Berry Consumption in Relation to Allostatic Load in US Adults: The National Health and Nutrition Examination Survey, 2003–2010
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Analytic Sample
2.3. Berry Consumption and Berry Consumers
2.4. Allostatic Load Score Composition
2.5. Covariates
2.6. Statistical Analysis
3. Results
3.1. Population Characteristics
3.2. AL Composite Scores Associated with Berry Consumption
3.3. AL Domain Scores: Berry Consumers vs. Nonconsumers
3.4. Individual AL Biomarker Analysis
4. Discussion
Study Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McEwen, B.S. Stress, adaptation, and disease. Allostasis and allostatic load. Ann. N. Y. Acad. Sci. 1998, 840, 33–44. [Google Scholar] [CrossRef]
- Sterling, P.; Eyer, J. Allostasis: A new paradigm to explain arousal pathology. In Handbook of Life Stress, Cognition and Health; Fisher, S., Reason, J., Eds.; Wiley: New York, NY, USA, 1988; pp. 629–649. [Google Scholar]
- McEwen, B.S. Protective and damaging effects of stress mediators. N. Engl. J. Med. 1998, 338, 171–179. [Google Scholar] [CrossRef]
- McEwen, B.S.; Wingfield, J.C. The concept of allostasis in biology and biomedicine. Horm. Behav. 2003, 43, 2–15. [Google Scholar] [CrossRef] [PubMed]
- Juster, R.P.; McEwen, B.S.; Lupien, S.J. Allostatic load biomarkers of chronic stress and impact on health and cognition. Neurosci. Biobehav. Rev. 2010, 35, 2–16. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S.; Stellar, E. Stress and the individual. Mechanisms leading to disease. Arch. Intern. Med. 1993, 153, 2093–2101. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S.; Seeman, T. Protective and damaging effects of mediators of stress. Elaborating and testing the concepts of allostasis and allostatic load. Ann. N. Y. Acad. Sci. 1999, 896, 30–47. [Google Scholar] [CrossRef] [PubMed]
- Juster, R.P.; Russell, J.J.; Almeida, D.; Picard, M. Allostatic load and comorbidities: A mitochondrial, epigenetic, and evolutionary perspective. Dev. Psychopathol. 2016, 28 Pt 1, 1117–1146. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S. Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiol. Rev. 2007, 87, 873–904. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S. Biomarkers for assessing population and individual health and disease related to stress and adaptation. Metabolism 2015, 64 (Suppl. S1), S2–S10. [Google Scholar] [CrossRef] [PubMed]
- Duong, M.T.; Bingham, B.A.; Aldana, P.C.; Chung, S.T.; Sumner, A.E. Variation in the Calculation of Allostatic Load Score: 21 Examples from NHANES. J. Racial Ethn. Health Disparities 2017, 4, 455–461. [Google Scholar] [CrossRef]
- McCaffery, J.M.; Marsland, A.L.; Strohacker, K.; Muldoon, M.F.; Manuck, S.B. Factor structure underlying components of allostatic load. PLoS ONE 2012, 7, e47246. [Google Scholar] [CrossRef]
- Guidi, J.; Lucente, M.; Sonino, N.; Fava, G.A. Allostatic Load and Its Impact on Health: A Systematic Review. Psychother. Psychosom. 2021, 90, 11–27. [Google Scholar] [CrossRef]
- Seeman, T.E.; McEwen, B.S.; Rowe, J.W.; Singer, B.H. Allostatic load as a marker of cumulative biological risk: MacArthur studies of successful aging. Proc. Natl. Acad. Sci. USA 2001, 98, 4770–4775. [Google Scholar] [CrossRef]
- Mattei, J.; Demissie, S.; Falcon, L.M.; Ordovas, J.M.; Tucker, K. Allostatic load is associated with chronic conditions in the Boston Puerto Rican Health Study. Soc. Sci. Med. 2010, 70, 1988–1996. [Google Scholar] [CrossRef]
- Hollar, D. Cross-sectional changes in patterns of allostatic load among persons with varying disabilities, NHANES: 2001–2010. Disabil. Health J. 2013, 6, 177–187. [Google Scholar] [CrossRef]
- Seeman, T.E.; Crimmins, E.; Huang, M.H.; Singer, B.; Bucur, A.; Gruenewald, T.; Berkman, L.F.; Reuben, D.B. Cumulative biological risk and socio-economic differences in mortality: MacArthur studies of successful aging. Soc. Sci. Med. 2004, 58, 1985–1997. [Google Scholar] [CrossRef]
- Karlamangla, A.S.; Singer, B.H.; Seeman, T.E. Reduction in allostatic load in older adults is associated with lower all-cause mortality risk: MacArthur studies of successful aging. Psychosom. Med. 2006, 68, 500–507. [Google Scholar] [CrossRef]
- Zheng, D.D.; Christ, S.L.; Lam, B.L.; Tannenbaum, S.L.; Bokman, C.L.; Arheart, K.L.; McClure, L.A.; Fernandez, C.A.; Lee, D.J. Visual acuity and increased mortality: The role of allostatic load and functional status. Investig. Ophthalmol. Vis. Sci. 2014, 55, 5144–5150. [Google Scholar] [CrossRef] [PubMed]
- Castagné, R.; Garès, V.; Karimi, M.; Chadeau-Hyam, M.; Vineis, P.; Delpierre, C.; Kelly-Irving, M. Allostatic load and subsequent all-cause mortality: Which biological markers drive the relationship? Findings from a UK birth cohort. Eur. J. Epidemiol. 2018, 33, 441–458. [Google Scholar] [CrossRef] [PubMed]
- Acheampong, T.; Jiang, L.; Ziogas, A.; Odegaard, A.O. Multi-Systemic Biological Risk and Cancer Mortality: The NHANES III Study. Sci. Rep. 2020, 10, 5047. [Google Scholar] [CrossRef] [PubMed]
- Sakakibara, H.; Shimoi, K. Anti-stress effects of polyphenols: Animal models and human trials. Food Funct. 2020, 11, 5702–5717. [Google Scholar] [CrossRef]
- Kawabata, K.; Kawai, Y.; Terao, J. Suppressive effect of quercetin on acute stress-induced hypothalamic-pituitary-adrenal axis response in Wistar rats. J. Nutr. Biochem. 2010, 21, 374–380. [Google Scholar] [CrossRef]
