Effects of carbohydrate and glutamine supplementation on cytokine production by monocytes after exercise in hypoxia: A crossover, randomized, double-blind pilot study. Nutrition 2020, 70, 110592. [Google Scholar] [CrossRef] [PubMed]
- Koo, G.H.; Woo, J.; Kang, S.; Shin, K.O. Effects of Supplementation with BCAA and L-glutamine on Blood Fatigue Factors and Cytokines in Juvenile Athletes Submitted to Maximal Intensity Rowing Performance. J. Phys. Ther. Sci. 2014, 26, 1241–1246. [Google Scholar] [CrossRef]
- Cordova-Martinez, A.; Caballero-Garcia, A.; Bello, H.J.; Perez-Valdecantos, D.; Roche, E. Effect of Glutamine Supplementation on Muscular Damage Biomarkers in Professional Basketball Players. Nutrients 2021, 13, 2073. [Google Scholar] [CrossRef] [PubMed]
- Almeida, E.B.; Santos, J.M.B.; Paixao, V.; Amaral, J.B.; Foster, R.; Sperandio, A.; Roseira, T.; Rossi, M.; Cordeiro, T.G.; Monteiro, F.R.; et al. L-Glutamine Supplementation Improves the Benefits of Combined-Exercise Training on Oral Redox Balance and Inflammatory Status in Elderly Individuals. Oxid. Med. Cell Longev. 2020, 2020, 2852181. [Google Scholar] [CrossRef] [PubMed]
- Amirato, G.R.; Borges, J.O.; Marques, D.L.; Santos, J.M.B.; Santos, C.A.F.; Andrade, M.S.; Furtado, G.E.; Rossi, M.; Luis, L.N.; Zambonatto, R.F.; et al. L-Glutamine Supplementation Enhances Strength and Power of Knee Muscles and Improves Glycemia Control and Plasma Redox Balance in Exercising Elderly Women. Nutrients 2021, 13, 1025. [Google Scholar] [CrossRef]
- Ma, S.; Ono, M.; Mizugaki, A.; Kato, H.; Miyashita, M.; Suzuki, K. Cystine/Glutamine Mixture Supplementation Attenuated Fatigue during Endurance Exercise in Healthy Young Men by Enhancing Fatty Acid Utilization. Sports 2022, 10, 147. [Google Scholar] [CrossRef]
- Waldron, M.; Ralph, C.; Jeffries, O.; Tallent, J.; Theis, N.; Patterson, S.D. The effects of acute leucine or leucine-glutamine co-ingestion on recovery from eccentrically biased exercise. Amino Acids 2018, 50, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Khorshidi-Hosseini, M.; Nakhostin-Roohi, B. Effect of glutamine and maltodextrin acute supplementation on anaerobic power. Asian J. Sports Med. 2013, 4, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Petrakova, L.; Doering, B.K.; Vits, S.; Engler, H.; Rief, W.; Schedlowski, M.; Grigoleit, J.S. Psychosocial Stress Increases Salivary Alpha-Amylase Activity Independently from Plasma Noradrenaline Levels. PLoS ONE 2015, 10, e0134561. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Franckowiak, B. The Effects of L-Glutamate, L-Glutamine, and L-Aspartic Acid on the Amylase Production of E. coli Transformed with pAmylase. Available online: https://emerginginvestigators.org/articles/15-081 (accessed on 1 November 2023).
