Antioxidant Minerals Modified the Association between Iron and Type 2 Diabetes in a Chinese Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Identification of T2D Cases and Controls
2.3. Anthropometric and Biochemical Measurements
2.4. Serum Mineral Measurements
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Controls and T2D Patients According to Serum Iron Levels
3.2. Associations between Serum Mineral Concentrations and T2D
3.3. Association between Serum Iron and T2D (Stratified by Antioxidant Mineral Concentrations)
3.4. Association between Iron and T2D (Stratified by Magnesium Levels According to Participants’ Physiological Status)
3.5. Association between Iron and T2D (Stratified by Copper Levels According to Participants’ Physiological Status)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harrison, A.V.; Lorenzo, F.R.; McClain, D.A. Iron and the Pathophysiology of Diabetes. Annu. Rev. Physiol. 2022, 85, 339–362. [Google Scholar] [CrossRef] [PubMed]
- Hilton, C.; Sabaratnam, R.; Drakesmith, H.; Karpe, F. Iron, Glucose and Fat Metabolism and Obesity: An Intertwined Relationship. Int. J. Obes. 2023, 47, 554–563. [Google Scholar] [CrossRef] [PubMed]
- Girelli, D.; Busti, F.; Brissot, P.; Cabantchik, I.; Muckenthaler, M.U.; Porto, G. Hemochromatosis Classification: Update and Recommendations by the BIOIRON Society. Blood 2021, 139, 3018–3029. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Manson, J.E.; Meigs, J.B.; Ma, J.; Rifai, N.; Hu, F.B. Body Iron Stores in Relation to Risk of Type 2 Diabetes in Apparently Healthy Women. JAMA 2004, 291, 711–717. [Google Scholar] [CrossRef]
- Sun, L.; Zong, G.; Pan, A.; Ye, X.; Li, H.; Yu, Z.; Zhao, Y.; Zou, S.; Yu, D.; Jin, Q.; et al. Elevated Plasma Ferritin Is Associated with Increased Incidence of Type 2 Diabetes in Middle-Aged and Elderly Chinese Adults. J. Nutr. 2013, 143, 1459–1465. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, K.; Lo, K.; Zhong, Y.; Yang, A.; Fang, X.; Akezhuoli, H.; Song, Z.; Chen, L.; An, P.; et al. Sex-Specific Association of Circulating Ferritin Level and Risk of Type 2 Diabetes: A Dose-Response Meta-Analysis of Prospective Studies. J. Clin. Endocrinol. Metabolism 2019, 104, 4539–4551. [Google Scholar] [CrossRef]
- Jiang, R.; Ma, J.; Ascherio, A.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Dietary Iron Intake and Blood Donations in Relation to Risk of Type 2 Diabetes in Men: A Prospective Cohort Study. Am. J. Clin. Nutr. 2004, 79, 70–75. [Google Scholar] [CrossRef]
- Song, Y.; Manson, J.E.; Buring, J.E.; Liu, S. A Prospective Study of Red Meat Consumption and Type 2 Diabetes in Middle-Aged and Elderly Women. Diabetes Care 2004, 27, 2108–2115. [Google Scholar] [CrossRef]
- Rajpathak, S.; Ma, J.; Manson, J.; Willett, W.C.; Hu, F.B. Iron Intake and the Risk of Type 2 Diabetes in Women. Diabetes Care 2006, 29, 1370–1376. [Google Scholar] [CrossRef]