- Sakakibara, H.; Yoshino, S.; Kawai, Y.; Terao, J. Antidepressant-like effect of onion (Allium cepa L.) powder in a rat behavioral model of depression. Biosci. Biotechnol. Biochem. 2008, 72, 94–100. [Google Scholar] [CrossRef]
- Fujii, Y.; Suzuki, K.; Hasegawa, Y.; Nanba, F.; Toda, T.; Adachi, T.; Taira, S.; Osakabe, N. Single oral administration of flavan 3-ols induces stress responses monitored with stress hormone elevations in the plasma and paraventricular nucleus. Neurosci. Lett. 2018, 682, 106–111. [Google Scholar] [CrossRef]
- Wirtz, P.H.; von Känel, R.; Meister, R.E.; Arpagaus, A.; Treichler, S.; Kuebler, U.; Huber, S.; Ehlert, U. Dark chocolate intake buffers stress reactivity in humans. J. Am. Coll. Cardiol. 2014, 63, 2297–2299. [Google Scholar] [CrossRef]
- von Känel, R.; Meister, R.E.; Stutz, M.; Kummer, P.; Arpagaus, A.; Huber, S.; Ehlert, U.; Wirtz, P.H. Effects of dark chocolate consumption on the prothrombotic response to acute psychosocial stress in healthy men. Thromb. Haemost. 2014, 112, 1151–1158. [Google Scholar] [CrossRef] [PubMed]
- Byrd, J.B.; Rothberg, A.E.; Chomic, R.; Burant, C.F.; Brook, R.D.; Auchus, R.J. Serum Cortisol-to-Cortisone Ratio and Blood Pressure in Severe Obesity before and after Weight Loss. Cardiorenal Med. 2015, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kuebler, U.; Arpagaus, A.; Meister, R.E.; von Känel, R.; Huber, S.; Ehlert, U.; Wirtz, P.H. Dark chocolate attenuates intracellular pro-inflammatory reactivity to acute psychosocial stress in men: A randomized controlled trial. Brain Behav. Immun. 2016, 57, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Szajdek, A.; Borowska, E.J. Bioactive compounds and health-promoting properties of berry fruits: A review. Plant Foods Hum. Nutr. 2008, 63, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Fang, J. Classification of fruits based on anthocyanin types and relevance to their health effects. Nutrition 2015, 31, 1301–1306. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Lefevre, M.; Beecher, G.R.; Gross, M.D.; Keen, C.L.; Etherton, T.D. Bioactive compounds in nutrition and health-research methodologies for establishing biological function: The antioxidant and anti-inflammatory effects of flavonoids on atherosclerosis. Annu. Rev. Nutr. 2004, 24, 511–538. [Google Scholar] [CrossRef] [PubMed]
- Khalid, S.; Barfoot, K.L.; May, G.; Lamport, D.J.; Reynolds, S.A.; Williams, C.M. Effects of Acute Blueberry Flavonoids on Mood in Children and Young Adults. Nutrients 2017, 9, 158. [Google Scholar] [CrossRef]
- Gapski, A.; Gomes, T.M.; Bredun, M.A.; Ferreira-Lima, N.E.; Ludka, F.K.; Bordignon-Luiz, M.T.; Burin, V.M. Digestion behavior and antidepressant-like effect promoted by acute administration of blueberry extract on mice. Food Res. Int. 2019, 125, 108618. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control Prevention NCfHS. National Health and Nutrition Examination Survey. Available online: https://wwwn.cdc.gov/nchs/nhanes/analyticguidelines.aspx (accessed on 10 January 2020).
- Ahluwalia, N.; Dwyer, J.; Terry, A.; Moshfegh, A.; Johnson, C. Update on NHANES Dietary Data: Focus on Collection, Release, Analytical Considerations, and Uses to Inform Public Policy. Adv. Nutr. 2016, 7, 121–134. [Google Scholar] [CrossRef] [PubMed]
- CDC. NCHS National Health and Nutrition Examination Survey Interview Procedures Manual. 2017. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2017-2018/manuals/2017_Interviewer_Procedures_Manual.pdf (accessed on 31 July 2020).
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, D.G.; Murayi, T.; Clemens, J.C.; Baer, D.J.; Sebastian, R.S.; Moshfegh, A.J. The USDA Automated Multiple-Pass Method accurately assesses population sodium intakes. Am. J. Clin. Nutr. 2013, 97, 958–964. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Muscat, J.E.; Kris-Etherton, P.M.; Chinchilli, V.M.; Fernandez-Mendoza, J.; Al-Shaar, L.; Richie, J.P. Berry Consumption and Sleep in the Adult US General Population: Results from the National Health and Nutrition Examination Survey 2005–2018. Nutrients 2023, 15, 5115. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Muscat, J.E.; Chinchilli, V.M.; Kris-Etherton, P.M.; Al-Shaar, L.; Richie, J.P. Consumption of berries and flavonoids in relation to mortality in NHANES, 1999–2014. J. Nutr. 2024; Epub ahead of print. [Google Scholar] [CrossRef]
- Bodner-Montville, J.; Ahuja, J.K.C.; Ingwersen, L.A.; Haggerty, E.S.; Enns, C.W.; Perloff, B.P. USDA Food and Nutrient Database for Dietary Studies: Released on the web. J. Food Compos. Anal. 2006, 19, S100–S107. [Google Scholar] [CrossRef]
- USDA Food and Nutrient Database for Dietary Studies. 2020. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fndds/ (accessed on 19 July 2020).
- Food Pattern Equivalence Databases, 2005–2006, 2007–2008, 2009–2010, 2011–2012, 2013–2014, 2015–2016, 2017–2018 [Internet]. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fped-databases/ (accessed on 10 January 2021).
- MyPyramid Equivalents Food Database 2.0 [Internet]. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/mped-databases-for-downloading/ (accessed on 5 October 2022).
- DHHS; USDA. 2015–2020 Dietary Guidelines for Americans. 2015. Available online: https://www.dietaryguidelines.gov/sites/default/files/2019-05/2015-2020_Dietary_Guidelines.pdf (accessed on 11 November 2022).