- Hori, K. Effect of various activators on the salivary amylase of the bug Lygus disponsi. J. Insect Physiol. 1969, 15, 2305–2317. [Google Scholar] [CrossRef]
- Fahlman, M.M.; Engels, H.J. Mucosal IgA and URTI in American college football players: A year longitudinal study. Med. Sci. Sports Exerc. 2005, 37, 374–380. [Google Scholar] [CrossRef]
- Paixao, V.; Almeida, E.B.; Amaral, J.B.; Roseira, T.; Monteiro, F.R.; Foster, R.; Sperandio, A.; Rossi, M.; Amirato, G.R.; Santos, C.A.F.; et al. Elderly Subjects Supplemented with L-Glutamine Shows an Improvement of Mucosal Immunity in the Upper Airways in Response to Influenza Virus Vaccination. Vaccines 2021, 9, 107. [Google Scholar] [CrossRef]
- Caris, A.V.; Da Silva, E.T.; Dos Santos, S.A.; Tufik, S.; Dos Santos, R.V.T. Effects of Carbohydrate and Glutamine Supplementation on Oral Mucosa Immunity after Strenuous Exercise at High Altitude: A Double-Blind Randomized Trial. Nutrients 2017, 9, 692. [Google Scholar] [CrossRef]
- Krzywkowski, K.; Petersen, E.W.; Ostrowski, K.; Link-Amster, H.; Boza, J.; Halkjaer-Kristensen, J.; Pedersen, B.K. Effect of glutamine and protein supplementation on exercise-induced decreases in salivary IgA. J. Appl. Physiol. 2001, 91, 832–838. [Google Scholar] [CrossRef]
- Chiodo, S.; Tessitore, A.; Cortis, C.; Cibelli, G.; Lupo, C.; Ammendolia, A.; De Rosas, M.; Capranica, L. Stress-related hormonal and psychological changes to official youth Taekwondo competitions. Scand. J. Med. Sci. Sports 2011, 21, 111–119. [Google Scholar] [CrossRef]
- Neves, R.S.; da Silva, M.A.R.; de Rezende, M.A.C.; Caldo-Silva, A.; Pinheiro, J.; Santos, A.M.C. Salivary Markers Responses in the Post-Exercise and Recovery Period: A Systematic Review. Sports 2023, 11, 137. [Google Scholar] [CrossRef]
- Lin, S.-P.; Li, C.-Y.; Suzuki, K.; Chang, C.-K.; Chou, K.-M.; Fang, S.-H. Green Tea Consumption after Intense Taekwondo Training Enhances Salivary Defense Factors and Antibacterial Capacity. PLoS ONE 2014, 9, e87580. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Ratamess, N.A.; Nindl, B.C. Recovery responses of testosterone, growth hormone, and IGF-1 after resistance exercise. J. Appl. Physiol. (1985) 2017, 122, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, N.V.; Wong, S.K.; Wan Hasan, W.N.; Jolly, J.J.; Nur-Farhana, M.F.; Ima-Nirwana, S.; Chin, K.Y. The relationship between circulating testosterone and inflammatory cytokines in men. Aging Male 2019, 22, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, V.E. The Anti-Inflammatory Effects of Testosterone. J. Endocr. Soc. 2019, 3, 91–107. [Google Scholar] [CrossRef] [PubMed]
- Maulydia, M.; Rehatta, N.M.; Soedarmo, S.M. Effects of glutamine and arginine combination on pro- and anti-inflammatory cytokines. Open Vet. J. 2023, 13, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Tominaga, T.; Ruhee, R.T.; Ma, S. Characterization and Modulation of Systemic Inflammatory Response to Exhaustive Exercise in Relation to Oxidative Stress. Antioxidants 2020, 9, 401. [Google Scholar] [CrossRef] [PubMed]
- Anderson, T.; Haake, S.; Lane, A.R.; Hackney, A.C. Changes in Resting Salivary Testosterone, Cortisol and Interleukin-6 as Biomarkers of Overtraining. Balt. J. Sport. Health Sci. 2016, 101, 2–7. [Google Scholar] [CrossRef]
- Hackney, A.C.; Walz, E.A. Hormonal adaptation and the stress of exercise training: The role of glucocorticoids. Trends Sport Sci. 2013, 20, 165–171. [Google Scholar]
- Viru, A. Plasma hormones and physical exercise. Int. J. Sports Med. 1992, 13, 201–209. [Google Scholar] [CrossRef]
- Hackney, A.C.; Lane, A.R. Exercise and the Regulation of Endocrine Hormones. Prog. Mol. Biol. Transl. Sci. 2015, 135, 293–311. [Google Scholar] [CrossRef]