- Talaei, M.; Wang, Y.-L.; Yuan, J.-M.; Pan, A.; Koh, W.-P. Meat, Dietary Heme Iron, and Risk of Type 2 Diabetes Mellitus. Am. J. Epidemiol. 2017, 186, 824–833. [Google Scholar] [CrossRef]
- He, J.; Fang, A.; Yu, S.; Shen, X.; Li, K. Dietary Nonheme, Heme, and Total Iron Intake and the Risk of Diabetes in Adults: Results from the China Health and Nutrition Survey. Diabetes Care 2020, 43, 776–784. [Google Scholar] [CrossRef]
- Eshak, E.S.; Iso, H.; Maruyama, K.; Muraki, I.; Tamakoshi, A. Associations between Dietary Intakes of Iron, Copper and Zinc with Risk of Type 2 Diabetes Mellitus: A Large Population-Based Prospective Cohort Study. Clin. Nutr. 2018, 37, 667–674. [Google Scholar] [CrossRef]
- Neufingerl, N.; Eilander, A. Nutrient Intake and Status in Adults Consuming Plant-Based Diets Compared to Meat-Eaters: A Systematic Review. Nutrients 2021, 14, 29. [Google Scholar] [CrossRef] [PubMed]
- Hunt, J.R.; Vanderpool, R.A. Apparent Copper Absorption from a Vegetarian Diet 1, 2, 3. Am. J. Clin. Nutr. 2001, 74, 803–807. [Google Scholar] [CrossRef] [PubMed]
- Kostov, K.; Halacheva, L. Role of Magnesium Deficiency in Promoting Atherosclerosis, Endothelial Dysfunction, and Arterial Stiffening as Risk Factors for Hypertension. Int. J. Mol. Sci. 2018, 19, 1724. [Google Scholar] [CrossRef] [PubMed]
- de Vega, R.G.; Fernández-Sánchez, M.L.; Fernández, J.C.; Menéndez, F.V.Á.; Sanz-Medel, A. Selenium Levels and Glutathione Peroxidase Activity in the Plasma of Patients with Type II Diabetes Mellitus. J. Trace Elem. Med. Biol. 2016, 37, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Negi, R.; Pande, D.; Karki, K.; Kumar, A.; Khanna, R.S.; Khanna, H.D. Trace Elements and Antioxidant Enzymes Associated with Oxidative Stress in the Pre-Eclamptic/Eclamptic Mothers during Fetal Circulation. Clin. Nutr. 2012, 31, 946–950. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Chen, F.; Wan, S.; Luo, Y.; Luo, J.; He, S.; Zhou, D.; An, P.; Zeng, P. Association of Serum Antioxidant Minerals and Type 2 Diabetes Mellitus in Chinese Urban Residents. Antioxidants 2022, 12, 62. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zhou, D.; An, P.; Wu, Q.; Wang, H.; Wu, A.; Mu, M.; Zhang, D.; Zhang, Z.; Wang, H.; et al. Associations between Serum Hepcidin, Ferritin and Hb Concentrations and Type 2 Diabetes Risks in a Han Chinese Population. Br. J. Nutr. 2013, 110, 2180–2185. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhou, D.; Zhang, Z.; Song, Y.; Zhang, D.; Zhao, T.; Chen, Z.; Sun, Y.; Zhang, D.; Yang, Y.; et al. Effects of Genetic Variants on Lipid Parameters and Dyslipidemia in a Chinese Population. J. Lipid Res. 2011, 52, 354–360. [Google Scholar] [CrossRef]