- Seeman, T.E.; Singer, B.H.; Rowe, J.W.; Horwitz, R.I.; McEwen, B.S. Price of adaptation–allostatic load and its health consequences. MacArthur studies of successful aging. Arch. Intern. Med. 1997, 157, 2259–2268. [Google Scholar] [CrossRef]
- Juster, R.P.; Bizik, G.; Picard, M.; Arsenault-Lapierre, G.; Sindi, S.; Trepanier, L.; Marin, M.-F.; Wan, N.; Sekerovic, Z.; Lord, C.; et al. A transdisciplinary perspective of chronic stress in relation to psychopathology throughout life span development. Dev. Psychopathol. 2011, 23, 725–776. [Google Scholar] [CrossRef]
- Rodriquez, E.J.; Kim, E.N.; Sumner, A.E.; Nápoles, A.M.; Pérez-Stable, E.J. Allostatic Load: Importance, Markers, and Score Determination in Minority and Disparity Populations. J. Urban Health. 2019, 96 (Suppl. S1), 3–11. [Google Scholar] [CrossRef] [PubMed]
- Karlamangla, A.S.; Singer, B.H.; McEwen, B.S.; Rowe, J.W.; Seeman, T.E. Allostatic load as a predictor of functional decline. MacArthur studies of successful aging. J. Clin. Epidemiol. 2002, 55, 696–710. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.M.; Zimmet, P.; Shaw, J. The metabolic syndrome—A new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef] [PubMed]
- Castro, J.P.; El-Atat, F.A.; McFarlane, S.I.; Aneja, A.; Sowers, J.R. Cardiometabolic syndrome: Pathophysiology and treatment. Curr. Hypertens. Rep. 2003, 5, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Hennekens, C.H.; Buring, J.E.; Rifai, N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med. 2000, 342, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; McKechnie, T.; Doumouras, A.G.; Handler, C.; Eskicioglu, C.; Gmora, S.; Anvari, M.; Hong, D. Diagnostic Value of C-Reactive Protein Levels in Postoperative Infectious Complications after Bariatric Surgery: A Systematic Review and Meta-Analysis. Obes. Surg. 2019, 29, 2022–2029. [Google Scholar] [CrossRef]
- Miller, M.; Zhan, M.; Havas, S. High attributable risk of elevated C-reactive protein level to conventional coronary heart disease risk factors: The Third National Health and Nutrition Examination Survey. Arch. Intern. Med. 2005, 165, 2063–2068. [Google Scholar] [CrossRef] [PubMed]
- Johns, I.; Moschonas, K.E.; Medina, J.; Ossei-Gerning, N.; Kassianos, G.; Halcox, J.P. Risk classification in primary prevention of CVD according to QRISK2 and JBS3 ‘heart age’, and prevalence of elevated high-sensitivity C reactive protein in the UK cohort of the EURIKA study. Open Heart 2018, 5, e000849. [Google Scholar] [CrossRef]
- Kasper, D.L.; Fauci, A.S.; Hauser, S.L.; Longo, D.L.; Jameson, J.L.; Loscalz, J. Harrison’s Manual of Medicine, 19th ed.; McGraw Hill Education: New York, NY, USA, 2016. [Google Scholar]
- Pearson, T.A.; Mensah, G.A.; Alexander, R.W.; Anderson, J.L.; Cannon, R.O., 3rd; Criqui, M.; Fadl, Y.Y.; Fortmann, S.P.; Hong, Y.; Myers, G.L.; et al. Ma Markers of inflammation and cardiovascular disease: Application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003, 107, 499–511. [Google Scholar] [CrossRef]
- Nantsupawat, N.; Booncharoen, A.; Wisetborisut, A.; Jiraporncharoen, W.; Pinyopornpanish, K.; Chutarattanakul, L.; Angkurawaranon, C. Appropriate Total cholesterol cut-offs for detection of abnormal LDL cholesterol and non-HDL cholesterol among low cardiovascular risk population. Lipids Health Dis. 2019, 18, 28. [Google Scholar] [CrossRef]
- Johnson, J.L.; Duick, D.S.; Chui, M.A.; Aldasouqi, S.A. Identifying prediabetes using fasting insulin levels. Endocr. Pract. 2010, 16, 47–52. [Google Scholar] [CrossRef]
- Bloomgarden, Z.; Handelsman, Y. World congress on insulin resistance, diabetes and cardiovascular disease. J. Diabetes 2018, 10, 776–777. [Google Scholar] [CrossRef]
- Yano, Y.; Reis, J.P.; Colangelo, L.A.; Shimbo, D.; Viera, A.J.; Allen, N.B.; Gidding, S.S.; Bress, A.P.; Greenland, P.; Muntner, P.; et al. Association of Blood Pressure Classification in Young Adults Using the 2017 American College of Cardiology/American Heart Association Blood Pressure Guideline with Cardiovascular Events Later in Life. JAMA 2018, 320, 1774–1782. [Google Scholar] [CrossRef] [PubMed]
- James, P.A.; Oparil, S.; Carter, B.L.; Cushman, W.C.; Dennison-Himmelfarb, C.; Handler, J.; Lackland, D.T.; Lefevre, M.L.; MacKenzie, T.D.; Ogedegbe, O.; et al. 2014 evidence-based guideline for the management of high blood pressure in adults: Report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA 2014, 311, 507–520. [Google Scholar] [CrossRef]
- Pencina, M.J.; Navar-Boggan, A.M.; D’Agostino, R.B., Sr.; Williams, K.; Neely, B.; Sniderman, A.D.; Peterson, E.D. Application of new cholesterol guidelines to a population-based sample. N. Engl. J. Med. 2014, 370, 1422–1431. [Google Scholar] [CrossRef]
- Davidson, K.W.; Barry, M.J.; Mangione, C.M.; Cabana, M.; Caughey, A.B.; Davis, E.M.; Donahue, K.E.; Doubeni, C.A.; Krist, A.H.; Kubik, M.; et al. Screening for Prediabetes and Type 2 Diabetes: US Preventive Services Task Force Recommendation Statement. JAMA 2021, 326, 736–743. [Google Scholar] [CrossRef]
- Stern, S.E.; Williams, K.; Ferrannini, E.; DeFronzo, R.A.; Bogardus, C.; Stern, M.P. Identification of individuals with insulin resistance using routine clinical measurements. Diabetes 2005, 54, 333–339. [Google Scholar] [CrossRef]
- Ascaso, J.F.; Pardo, S.; Real, J.T.; Lorente, R.I.; Priego, A.; Carmena, R. Diagnosing insulin resistance by simple quantitative methods in subjects with normal glucose metabolism. Diabetes Care 2003, 26, 3320–3325. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S.; Li, C.; Zhao, G.; Pearson, W.S.; Mokdad, A.H. Hypertriglyceridemia and its pharmacologic treatment among US adults. Arch. Intern. Med. 2009, 169, 572–578. [Google Scholar] [CrossRef]
- World Health Organization. Waist Circumference and Waist-Hip Ratio Report of a WHO Expert Consultation. 2011. Available online: https://www.who.int/publications/i/item/9789241501491 (accessed on 5 May 2021).