- Chycki, J.; Kostrzewa, M.; Maszczyk, A.; Zajac, A. Chronic Ingestion of Bicarbonate-Rich Water Improves Anaerobic Performance in Hypohydrated Elite Judo Athletes: A Pilot Study. Int. J. Environ. Res. Public. Health 2021, 18, 4948. [Google Scholar] [CrossRef] [PubMed]
- Chycki, J.; Zajac, T.; Maszczyk, A.; Kurylas, A. The effect of mineral-based alkaline water on hydration status and the metabolic response to short-term anaerobic exercise. Biol. Sport. 2017, 34, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Chaves, J.R.; de Souza, C.R.T.; Modesto, A.A.C.; Moreira, F.C.; Teixeira, E.B.; Sarraf, J.S.; Allen, T.S.R.; Araujo, T.M.T.; Khayat, A.S. Effects of alkaline water intake on gastritis and miRNA expression (miR-7, miR-155, miR-135b and miR-29c). Am. J. Transl. Res. 2020, 12, 4043–4050. [Google Scholar] [CrossRef] [PubMed]
- Naito, Y.; Takagi, T.; Uchiyama, K.; Tomatsuri, N.; Matsuyama, K.; Fujii, T.; Yagi, N.; Yoshida, N.; Yoshikawa, T. Chronic Administration with Electrolyzed Alkaline Water Inhibits Aspirin-induced Gastric Mucosal Injury in Rats through the Inhibition of Tumor Necrosis Factor-α Expression. J. Clin. Biochem. Nutr. 2002, 32, 69–81. [Google Scholar] [CrossRef]
- Scheffer, D.D.L.; Latini, A. Exercise-induced immune system response: Anti-inflammatory status on peripheral and central organs. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165823. [Google Scholar] [CrossRef]
- Franchini, E. Energy System Contributions during Olympic Combat Sports: A Narrative Review. Metabolites 2023, 13, 297. [Google Scholar] [CrossRef]
Parameter | Mean ± SD |
---|---|
Age (years) | 22.42 ± 1.78 |
Height (cm) | 174.42 ± 6.29 |
Weight (kg) | 77.3 ± 13.5 |
Body mass index (kg/m2) | 25.3 ± 3.1 |
Training years | 8.19 ± 3.25 |
Weekly training hours | 15.33 ± 1.15 |
Group | A | G | A+G |
---|---|---|---|
Physical activity (min) | |||
Sed | 5.43 ± 5.17 | 4.90 ± 3.90 | 5.09 ± 4.80 |
Light | 14.24 ± 9.68 | 12.66 ± 5.01 | 13.31 ± 8.61 |
MVPA | 40.79 ± 13.98 | 42.44 ± 6.13 | 39.18 ± 13.34 |
Heart rate (beats/min) | |||
PRE | 73.4 ± 10.8 | 72.8 ± 13.3 | 68.4 ± 7.6 |
POST | 120.9 ± 12.8 *** | 122.9 ± 17.2 *** | 121.7 ± 12.4 *** |
Rate of perceived exertion | |||
PRE | 3.2 ± 2.0 | 2.7 ± 2.1 | 2.7 ± 1.7 |
POST | 7.4 ± 1.6 *** | 7.5 ± 1.4 *** | 6.9 ± 1.7 *** |
Group | A | G | A+G |
---|---|---|---|
α-Amylase/TP (U/mg) | |||
PRE | 54.06 ± 18.64 | 59.83 ± 28.93 | 55.34 ± 33.62 |
POST | 64.89 ± 21.65 | 66.32 ± 19.85 | 66.37 ± 37.29 * |
Lactoferrin/TP (µg/mg) | |||
PRE | 6.37 ± 3.50 | 5.98 ± 2.67 | 5.00 ± 2.17 |
POST | 4.56 ± 2.03 | 5.92 ± 2.17 | 4.49 ± 2.62 |
IgA/TP (µg/mg) | |||
PRE | 107.54 ± 42.29 | 107.93 ± 37.15 | 113.07 ± 54.03 |
POST | 96.58 ± 36.95 | 100.25 ± 40.07 | 103.16 ± 50.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, T.-L.; He, C.-S.; Suzuki, K.; Lu, C.-C.; Wang, C.-Y.; Fang, S.-H. Concurrent Ingestion of Alkaline Water and L-Glutamine Enhanced Salivary α-Amylase Activity and Testosterone Concentration in Boxing Athletes. Nutrients 2024, 16, 454. https://doi.org/10.3390/nu16030454
Lu T-L, He C-S, Suzuki K, Lu C-C, Wang C-Y, Fang S-H. Concurrent Ingestion of Alkaline Water and L-Glutamine Enhanced Salivary α-Amylase Activity and Testosterone Concentration in Boxing Athletes. Nutrients. 2024; 16(3):454. https://doi.org/10.3390/nu16030454
Chicago/Turabian StyleLu, Tung-Lin, Cheng-Shiun He, Katsuhiko Suzuki, Chi-Cheng Lu, Chung-Yuan Wang, and Shih-Hua Fang. 2024. "Concurrent Ingestion of Alkaline Water and L-Glutamine Enhanced Salivary α-Amylase Activity and Testosterone Concentration in Boxing Athletes" Nutrients 16, no. 3: 454. https://doi.org/10.3390/nu16030454
APA StyleLu, T.-L., He, C.-S., Suzuki, K., Lu, C.-C., Wang, C.-Y., & Fang, S.-H. (2024). Concurrent Ingestion of Alkaline Water and L-Glutamine Enhanced Salivary α-Amylase Activity and Testosterone Concentration in Boxing Athletes. Nutrients, 16(3), 454. https://doi.org/10.3390/nu16030454