- Xu, H.; Song, Y.; You, N.-C.; Zhang, Z.-F.; Greenland, S.; Ford, E.S.; He, L.; Liu, S. Prevalence and Clustering of Metabolic Risk Factors for Type 2 Diabetes among Chinese Adults in Shanghai, China. BMC Public Health 2010, 10, 683. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.M.; Zimmet, P.Z.; Consultation, W. Definition, Diagnosis and Classification of Diabetes Mellitus and Its Complications. Part 1: Diagnosis and Classification of Diabetes Mellitus. Provisional Report of a WHO Consultation. Diabetic Med. 1998, 15, 539–553. [Google Scholar] [CrossRef]
- Sun, L.; Yu, Y.; Huang, T.; An, P.; Yu, D.; Yu, Z.; Li, H.; Sheng, H.; Cai, L.; Xue, J.; et al. Associations between Ionomic Profile and Metabolic Abnormalities in Human Population. PLoS ONE 2012, 7, e38845. [Google Scholar] [CrossRef]
- Simcox, J.A.; McClain, D.A. Iron and Diabetes Risk. Cell Metab. 2013, 17, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Feng, Y.; Jia, L.; Li, S.; Li, J.; Wang, Z.; Chen, X.; Du, H. Dietary Iron Modulates Glucose and Lipid Homeostasis in Diabetic Mice. Biol. Trace Elem Res. 2019, 189, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, Z.; Gabrielsen, J.S.; Simcox, J.A.; Lee, S.; Jones, D.; Cooksey, B.; Stoddard, G.; Cefalu, W.T.; McClain, D.A. Adipocyte Iron Regulates Leptin and Food Intake. J. Clin. Investig. 2015, 125, 3681–3691. [Google Scholar] [CrossRef] [PubMed]
- Gabrielsen, J.S.; Gao, Y.; Simcox, J.A.; Huang, J.; Thorup, D.; Jones, D.; Cooksey, R.C.; Gabrielsen, D.; Adams, T.D.; Hunt, S.C.; et al. Adipocyte Iron Regulates Adiponectin and Insulin Sensitivity. J. Clin. Investig. 2012, 122, 3529–3540. [Google Scholar] [CrossRef]
- Jouihan, H.A.; Cobine, P.A.; Cooksey, R.C.; Hoagland, E.A.; Boudina, S.; Abel, E.D.; Winge, D.R.; McClain, D.A. Iron-Mediated Inhibition of Mitochondrial Manganese Uptake Mediates Mitochondrial Dysfunction in a Mouse Model of Hemochromatosis. Mol. Med. 2008, 14, 98–108. [Google Scholar] [CrossRef]
- Lei, X.G.; Zhu, J.-H.; Cheng, W.-H.; Bao, Y.; Ho, Y.-S.; Reddi, A.R.; Holmgren, A.; Arnér, E.S.J. Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications. Physiol. Rev. 2016, 96, 307–364. [Google Scholar] [CrossRef]
- Zelko, I.N.; Mariani, T.J.; Folz, R.J. Superoxide Dismutase Multigene Family: A Comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) Gene Structures, Evolution, and Expression. Free Radic. Biol. Med. 2002, 33, 337–349. [Google Scholar] [CrossRef]
- Tsang, T.; Davis, C.I.; Brady, D.C. Copper Biology. Curr. Biol. 2021, 31, R421–R427. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, L.; Man, Q.; Wang, J.; Zhao, W.; Zhang, J. Dietary Micronutrients Intake Status among Chinese Elderly People Living at Home: Data from CNNHS 2010–2012. Nutrients 2019, 11, 1787. [Google Scholar] [CrossRef]