- Abramson, N.; Melton, B. Leukocytosis: Basics of clinical assessment. Am. Fam. Physician 2000, 62, 2053–2060. [Google Scholar] [PubMed]
- Pagana, K.; Pagana, T. Mosby’s Manual of Diagnostic and Laboratory Tests E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Adam, T.C.; Hasson, R.E.; Lane, C.J.; Davis, J.N.; Weigensberg, M.J.; Spruijt-Metz, D.; Goran, M.I. Fasting indicators of insulin sensitivity: Effects of ethnicity and pubertal status. Diabetes Care 2011, 34, 994–999. [Google Scholar] [CrossRef]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T., Jr.; et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: The JNC 7 report. JAMA 2003, 289, 2560–2572. [Google Scholar] [CrossRef]
- Banga, S.; Chalfoun, N.T. Arrhythmias and Antiarrhythmic Drugs. In Cardiology: An Integrated Approach; Elmoselhi, A., Ed.; McGraw Hill: New York, NY, USA, 2017; Available online: https://accessmedicine.mhmedical.com/content.aspx?bookid=2224§ionid=171660848 (accessed on 10 January 2023).
- Han, L.; You, D.; Ma, W.; Astell-Burt, T.; Feng, X.; Duan, S.; Qi, L. National Trends in American Heart Association Revised Life’s Simple 7 Metrics Associated with Risk of Mortality Among US Adults. JAMA Netw. Open. 2019, 2, e1913131. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. General Information about the NHANES, Laboratory Methodology and Public Data Files; CDC: Hyattsville, MD, USA, 1999–2018. Available online: https://www.cdc.gov/nchs/nhanes/about_nhanes.htm (accessed on 4 May 2021).
- Seeman, T.; Epel, E.; Gruenewald, T.; Karlamangla, A.; McEwen, B.S. Socio-economic differentials in peripheral biology: Cumulative allostatic load. Ann. N. Y. Acad. Sci. 2010, 1186, 223–239. [Google Scholar] [CrossRef]
- Petrovic, D.; Pivin, E.; Ponte, B.; Dhayat, N.; Pruijm, M.; Ehret, G.; Ackermann, D.; Guessous, I.; Younes, S.E.; Pechère-Bertschi, A.; et al. Sociodemographic, behavioral and genetic determinants of allostatic load in a Swiss population-based study. Psychoneuroendocrinology 2016, 67, 76–85. [Google Scholar] [CrossRef]
- Zhang, S.; Limei, E.; Pang, J.; Jiang, X. Adults allostatic load is less with greater dietary quality: National Health and Nutrition Examination Survey (NHANES) 2015-2018. Asia Pac. J. Clin. Nutr. 2023, 32, 227–235. [Google Scholar] [CrossRef] [PubMed]
- SAS. SAS, 9.4 ed.; SAS Institute Inc.: Cary, NC, USA, 2018. [Google Scholar]
- Centers for Disease Control Prevention, NCHS. National Health and Nutrition Examination Survey: Analytic Guidelines, 2011–2016. Available online: https://www.cdc.gov/nchs/nhanes (accessed on 4 May 2021).
- Luís, Â.; Domingues, F.; Pereira, L. Association between berries intake and cardiovascular diseases risk factors: A systematic review with meta-analysis and trial sequential analysis of randomized controlled trials. Food Funct. 2018, 9, 740–757. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, G.; Liao, D.; Zhu, Y.; Xue, X. Effects of Berries Consumption on Cardiovascular Risk Factors: A Meta-analysis with Trial Sequential Analysis of Randomized Controlled Trials. Sci. Rep. 2016, 6, 23625. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Rhone, M.; Lyons, T.J. Berries: Emerging impact on cardiovascular health. Nutr. Rev. 2010, 68, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Calvano, A.; Izuora, K.; Oh, E.C.; Ebersole, J.L.; Lyons, T.J.; Basu, A. Dietary berries, insulin resistance and type 2 diabetes: An overview of human feeding trials. Food Funct. 2019, 10, 6227–6243. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, K.; Olejnik, A. Current evidence on the health-beneficial effects of berry fruits in the prevention and treatment of metabolic syndrome. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 446–452. [Google Scholar] [CrossRef]
- Yang, L.; Ling, W.; Du, Z.; Chen, Y.; Li, D.; Deng, S.; Liu, Z.; Yang, L. Effects of Anthocyanins on Cardiometabolic Health: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2017, 8, 684–693. [Google Scholar] [CrossRef]
- Gemen, R.; de Vries, J.F.; Slavin, J.L. Relationship between molecular structure of cereal dietary fiber and health effects: Focus on glucose/insulin response and gut health. Nutr. Rev. 2011, 69, 22–33. [Google Scholar] [CrossRef]
- Sesso, H.D.; Gaziano, J.M.; Jenkins, D.J.; Buring, J.E. Strawberry intake, lipids, C-reactive protein, and the risk of cardiovascular disease in women. J. Am. Coll. Nutr. 2007, 26, 303–310. [Google Scholar] [CrossRef]
