Gluten and Wheat in Women’s Health: Beyond the Gut
Abstract
:1. Wheat and Gluten
2. Wheat as a Trigger of Immune Response: The Leaky Gut
3. What Is a Gluten-Free Diet?
4. Methods
5. Celiac Disease
6. Non-Celiac Gluten/Wheat Sensitivity (NCGWS) and Irritable Bowel Syndrome (IBS)
7. Fibromyalgia
Authors | Type of Study | Duration of GFD | Population | Methods | Results | Authors’ Conclusions |
---|---|---|---|---|---|---|
Rodrigo L. et al., 2013 [68] | Prospective study | 1 year GFD observation | 229 patients: 125 (54%) with IBS, 104 were female (84%); 104 (46%) with IBS + FM, 93 were female (89%), 7 of the 104 IBS + FM patients had CD (7%) | Parameters assessed at baseline and after 1 year of GFD. Score examined: tender points (TPs) test, Fibromyalgia Impact Questionnaire (FIQ), Health Assessment Questionnaire (HAQ), Short Form Health Survey (SF-36), Visual Analogue Scales (VAS). Any changes in gastrointestinal complaints, pain and tiredness, drug prescriptions, and anti-tTG2 serum levels were recorded | At baseline, all patients had poor QoL and VAS scores, a high number of TPs and drug prescriptions, and increased tTG levels. After 1 year of GFD, all outcome measures significantly improved, with a decrease of 51–60% in TPs, FIQ, HAQ, and VAS scales, and in the number of prescribed drugs, accompanied by an increase of 48–60% in SF-36 Physical and Mental Component Summary scores, and a decrease in tTG2 to normal values | The adherence to a GFD by CD-related IBS/FMS patients can simultaneously improve CD and IBS/FMS symptoms |
Rodrigo L. et al., 2014 [64] | Case-control study | 1 year GFD observation | 97 IBS + FMS females: 58 had duodenal intraepithelial lymphocytosis (Marsh stage 1), and 39 had a normal duodenal biopsy (Marsh stage 0) | Parameters assessed at baseline and after 1 year of GFD. Score examined: Fibromyalgia Impact Questionnaire (FIQ), the Health Assessment Questionnaire (HAQ), tender points (TPs), the Short Form Health Survey (SF-36), and the Visual Analogue Scales (VAS) for gastrointestinal complaints, pain, and fatigue | At baseline, all patients had a poor QoL and high VAS scores. After one year on a GFD, all outcome measures were better in the Marsh stage 1 group, with a mean decrease of 26 to 29% in the TPs, FIQ, HAQ and VAS scales, accompanied by an increase of 27% in the SF-36 physical and mental component scores. However, in the IBS plus FMS/Marsh stage 0 group, the GFD had almost no effect | GFD in the duodenal intraepithelial lymphocytosis-related IBS/FMS subgroup of patients can produce a slight but significant improvement in all symptoms |
Isasi C. et al., 2014 [69] | Clinical report | 5 to 31 months of GFD | 20 patients with FM and duodenal intraepithelial lymphocytosis. CD was ruled out; they had clinical response to a GFD | Clinical response was defined as the achievement of at least one of the following scenarios: remission of FM pain criteria, return to work, return to normal life as judged by the patient, or opioid discontinuation | Eleven patients carried either the DQ2 or DQ8 heterodimers. Seven patients had only one allele of the DQ2 heterodimer. Two patients did not carry either DQ2 alleles or DQ8. The mean follow-up period for the gluten-free diet was 16.4 months. The level of chronic pain improved for all patients; for 15 patients, chronic widespread pain was no longer present. Fifteen returned to work or normal life. Three patients discontinued opioid treatment Fatigue, gastrointestinal symptoms, migraine, and depression also improved. Patients with oral aphthae, went into complete remission for psoriatic arthritis and undifferentiated spondylarthritis | Remarkable clinical improvement can be achieved with a GFD in patients with FM, suggesting that NCGWS may be an underlying treatable cause of FM syndrome. The presence of intraepithelial lymphocytosis in the duodenal biopsies of these selected patients further supports this hypothesis |