- Huang, K.; Fang, H.; Yu, D.; Guo, Q.; Xu, X.; Ju, L.; Cai, S.; Yang, Y.; Wei, X.; Zhao, L. Usual Intake of Micronutrients and Prevalence of Inadequate Intake among Chinese Adults: Data from CNHS 2015–2017. Nutrients 2022, 14, 4714. [Google Scholar] [CrossRef]
- Fang, X.; Wang, K.; Han, D.; He, X.; Wei, J.; Zhao, L.; Imam, M.U.; Ping, Z.; Li, Y.; Xu, Y.; et al. Dietary Magnesium Intake and the Risk of Cardiovascular Disease, Type 2 Diabetes, and All-Cause Mortality: A Dose–Response Meta-Analysis of Prospective Cohort Studies. BMC Med. 2016, 14, 210. [Google Scholar] [CrossRef]
- Gong, J.H.; Lo, K.; Liu, Q.; Li, J.; Lai, S.; Shadyab, A.H.; Arcan, C.; Snetselaar, L.; Liu, S. Dietary Manganese, Plasma Markers of Inflammation, and the Development of Type 2 Diabetes in Postmenopausal Women: Findings from the Women’s Health Initiative. Diabetes Care 2020, 43, 1344–1351. [Google Scholar] [CrossRef]
- Du, S.; Wu, X.; Han, T.; Duan, W.; Liu, L.; Qi, J.; Niu, Y.; Na, L.; Sun, C. Dietary Manganese and Type 2 Diabetes Mellitus: Two Prospective Cohort Studies in China. Diabetologia 2018, 61, 1985–1995. [Google Scholar] [CrossRef]
- An, P.; Wan, S.; Luo, Y.; Luo, J.; Zhang, X.; Zhou, S.; Xu, T.; He, J.; Mechanick, J.I.; Wu, W.-C.; et al. Micronutrient Supplementation to Reduce Cardiovascular Risk. J. Am. Coll Cardiol. 2022, 80, 2269–2285. [Google Scholar] [CrossRef]
- Wan, S.; He, J.; Simoes, E.J.; Mechanick, J.I.; Wu, W.-C.; An, P.; Liu, S. Chromium Supplementation to Reduce Cardiometabolic Risk Factors A Novel Dose-Response Meta-Analysis of Randomized Clinical Trials. JACC Adv. 2023, 2, 100729. [Google Scholar] [CrossRef]
- Veronese, N.; Pizzol, D.; Smith, L.; Dominguez, L.J.; Barbagallo, M. Effect of Magnesium Supplementation on Inflammatory Parameters: A Meta-Analysis of Randomized Controlled Trials. Nutrients 2022, 14, 679. [Google Scholar] [CrossRef]
- Mohammadi, H.; Talebi, S.; Ghavami, A.; Rafiei, M.; Sharifi, S.; Faghihimani, Z.; Ranjbar, G.; Miraghajani, M.; Askari, G. Effects of Zinc Supplementation on Inflammatory Biomarkers and Oxidative Stress in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Trace Elem. Med. Biol. 2021, 68, 126857. [Google Scholar] [CrossRef]
- Chen, H.; Cui, Z.; Lu, W.; Wang, P.; Wang, J.; Zhou, Z.; Zhang, N.; Wang, Z.; Lin, T.; Song, Y.; et al. Geographical, Sex, Age, and Seasonal Differences in Serum Manganese Status Among Chinese Adults with Hypertension. Biol. Trace Elem. Res. 2023, 201, 41–50. [Google Scholar] [CrossRef]
- Cui, Z.; Chen, H.; Lu, W.; Wang, P.; Zhou, Z.; Zhang, N.; Wang, Z.; Lin, T.; Song, Y.; Liu, L.; et al. The Association Between Plasma Copper Concentration and Prevalence of Diabetes in Chinese Adults with Hypertension. Front. Public Health 2022, 10, 888219. [Google Scholar] [CrossRef]