- Wang, Y.; Gallegos, J.L.; Haskell-Ramsay, C.; Lodge, J.K. Effects of chronic consumption of specific fruit (berries, citrus and cherries) on CVD risk factors: A systematic review and meta-analysis of randomised controlled trials. Eur. J. Nutr. 2021, 60, 615–639. [Google Scholar] [CrossRef]
- Johnson, S.A.; Figueroa, A.; Navaei, N.; Wong, A.; Kalfon, R.; Ormsbee, L.T.; Feresin, R.G.; Elam, M.L.; Hooshmand, S.; Payton, M.E.; et al. Daily blueberry consumption improves blood pressure and arterial stiffness in postmenopausal women with pre- and stage 1-hypertension: A randomized, double-blind, placebo-controlled clinical trial. J. Acad. Nutr. Diet. 2015, 115, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Calis, Z.; Mogulkoc, R.; Baltaci, A.K. The Roles of Flavonols/Flavonoids in Neurodegeneration and Neuroinflammation. Mini Rev. Med. Chem. 2020, 20, 1475–1488. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, B.N.; Parylak, S.L.; Gage, F.H. Mechanisms of dietary flavonoid action in neuronal function and neuroinflammation. Mol. Aspects Med. 2018, 61, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Rendeiro, C.; Rhodes, J.S.; Spencer, J.P. The mechanisms of action of flavonoids in the brain: Direct versus indirect effects. Neurochem. Int. 2015, 89, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Donoso, F.; Egerton, S.; Bastiaanssen, T.F.S.; Fitzgerald, P.; Gite, S.; Fouhy, F.; Ross, R.P.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Polyphenols selectively reverse early-life stress-induced behavioural, neurochemical and microbiota changes in the rat. Psychoneuroendocrinology 2020, 116, 104673. [Google Scholar] [CrossRef] [PubMed]
- Westfall, S.; Pasinetti, G.M. The Gut Microbiota Links Dietary Polyphenols with Management of Psychiatric Mood Disorders. Front. Neurosci. 2019, 13, 1196. [Google Scholar] [CrossRef]
- Gallo, L.C.; Fortmann, A.L.; Mattei, J. Allostatic load and the assessment of cumulative biological risk in biobehavioral medicine: Challenges and opportunities. Psychosom. Med. 2014, 76, 478–480. [Google Scholar] [CrossRef]
- Kroenke, K. A practical and evidence-based approach to common symptoms: A narrative review. Ann. Intern. Med. 2014, 161, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Beckie, T.M. A systematic review of allostatic load, health, and health disparities. Biol. Res. Nurs. 2012, 14, 311–346. [Google Scholar] [CrossRef] [PubMed]
- Mauss, D.; Li, J.; Schmidt, B.; Angerer, P.; Jarczok, M.N. Measuring allostatic load in the workforce: A systematic review. Ind. Health. 2015, 53, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Edes, A.N.; Crews, D.E. Allostatic load and biological anthropology. Am. J. Phys. Anthropol. 2017, 162 (Suppl. S63), 44–70. [Google Scholar] [CrossRef] [PubMed]
- Ragland, D.R. Dichotomizing continuous outcome variables: Dependence of the magnitude of association and statistical power on the cutpoint. Epidemiology 1992, 3, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Johns Hopkins Medicine. Lipid Panel. 2024. Available online: https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/lipid-panel (accessed on 1 January 2024).
- Greenland, P.; Smith, S.C., Jr.; Grundy, S.M. Improving coronary heart disease risk assessment in asymptomatic people: Role of traditional risk factors and noninvasive cardiovascular tests. Circulation 2001, 104, 1863–1867. [Google Scholar] [CrossRef] [PubMed]
- Mayo Clinic. HDL Cholesterol: How to Boost Your “Good” Cholesterol? 2020. Available online: https://www.mayoclinic.org/diseases-conditions/high-blood-cholesterol/in-depth/hdl-cholesterol/art-20046388 (accessed on 10 May 2021).
- National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002, 106, 3143–3421. [Google Scholar] [CrossRef]
- Melmed, S.; Polonsky, K.; Larsen, P.; Kronenberg, H. Williams Textbook of Edocrinology; Elsevier Health Services: Amsterdam, The Netherlands, 2015. [Google Scholar]
- CDC/NCHS. Survey NHANES. In Laboratory Procedure Manual 2003–2004 to 2009–2010; U.S. CDC and National Center for Health Statistics: Hyattsville, MD, USA, 2011. [Google Scholar]
- Vital Signs, Anthropometric Data, and Pain. DeGowin’s Diagnostic Examination, 10th ed.; LeBlond, R.F., Brown, D.D., Suneja, M., Szot, J.F., Eds.; McGraw-Hill: New York, NY, USA, 2014. [Google Scholar]