Slim M. et al., 2017 [65] | Randomized clinical trial | FM patients were randomly allocated to receive a GFD or a HCD over a 24-week period | 75 adults diagnosed with FM. GFD (n = 35) HCD (n = 40) | Primary outcome: change in the number of gluten sensitivity symptoms. Secondary outcomes evaluated body mass index, Revised Fibromyalgia Impact Questionnaire, Pittsburgh Sleep Quality Index, Brief Pain Inventory, Beck Depression Inventory-II, State-Trait Anxiety Inventory, Short-Form Health Survey, Patient Global Impression Scale of Severity, Patient Global Impression Scale of Improvement, and adverse events | Gluten sensitivity symptoms did not differ significantly between the GFD and HCD (GFD −2.44 ± 0.40; HCD −2.10 ± 0.37; p = 0.343). Two dietary interventions did not differ in any of the remaining measured secondary outcomes (FM-related symptoms questionnaires). Both dietary interventions were well tolerated | GFD and HCD have both beneficial outcomes in reducing gluten sensitivity symptoms and other secondary outcomes. GFD was not superior to HCD in reducing the number of gluten sensitivity symptoms or secondary outcomes |
8. Autoimmune Thyroiditis
Authors | Type of Study | Duration of GFD | Population | Methods | Results | Authors Conclusions |
---|---|---|---|---|---|---|
Poblocki J. et al., 2021 [74] | Randomized clinical trial | 12 months of GFD vs. any dietary treatment | 62 Caucasian women with CAT. GFDG (n = 31); CG (n = 31) | Serum concentrations of TSH, ft3, ft4, anti-TPO, and anti-TG2 were determined in all patients at baseline, after 3, 6, and 12 months of observation | No differences were found in anti-TPO and anti-TG antibodies or ft3 and ft4 levels, except a significant reduction in TSH (p < 0.044) levels in the GFDG. Analysis between appointments presented no significant differences in changes in concentrations of anti-TPO, anti-TG, or ft3, but after analyzing the changes in the median concentration of the tested blood indices, a significance was noticed in TSH (p = 0.039) and fT4 (p = 0.022). An analysis of changes in the concentration of the studied parameters after logarithmic transformation was also performed, which showed the improvement in anti-TG, TSH, and ft4 at 3, 6, and 12 months of the intervention | There are no clear indications to routinely follow a GFD because of CAT, and it is necessary to perform more studies to assess if CAT patients achieve the benefits of following a GFD |
Krysiak R. et al., 2019 [73] | Prospective nonrandomized study | 6 months of GFD vs. any dietary treatment | 34 women with CAT but euthyroid. GFDG n = 16, CG n = 18. Incidentally found that positive anti-tissue transglutaminase antibodies without clinical symptoms of coeliac disease was an inclusion criteria | Serum titers of anti-TPO and anti-TG, TSH, ft3, ft4, 25-hydroxyvitamin D were measured. Based on thyrotropin and free thyroid hormone levels, Jostel’s thyrotropin index, the SPINA-GT index, and the SPINA-GD index were calculated. | CG: serum TSH and ft3, ft4 levels, serum 25-hydroxyvitamin D level, and calculated indices remained at the similar levels. GFDG had reduced thyroid antibody titers, slightly increased 25-hydroxyvitamin D levels and the SPINA-GT index. In GFDG, the impact on TPOAb and TgAb titers correlated with the changes in the SPINA-GT index, whereas the impact on TPOAb correlated with the changes in 25-hydroxyvitamin D levels | The GFD reduced serum titers of TPOAb and TGAb in euthyroid women with CAT, which correlated with the increase in the SPINA-GT index. This finding indicates that the GFD may bring clinical benefits to euthyroid women with CAT, who, because of markedly elevated thyroid antibody titers, are at high risk of the development of hypothyroidism |