- Gunshin, H.; Mackenzie, B.; Berger, U.V.; Gunshin, Y.; Romero, M.F.; Boron, W.F.; Nussberger, S.; Gollan, J.L.; Hediger, M.A. Cloning and Characterization of a Mammalian Proton-Coupled Metal-Ion Transporter. Nature 1997, 388, 482–488. [Google Scholar] [CrossRef]
- O’Brien, K.O.; Zavaleta, N.; Caulfield, L.E.; Yang, D.X.; Abrams, S.A. Influence of Prenatal Iron and Zinc Supplements on Supplemental Iron Absorption, Red Blood Cell Iron Incorporation, and Iron Status in Pregnant Peruvian Women. Am. J. Clin. Nutr. 1999, 69, 509–515. [Google Scholar] [CrossRef]
- Park, S.; Sim, C.-S.; Lee, H.; Kim, Y. Blood Manganese Concentration Is Elevated in Infants with Iron Deficiency. Biol. Trace Elem. Res. 2013, 155, 184–189. [Google Scholar] [CrossRef]
- Bjørklund, G.; Aaseth, J.; Skalny, A.V.; Suliburska, J.; Skalnaya, M.G.; Nikonorov, A.A.; Tinkov, A.A. Interactions of Iron with Manganese, Zinc, Chromium, and Selenium as Related to Prophylaxis and Treatment of Iron Deficiency. J. Trace Elem. Med. Biol. 2017, 41, 41–53. [Google Scholar] [CrossRef]
Control (n = 1696) | Type 2 Diabetes (n = 502) | Total (n = 2198) | p | |
---|---|---|---|---|
Age (year) | 56.97 ± 9.09 | 61.47 ± 8.77 | 57.99 ± 9.21 | <0.001 |
Gender (n, %) | ||||
Male | 572 (33.7) | 200 (39.8) | 772 (35.3) | <0.001 |
Female | 1124 (66.3) | 302 (60.2) | 1426 (64.7) | |
BMI, kg/m2 | 24.35 ± 3.08 | 24.87 ± 3.28 | 24.47 ± 3.14 | 0.002 |
Waist–hip ratio | 0.85 ± 0.06 | 0.89 ± 0.07 | 0.86 ± 0.07 | <0.001 |
SBP, mmHg | 130.71 ± 17.79 | 140.97 ± 22.43 | 133.08 ± 19.44 | <0.001 |
DBP, mmHg | 80.74 ± 9.74 | 80.93 ± 10.30 | 80.78 ± 9.87 | 0.661 |
HDL-C, mmol/L | 1.34 ± 0.33 | 1.17 ± 0.32 | 1.30 ± 0.34 | <0.001 |
LDL-C, mmol/L | 2.65 ± 0.63 | 2.67 ± 0.72 | 2.65 ± 0.65 | 0.969 |
TC, mmol/L | 4.81 ± 0.94 | 4.64 ± 1.05 | 4.77 ± 0.97 | <0.001 |
TG, mmol/L | 1.68 ± 1.26 | 2.05 ± 1.69 | 1.76 ± 1.38 | <0.001 |
FBG, mmol/L | 4.66 ± 0.63 | 8.41 ± 2.85 | 5.52 ± 2.15 | <0.001 |
Magnesium, µg/L | 2803.77 (2088.50, 3114.37) | 1564.20 (983.14, 2459.84) | 2673.25 (1315.45, 3048.25) | <0.001 |
Copper, µg/dL | 137.75 ± 40.23 | 113.95 ± 35.92 | 132.09 ± 40.63 | <0.001 |
Zinc, µg/dL | 146.55 ± 83.84 | 124.52 ± 47.02 | 141.52 ± 77.54 | <0.001 |
Chromium, µg/dL | 15.95 (6.77, 37.68) | 8.39 (2.56, 28.65) | 13.97 (5.80, 35.24) | <0.001 |
Selenium, µg/dL | 17.90 (12.95, 24.59) | 13.83 (11.43, 19.54) | 16.81 (12.37, 23.08) | <0.001 |
Manganese, µg/dL | 2.32 (1.45, 3.96) | 2.42 (1.40, 4.16) | 2.34 (1.45, 4.00) | 0.545 |
Iron, µg/dL | 536.33 (398.60, 743.12) | 581.99 (428.57, 942.91) | 544.56 (403.56, 768.99) | <0.001 |
Serum Minerals | N (%) | Case (%) | Model 1 | Model 2 |
---|---|---|---|---|
Iron, µg/dL | ||||
≤544.6 | 1099 (50.0) | 228 (20.8) | 1 (reference) | 1 (reference) |
>544.6 | 1099 (50.0) | 274 (24.9) | 1.27 (1.04, 1.55) | 1.24 (1.00, 1.52) |
p | 0.020 | 0.047 | ||
Magnesium, µg/dL | ||||
≤2673.2 | 1099 (50.0) | 401 (36.5) | 1 (reference) | 1 (reference) |