- Thomas, C.; Wood, G.C.; Langer, R.D.; Stewart, W.F. Elevated blood pressure in primary care varies in relation to circadian and seasonal changes. J. Hum. Hypertens. 2008, 22, 755–760. [Google Scholar] [CrossRef]
- Singh, B.; Saxena, A. Surrogate markers of insulin resistance: A review. World J. Diabetes 2010, 1, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Burtis, C.; Bruns, D. Reference Information. In Tietz Fundamentals of Clinical Chemistry and Molecular Diagnostics; Elsevier Health Sciences: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Nicoll, D.; Lu, C.M.; McPhee, S.J. Lab Tests. In Guide to Diagnostic Tests; McGraw-Hill: New York, NY, USA, 2017. [Google Scholar]
- Borrell, L.N.; Rodríguez-Álvarez, E.; Dallo, F.J. Racial/ethnic inequities in the associations of allostatic load with all-cause and cardiovascular-specific mortality risk in U.S. adults. PLoS ONE 2020, 15, e0228336. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Consumers (n = 1485) | Nonconsumers (n = 6199) | p Value |
---|---|---|---|
Sex (Female), % | 61.9 (59.0, 64.7) | 49.5 (48.1, 51.0) | <0.0001 |
Race/ethnicity, % | <0.0001 | ||
Non-Hispanic White | 83.4 (80.2, 86.7) | 69.4 (65.8, 73.0) | |
Non-Hispanic Black | 5.5 (4.0, 6.9) | 11.7 (10.0, 13.5) | |
Mexican American | 4.6 (3.3, 5.9) | 8.6 (6.7, 10.4) | |
Other Hispanic | 3.1 (1.9,4.2) | 4.4 (3.1, 5.7) | |
Other | 3.4 (1.9, 5.0) | 5.9 (4.9, 6.9) | |
BMI, % | <0.0001 | ||
<25 | 35.5 (32.9, 38.0) | 30.7 (29.0,32.3) | |
25–30 | 36.1 (33.5. 38.7) | 33.0 (31.3.34.8) | |
≥30 | 28.4 (26.2, 30.7) | 36.3 (34.6, 38.0) | |
PIR, % | <0.0001 | ||
<1.3 | 11.4 (9.7, 13.1) | 20.5 (18.8, 22.3) | |
1.3–1.85 | 33.0 (29.6, 36.3) | 39.5 (37.1, 41.8) | |
>1.85 | 55.6 (52.3, 58.9) | 40.0 (37.5, 42.6) | |
Education, % | <0.0001 | ||
Less than High School | 8.9 (6.9, 10.8) | 19.3 (17.8, 20.9) | |
High school | 20.3 (17.4, 23.3) | 26.2 (24.3, 28.0) | |
Some college | 29.7 (26.4, 33.0) | 30.6 (28.8, 32.3) | |
≥4-year degree | 41.1 (36.9, 45.4) | 23.9 (21.6, 26.2) | |
Married, or w/a partner (Yes), % | 69.7 (66.6, 72.8) | 64.7 (62.9, 66.6) | 0.002 |
Physical activity, % | 0.0002 | ||
Sedentary | 13.4 (11.1, 15.6) | 18.5 (16.8, 20.2) | |
Low | 19.8 (17.3, 22.2) | 21.7 (20.3, 23.2) | |
Moderate | 19.0 (16.6, 21.4) | 15.9 (14.7, 17.1) | |
High | 47.8 (45.0, 50.7) | 43.9 (42.0, 45.7) | |
Current smoker (Yes), % | 13.1 (11.0, 15.2) | 23.4 (21.6, 25.3) | <0.0001 |
Lipid medication (Yes), % | 21.8 (19.2, 24.4) | 22.2 (21.2, 23.3) | 0.749 |
Blood pressure medication (Yes), % | 25.8 (22.7, 28.8) | 25.7 (23.9, 27.6) | 0.966 |
Glucose medication (Yes), % | 3.6 (2.4, 4.9) | 3.6 (3.1, 4.3) | 0.981 |
Age, mean ± S.E., y | 50.3 ± 0.6 | 46.9 ± 0.4 | <0.0001 |
Energy, kcal | 2073.4 ± 24.0 | 2068.8 ± 15.3 | <0.0001 |
Alcohol, g | 8.3 ± 0.7 | 8.9 ± 0.5 | <0.0001 |
HEI-2015 | 57.9 ± 0.5 | 51.6 ± 0.3 | <0.0001 |
Total and Subtype Berries | Consumers LSM (95% CI) | Nonconsumers LSM (95% CI) | Mean Difference (95% CI) | p-Value |
---|---|---|---|---|
Berries | ||||
Model 1 | 9.42 (9.14, 9.7) | 10.66 (10.49, 10.84) | −1.24 (−1.54, −0.94) | <0.0001 |
Model 2 | 11.85 (11.41, 12.29) | 12.31 (11.96, 12.66) | −0.46 (−0.76, −0.17) | 0.0026 |
Strawberries | ||||
Model 1 | 9.54 (9.16, 9.92) | 10.56 (10.38, 10.74) | −1.02 (−1.44, −0.6) | <0.0001 |
Model 2 | 11.59 (11.18, 11.99) | 11.94 (11.65, 12.24) | −0.36 (−0.64, −0.08) | 0.013 |
Blueberries | ||||
Model 1 | 9.22 (8.73, 9.70) | 10.52 (10.35, 10.69) | −1.30 (−1.80, −0.80) | <0.0001 |
Model 2 | 11.64 (11.08, 12.21) | 12.26 (11.91, 12.62) | −0.62 (−1.07, −0.17) | 0.008 |
Cranberries | ||||
Model 1 | 8.98 (8.25, 9.71) | 10.48 (10.32, 10.64) | −1.50 (−2.20, −0.80) | <0.0001 |
Model 2 | 12.33 (11.58, 13.08) | 12.21 (11.85, 12.56) | 0.12 (−0.56, 0.80) | 0.719 |
Raspberries | ||||
Model 1 | 10.24 (9.26, 11.22) | 10.45 (10.29, 10.61) | −0.21 (−1.17, 0.75) | 0.663 |
Model 2 | 12.15 (11.41, 12.88) | 11.99 (11.71, 12.26) | 0.16 (−0.50, 0.82) | 0.626 |
Blackberries | ||||
Model 1 | 8.85 (7.51, 10.20) | 10.46 (10.30, 10.62) | −1.60 (−2.94, −0.27) | 0.019 |
Model 2 | 12.53 (11.62, 13.44) | 12.16 (11.81, 12.51) | 0.37 (−0.44, 1.18) | 0.362 |
Cranberry juice | ||||
Model 1 | 9.90 (9.32, 10.49) | 10.49 (10.33, 10.65) | −0.58 (−1.14, −0.03) | 0.04 |
Model 2 | 11.87 (11.28, 12.47) | 12.23 (11.88, 12.58) | −0.35 (−0.86, 0.15) | 0.169 |
Berry Type | Nonconsumption | Low LSM (95% CI) | High LSM (95% CI) | Ptrend | |
---|---|---|---|---|---|
Berries | n | 6199 | 754 | 731 | |
Median (Range), cup-equivalents | 0 | 0.06 (≤0.17) | 0.35 (0.18, 3.95) | ||
Mean ± S.E. | 0 | 0.07 ± 0.05 | 0.45 ± 0.34 | ||
Model 1 | 10.71(10.54, 10.87) | 9.46 (9.08, 9.84) | 9.45 (9.08, 9.83) | <0.0001 | |
Model 2 | 12.1 (11.8, 12.4) | 11.5 (11.2, 11.9) | 11.6 (11.3, 12.0) | 0.0007 | |
Strawberries | n | 6755 | 489 | 440 | |
Median (Range), cup-equivalents | 0 | 0.09 (≤0.19) | 0.36 (0.2, 2.01) | ||
Mean ± S.E. | 0 | 0.09 ± 0.06 | 0.46 ± 0.29 | ||
Model 1 | 10.6 (10.4, 10.8) | 9.6 (9.1, 10.0) | 9.6 (9.0, 10.1) | 0.0002 | |
Model 2 | 12.1 (11.8, 12.3) | 11.6 (11.2, 12.0) | 11.7 (11.4, 12.1) | 0.02 | |
Blueberries | n | 7174 | 272 | 238 | |
Median (Range), cup-equivalents | 0 | 0.05 (≤0.11) | 0.24 (0.11, 2.53) | ||
Mean ± S.E. | 0 | 0.05 ± 0.03 | 0.31 ± 0.28 | ||
Model 1 | 10.6 (10.4, 10.7) | 9.6 (8.9, 10.3) | 8.9 (8.2, 9.6) | <0.0001 | |
Model 2 | 12.1 (11.8, 12.3) | 11.7 (11.1, 12.2) | 11.2 (10.6, 11.8) | 0.0011 | |
Cranberries | n | 7518 | 81 | 85 | |
Median (Range), cup-equivalents | 0 | 0.04 (≤0.11) | 0.22 (0.12, 1.30) | ||
Mean ± S.E. | 0 | 0.04 ± 0.03 | 0.29 ± 0.21 | ||
Model 1 | 10.5 (10.4, 10.7) | 9.2 (8.0, 10.4) | 8.8 (8.0, 9.6) | <0.0001 | |
Model 2 | 12.0 (11.8, 12.3) | 11.9 (11.0, 12.8) | 11.8 (11.0, 12.5) | 0.3787 | |
Cranberry juice | n | 7250 | 219 | 215 | |
Median (Range), cup-equivalents | 0 | 0.02 (≤0.05) | 0.12 (0.05, 1.24) | ||
Mean ± S.E. | 0 | 0.02 ± 0.01 | 0.17 ± 0.17 | ||
Model 1 | 10.5 (10.4, 10.7) | 9.8 (9.0, 10.5) | 10.0 (9.2, 10.8) | 0.113 | |
Model 2 | 12.0 (11.8, 12.3) | 11.9 (11.2, 12.5) | 11.6 (10.9, 12.2) | 0.112 | |
Raspberries | n | 7580 | 56 | 48 | |
Median (Range), cup-equivalents | 0 | 0.09 (≤0.19) | 0.32 (0.20, 2.58) | ||
Mean ± S.E. | 0 | 0.09 ± 0.06 | 0.38 ± 0.19 | ||
Model 1 | 10.5 (10.3, 10.9) | 10.9 (9.6, 12.2) | 9.8 (8.3, 11.3) | 0.4353 | |
Model 2 | 12.0 (11.7, 12.3) | 12.2 (11.1, 13.3) | 12.1 (11.3, 12.9) | 0.7672 | |
Blackberries | n | 7631 | 29 | 24 | |
Median (Range), cup-equivalents | 0 | 0.13 (≤0.24) | 0.35 (0.25, 1.32) | ||
Mean ± S.E. | 0 | 0.12 ± 0.06 | 0.43 ± 0.23 | ||
Model 1 | 10.5 (10.4, 10.7) | 8.6 (7.4, 9.7) | 9.3 (7.0, 11.7) | 0.1269 | |
Model 2 | 12.0 (11.8, 12.3) | 12.0 (10.8, 13.1) | 12.1 (11.1, 13.0) | 0.9532 |
Total and Subtype Berries | Cardiovascular Domain (HDL-C, LDL-C, Glucose, Insulin, TC, HbA1c) (0–12) | Metabolic Domain (HOMAir, Triglycerides, Waist Circumference) (0–6) | ||||||
---|---|---|---|---|---|---|---|---|
Consumers LSM (95% CI) | Non-Consumers LSM (95% CI) | Difference Estimate (95% CI) | p | Consumers LSM (95% CI) | Non-Consumers LSM (95% CI) | Difference Estimate (95% CI) | p | |
Berries | ||||||||
Model 1 | 3.91 (3.78, 4.05) | 4.40 (4.32, 4.49) | −0.49 (−0.64, −0.34) | <0.0001 | 2.20 (2.09, 2.32) | 2.62 (2.55, 2.68) | −0.41 (−0.53, −0.30) | <0.0001 |
Model 2 | 4.73 (4.52, 4.93) | 4.97 (4.78, 5.17) | −0.25 (−0.38, −0.11) | 0.0004 | 2.97 (2.83, 3.11) | 3.13 (3.01, 3.24) | −0.15 (−0.26, −0.04) | 0.0078 |
Strawberries | ||||||||
Model 1 | 3.94 (3.76, 4.12) | 4.37 (4.28, 4.46) | −0.43 (−0.63, −0.23) | <0.0001 | 2.22 (2.08, 2.36) | 2.59 (2.52, 2.65) | −0.37 (−0.51, −0.23) | <0.0001 |
Model 2 | 4.73 (4.49, 4.98) | 4.95 (4.76, 5.15) | −0.22 (−0.38, −0.06) | 0.0092 | 2.99 (2.83, 3.15) | 3.11 (2.99, 3.22) | −0.12 (−0.23, −0.01) | 0.0354 |
Blueberries | ||||||||
Model 1 | 3.80 (3.53, 4.06) | 4.35 (4.27, 4.43) | −0.55 (−0.81, −0.29) | <0.0001 | 2.12 (1.93, 2.32) | 2.57 (2.51, 2.64) | −0.45 (−0.65, −0.25) | <0.0001 |
Model 2 | 4.63 (4.34, 4.92) | 4.95 (4.76, 5.14) | −0.32 (−0.55, −0.09) | 0.008 | 2.92 (2.75, 3.10) | 3.11 (2.99, 3.23) | −0.19 (−0.34, −0.03) | 0.0233 |
Cranberries | ||||||||
Model 1 | 3.98 (3.61, 4.35) | 4.33 (4.24, 4.41) | −0.34 (−0.71, 0.02) | 0.0648 | 2.03 (1.74, 2.32) | 2.56 (2.49, 2.62) | −0.53 (−0.81, −0.25) | 0.0003 |
Model 2 | 5.03 (4.64, 5.41) | 4.94 (4.74, 5.13) | 0.09 (−0.27, 0.45) | 0.613 | 2.94 (2.74, 3.14) | 3.07 (2.98, 3.16) | −0.13 (−0.33, 0.07) | 0.098 |
Raspberries | ||||||||
Model 1 | 4.17 (3.69, 4.64) | 4.28 (4.19, 4.37) | −0.12 (−0.59, 0.36) | 0.629 | 2.45 (2.12, 2.78) | 2.55 (2.48, 2.61) | −0.10 (−0.42, 0.23) | 0.55 |
Model 2 | 5.07 (4.51, 5.61) | 4.94 (4.74, 5.13) | 0.13 (−0.36, 0.61) | 0.605 | 3.04 (2.76, 3.31) | 3.09 (2.98, 3.21) | −0.06 (−0.33, 0.22) | 0.675 |
Blackberries | ||||||||
Model 1 | 4.29 (3.62, 4.95) | 4.32 (4.24, 4.40) | −0.03 (−0.69, 0.63) | 0.918 | 1.90 (1.36, 2.43) | 2.55 (2.49, 2.61) | −0.65 (−1.19, −0.12) | 0.017 |