>2673.2 | 1099 (50.0) | 101 (9.2) | 0.18 (0.14,0.22) | 0.18 (0.14,0.23) |
p | <0.001 | <0.001 | ||
Copper, µg/dL | ||||
≤132.1 | 1099 (50.0) | 371 (33.7) | 1 (reference) | 1 (reference) |
>132.1 | 1099 (50.0) | 131 (11.9) | 0.27 (0.21, 0.33) | 0.29 (0.23, 0.37) |
p | <0.001 | <0.001 | ||
Zinc, µg/dL | ||||
≤136.7 | 1099 (50.0) | 343 (31.2) | 1 (reference) | 1 (reference) |
>136.7 | 1099 (50.0) | 159 (14.5) | 0.37 (0.30, 0.46) | 0.41 (0.33, 0.52) |
p | <0.001 | <0.001 | ||
Chromium, µg/dL | ||||
≤14.0 | 1099 (50.0) | 299 (27.2) | 1 (reference) | 1 (reference) |
>14.0 | 1099 (50.0) | 203 (18.5) | 0.61 (0.50, 0.74) | 0.66 (0.54, 0.82) |
p | <0.001 | <0.001 | ||
Selenium, µg/dL | ||||
≤16.8 | 1099 (50.0) | 340 (30.9) | 1 (reference) | 1 (reference) |
>16.8 | 1099 (50.0) | 162 (14.6) | 0.39 (0.31, 0.48) | 0.44 (0.36, 0.55) |
p | <0.001 | <0.001 | ||
Manganese, µg/dL | ||||
≤2.3 | 1099 (50.0) | 241 (21.9) | 1 (reference) | 1 (reference) |
>2.3 | 1099 (50.0) | 261 (23.7) | 1.11 (0.91, 1.35) | 1.18 (0.96, 1.45) |
p | 0.310 | 0.125 |
Model 1 | Model 2 | |||||
---|---|---|---|---|---|---|
Serum Minerals | N (%) | Case (%) | OR (95% CI) | p | OR (95% CI) | p |
Magnesium, µg/dL | ||||||
≤2673.2 | 1099 (50.0) | 401 (36.5) | 1.44 (1.12, 1.84) | 0.004 | 1.42 (1.10, 1.85) | 0.008 |
>2673.2 | 1099 (50.0) | 101 (9.2) | 0.99 (0.65, 1.48) | 0.940 | 0.91 (0.60, 1.39) | 0.665 |
p for interaction | 0.004 | 0.077 | ||||
Copper, µg/dL | ||||||
≤132.1 | 1099 (50.0) | 371 (33.7) | 1.61 (1.25, 2.07) | <0.001 | 1.62 (1.24, 2.11) | <0.001 |
>132.1 | 1099 (50.0) | 131 (11.9) | 0.80 (0.56, 1.16) | 0.240 | 0.77 (0.53, 1.12) | 0.164 |
p for interaction | <0.001 | 0.002 | ||||
Zinc, µg/dL | ||||||
≤136.7 | 1099 (50.0) | 343 (31.2) | 1.57 (1.22, 2.03) | 0.001 | 1.57 (1.20, 2.06) | 0.001 |
>136.7 | 1099 (50.0) | 159 (14.5) | 1.23 (0.87, 1.72) | 0.245 | 1.15 (0.81, 1.63) | 0.448 |
p for interaction | 0.255 | 0.150 | ||||
Chromium, µg/dL | ||||||
≤14.0 | 1099 (50.0) | 299 (27.2) | 1.67 (1.27, 2.19) | <0.001 | 1.59 (1.19, 2.12) | 0.002 |
>14.0 | 1099 (50.0) | 203 (18.5) | 1.36 (0.98, 1.90) | 0.066 | 1.32 (0.94, 1.86) | 0.111 |
p for interaction | 0.358 | 0.428 | ||||
Selenium, µg/dL | ||||||
≤16.8 | 1099 (50.0) | 340 (30.9) | 1.35 (1.04, 1.74) | 0.023 | 1.33 (1.02, 1.75) | 0.039 |
>16.8 | 1099 (50.0) | 162 (14.6) | 0.99 (0.71, 1.38) | 0.936 | 0.96 (0.68, 1.36) | 0.818 |
p for interaction | 0.146 | 0.224 | ||||
Manganese, µg/dL | ||||||
≤2.3 | 1099 (50.0) | 241 (21.9) | 1.24 (0.92,1.66) | 0.154 | 1.28 (0.94, 1.74) | 0.116 |
>2.3 | 1099 (50.0) | 261 (23.7) | 1.27 (0.95, 1.71) | 0.111 | 1.11 (0.82, 1.52) | 0.500 |
p for interaction | 0.898 | 0.635 |
N | Case (%) | OR (95%CI) | p | pinteraction | ||
---|---|---|---|---|---|---|
Age, years | Magnesium, µg/dL | |||||
≤60 | ≤2673.2 | 645 | 169 (26.2) | 1.34 (0.92, 1.94) | 0.128 | 0.201 |