Model 2 | 5.43 (4.85, 6.02) | 4.92 (4.73, 5.12) | 0.51 (−0.06, 1.08) | 0.078 | 2.98 (2.63, 3.32) | 3.08 (2.98, 3.17) | −0.10 (−0.45, 0.24) | 0.244 |
Cranberry juice | ||||||||
Model 1 | 4.17 (3.90, 4.43) | 4.33 (4.25, 4.41) | −0.16 (−0.41, 0.09) | 0.195 | 2.30 (2.09, 2.50) | 2.56 (2.50, 2.63) | −0.27 (−0.47, −0.07) | 0.0102 |
Model 2 | 4.89 (4.60, 5.17) | 4.94 (4.74, 5.14) | −0.05 (−0.28, 0.18) | 0.652 | 2.95 (2.73, 3.17) | 3.11 (2.99, 3.23) | −0.15 (−0.36, 0.05) | 0.141 |
Total and Subtype Berries | Immune Domain (White Blood Cells Counts, CRP) (0–4) | Autonomic Domain (Pulse Rate, Blood Pressure) (0–6) | ||||||
---|---|---|---|---|---|---|---|---|
Consumers LSM (95% CI) | Non-Consumers LSM (95% CI) | Difference Estimate (95% CI) | p Value | Consumers LSM (95% CI) | Non-Consumers LSM (95% CI) | Difference Estimate (95% CI) | p Value | |
Berries | ||||||||
Model 1 | 1.28 (1.22, 1.35) | 1.43 (1.39, 1.47) | −0.15 (−0.22, −0.08) | <0.0001 | 2.06 (1.97, 2.15) | 2.25 (2.19, 2.32) | −0.20 (−0.28, −0.11) | <0.0001 |
Model 2 | 1.47 (1.39, 1.54) | 1.51 (1.45, 1.57) | −0.04 (−0.10, 0.02) | 0.166 | 2.48 (2.40, 2.57) | 2.54 (2.46, 2.61) | −0.06 (−0.12, 0.01) | 0.093 |
Strawberries | ||||||||
Model 1 | 1.31 (1.24, 1.38) | 1.42 (1.38, 1.45) | −0.11 (−0.18, −0.03) | 0.005 | 2.11 (2.0, 2.23) | 2.23 (2.17, 2.29) | −0.12 (−0.23, −0.01) | 0.035 |
Model 2 | 1.48 (1.40, 1.56) | 1.49 (1.44, 1.55) | −0.01 (−0.07, 0.06) | 0.838 | 2.56 (2.45, 2.68) | 2.59 (2.51, 2.67) | −0.03 (−0.14, 0.07) | 0.506 |
Blueberries | ||||||||
Model 1 | 1.28 (1.17, 1.39) | 1.41 (1.38, 1.45) | −0.13 (−0.24, −0.02) | 0.026 | 2.06 (1.91, 2.21) | 2.23 (2.17, 2.29) | −0.17 (−0.33, −0.01) | 0.036 |
Model 2 | 1.46 (1.35, 1.57) | 1.50 (1.44, 1.55) | −0.04 (−0.14, 0.06) | 0.429 | 2.50 (2.35, 2.66) | 2.53 (2.46, 2.60) | −0.03 (−0.18, 0.12) | 0.681 |
Cranberries | ||||||||
Model 1 | 1.17 (1.01, 1.33) | 1.41 (1.38, 1.44) | −0.24 (−0.39, −0.08) | 0.003 | 1.81 (1.56, 2.06) | 2.23 (2.17, 2.29) | −0.42 (−0.66, −0.18) | 0.0008 |
Model 2 | 1.42 (1.27, 1.57) | 1.50 (1.44, 1.55) | −0.08 (−0.21, 0.06) | 0.276 | 2.36 (2.13, 2.58) | 2.52 (2.45, 2.59) | −0.17 (−0.39, 0.06) | 0.14 |
Raspberries | ||||||||
Model 1 | 1.37 (1.14, 1.60) | 1.38 (1.35, 1.42) | −0.01 (−0.24, 0.21) | 0.898 | 2.18 (1.95, 2.41) | 2.22 (2.16, 2.28) | −0.04 (−0.26, 0.18) | 0.716 |
Model 2 | 1.58 (1.38, 1.79) | 1.50 (1.44, 1.55) | 0.09 (−0.12, 0.29) | 0.403 | 2.47 (2.32, 2.62) | 2.52 (2.45, 2.59) | −0.05 (−0.19, 0.09) | 0.469 |
Blackberries | ||||||||
Model 1 | 1.01 (0.73, 1.28) | 1.41 (1.37, 1.44) | −0.40 (−0.67, −0.13) | 0.004 | 1.77 (1.37, 2.16) | 2.22 (2.17, 2.28) | −0.45 (−0.85, −0.06) | 0.024 |
Model 2 | 1.31 (1.07, 1.54) | 1.50 (1.44, 1.56) | −0.19 (−0.41, 0.03) | 0.085 | 2.32 (2.04, 2.6) | 2.53 (2.46, 2.6) | −0.21 (−0.48, 0.07) | 0.146 |
Cranberry juice | ||||||||
Model 1 | 1.34 (1.23, 1.44) | 1.41 (1.38, 1.45) | −0.07 (−0.17, 0.03) | 0.151 | 2.08 (1.91, 2.24) | 2.23 (2.17, 2.29) | −0.15 (−0.31, −0.002) | 0.047 |
Model 2 | 1.42 (1.30, 1.54) | 1.49 (1.42, 1.57) | −0.07 (−0.16, 0.02) | 0.117 | 2.44 (2.30, 2.57) | 2.54 (2.49, 2.59) | −0.10 (−0.22, 0.01) | 0.086 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Muscat, J.E.; Chinchilli, V.M.; Kris-Etherton, P.M.; Al-Shaar, L.; Richie, J.P. Berry Consumption in Relation to Allostatic Load in US Adults: The National Health and Nutrition Examination Survey, 2003–2010. Nutrients 2024, 16, 403. https://doi.org/10.3390/nu16030403
Zhang L, Muscat JE, Chinchilli VM, Kris-Etherton PM, Al-Shaar L, Richie JP. Berry Consumption in Relation to Allostatic Load in US Adults: The National Health and Nutrition Examination Survey, 2003–2010. Nutrients. 2024; 16(3):403. https://doi.org/10.3390/nu16030403
Chicago/Turabian StyleZhang, Li, Joshua E. Muscat, Vernon M. Chinchilli, Penny M. Kris-Etherton, Laila Al-Shaar, and John P. Richie. 2024. "Berry Consumption in Relation to Allostatic Load in US Adults: The National Health and Nutrition Examination Survey, 2003–2010" Nutrients 16, no. 3: 403. https://doi.org/10.3390/nu16030403
APA StyleZhang, L., Muscat, J. E., Chinchilli, V. M., Kris-Etherton, P. M., Al-Shaar, L., & Richie, J. P. (2024). Berry Consumption in Relation to Allostatic Load in US Adults: The National Health and Nutrition Examination Survey, 2003–2010. Nutrients, 16(3), 403. https://doi.org/10.3390/nu16030403