>2673.2 | 712 | 64 (9.0) | 0.91 (0.54, 1.53) | 0.727 | ||
>60 | ≤2673.2 | 454 | 232 (51.1) | 1.48 (1.02, 2.16) | 0.039 | 0.332 |
>2673.2 | 387 | 37 (9.6) | 0.80 (0.38, 1.70) | 0.567 | ||
Gender | ||||||
Men | ≤2673.2 | 345 | 152 (44.1) | 1.92 (1.20, 3.07) | 0.006 | 0.073 |
>2673.2 | 427 | 48 (11.2) | 0.95 (0.51, 1.78) | 0.870 | ||
Women | ≤2673.2 | 754 | 249 (33.0) | 1.16 (0.84, 1.61) | 0.358 | 0.383 |
>2673.2 | 672 | 53 (7.9) | 0.88 (0.49, 1.57) | 0.661 | ||
BMI, kg/m2 | ||||||
≤24 | ≤2673.2 | 488 | 157 (32.2) | 1.35 (0.90, 2.02) | 0.145 | 0.989 |
>2673.2 | 514 | 39 (7.6) | 1.26 (0.65, 2.46) | 0.491 | ||
>24 | ≤2673.2 | 611 | 244 (40.0) | 1.49 (1.05, 2.10) | 0.024 | 0.017 |
>2673.2 | 585 | 62 (10.6) | 0.70 (0.41, 1.21) | 0.198 |
N | Case (%) | OR (95%CI) | p | pinteraction | ||
---|---|---|---|---|---|---|
Age, years | Copper, µg/dL | |||||
≤60 | ≤132.1 | 655 | 149 (22.7) | 1.48 (1.01, 2.12) | 0.046 | 0.054 |
>132.1 | 702 | 84 (11.9) | 0.82 (0.51, 1.30) | 0.393 | ||
>60 | ≤132.1 | 444 | 222 (50.0) | 1.73 (1.18, 2.53) | 0.005 | 0.016 |
>132.1 | 397 | 47 (11.8) | 0.63 (0.33, 1.23) | 0.175 | ||
Gender | ||||||
Men | ≤132.1 | 408 | 153 (37.5) | 1.90 (1.22, 2.97) | 0.004 | 0.029 |
>132.1 | 364 | 47 (12.9) | 0.75 (0.39, 1.45) | 0.398 | ||
Women | ≤132.1 | 691 | 218 (31.5) | 1.42 (1.01, 1.99) | 0.046 | 0.042 |
>132.1 | 735 | 84 (11.4) | 0.78 (0.49, 1.24) | 0.288 | ||
BMI, kg/m2 | ||||||
≤24 | ≤132.1 | 483 | 152 (31.5) | 1.71 (1.13, 2.59) | 0.011 | 0.079 |
>132.1 | 519 | 44 (8.5) | 0.82 (0.43, 1.54) | 0.528 | ||
>24 | ≤132.1 | 616 | 219 (35.6) | 1.54 (1.08, 2.19) | 0.017 | 0.007 |
>132.1 | 580 | 87 (15.0) | 0.69 (0.43, 1.11) | 0.125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, T.; Wan, S.; Shi, J.; Xu, T.; Wang, L.; Guan, Y.; Luo, J.; Luo, Y.; Sun, M.; An, P.; et al. Antioxidant Minerals Modified the Association between Iron and Type 2 Diabetes in a Chinese Population. Nutrients 2024, 16, 335. https://doi.org/10.3390/nu16030335
Xu T, Wan S, Shi J, Xu T, Wang L, Guan Y, Luo J, Luo Y, Sun M, An P, et al. Antioxidant Minerals Modified the Association between Iron and Type 2 Diabetes in a Chinese Population. Nutrients. 2024; 16(3):335. https://doi.org/10.3390/nu16030335
Chicago/Turabian StyleXu, Teng, Sitong Wan, Jiaxin Shi, Tiancheng Xu, Langrun Wang, Yiran Guan, Junjie Luo, Yongting Luo, Mingyue Sun, Peng An, and et al. 2024. "Antioxidant Minerals Modified the Association between Iron and Type 2 Diabetes in a Chinese Population" Nutrients 16, no. 3: 335. https://doi.org/10.3390/nu16030335
APA StyleXu, T., Wan, S., Shi, J., Xu, T., Wang, L., Guan, Y., Luo, J., Luo, Y., Sun, M., An, P., & He, J. (2024). Antioxidant Minerals Modified the Association between Iron and Type 2 Diabetes in a Chinese Population. Nutrients, 16(3), 335. https://doi.org/10.3390/nu16030335