Krysiak R. et al., 2022 [75] | Pilot study, case-control study | 12 months of GFD + vit D supplementation vs. no dietary intervention + vit D supplementation | 31 NCGWS woman with CAT vs. 31 women matched for thyroid antibody titers | Anti-TPO, Anti-TG, plasmatic TSH, ft3, ft4, prolactin, 25-hydroxyvitamin D, and CRP were measured at entry and after a 6-month follow-up | In the CG, a significant decrease in anti-TPO (p = 0.0017) and anti-TG (p = 0.0056) level, and an increase in vitamin D concentration (p = 0.0006), were registered, compared with the GFDG. Although the typical diet showed better results in improving anti-TPO anti-TG and vitamin D than the GFD, in both groups a significant improvement in these parameters was observed. No changes were observed in the case of TSH, fT3, and fT4 in the groups and between them | The obtained results suggest that GFD may impair beneficial effects of exogenous vitamin D in individuals with CAT |
9. Endometriosis
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ye, L.; Zheng, W.; Li, X.; Han, W.; Shen, J.; Lin, Q.; Hou, L.; Liao, L.; Zeng, X. The Role of Gluten in Food Products and Dietary Restriction: Exploring the Potential for Restoring Immune Tolerance. Foods 2023, 12, 4179. [Google Scholar] [CrossRef] [PubMed]
- Veraverbeke, W.S.; Delcour, J.A. Wheat Protein Composition and Properties of Wheat Glutenin in Relation to Breadmaking Functionality. Crit. Rev. Food Sci. Nutr. 2002, 42, 179–208. [Google Scholar] [CrossRef] [PubMed]
- Caio, G.; Lungaro, L.; Segata, N.; Guarino, M.; Zoli, G.; Volta, U.; De Giorgio, R. Effect of Gluten-Free Diet on Gut Microbiota Composition in Patients with Celiac Disease and Non-Celiac Gluten/Wheat Sensitivity. Nutrients 2020, 12, 1832. [Google Scholar] [CrossRef] [PubMed]
- Geisslitz, S.; Shewry, P.; Brouns, F.; America, A.H.P.; Caio, G.P.I.; Daly, M.; D’Amico, S.; De Giorgio, R.; Gilissen, L.; Grausgruber, H.; et al. Wheat ATIs: Characteristics and Role in Human Disease. Front. Nutr. 2021, 8, 667370. [Google Scholar] [CrossRef] [PubMed]
- Clemente, M.G.; De Virgiliis, S.; Kang, J.S.; Macatagney, R.; Musu, M.P.; Di Pierro, M.R.; Drago, S.; Congia, M.; Fasano, A. Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function. Gut 2003, 52, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Junker, Y.; Zeissig, S.; Kim, S.-J.; Barisani, D.; Wieser, H.; Leffler, D.A.; Zevallos, V.; Libermann, T.A.; Dillon, S.; Freitag, T.L.; et al. Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4. J. Exp. Med. 2012, 209, 2395–2408. [Google Scholar] [CrossRef] [PubMed]
- Biesiekierski, J.R.; Peters, S.L.; Newnham, E.D.; Rosella, O.; Muir, J.G.; Gibson, P.R. No effects of gluten in patients with self-reported non-celiac gluten sensitivity after dietary reduction of fermentable, poorly absorbed, short-chain carbohydrates. Gas-troenterology 2013, 145, 320–328.e3. [Google Scholar] [CrossRef] [PubMed]
- Volta, U.; Caio, G.; Karunaratne, T.B.; Alaedini, A.; De Giorgio, R. Non-coeliac gluten/wheat sensitivity: Advances in knowledge and relevant questions. Expert Rev. Gastroenterol. Hepatol. 2017, 11, 9–18. [Google Scholar] [CrossRef]
- Fasano, A. All disease begins in the (leaky) gut: Role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Research 2020, 9, 69. [Google Scholar] [CrossRef]
- El Asmar, R.; Panigrahi, P.; Bamford, P.; Berti, I.; Not, T.; Coppa, G.V.; Catassi, C.; Fasano, A. Host-dependent zonulin secretion causes the impairment of the small intestine barrier function after bacterial exposure. Gastroenterology 2002, 123, 1607–1615. [Google Scholar] [CrossRef]
- Drago, S.; El Asmar, R.; Di Pierro, M.; Grazia Clemente, M.; Tripathi, A.; Sapone, A.; Thakar, M.; Iacono, G.; Carroccio, A.; D’Agate, C.; et al. Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand. J. Gastroenterol. 2006, 41, 408–419. [Google Scholar] [CrossRef] [PubMed]
- Europe Gluten-Free Food Market—Analysis, Growth, Share. Available online: https://www.mordorintelligence.com/industry-reports/europe-gluten-free-foods-beverages-market-industry (accessed on 24 October 2023).
- Fry, L.; Madden, A.M.; Fallaize, R. An investigation into the nutritional composition and cost of gluten-free versus regular food products in the UK. J. Hum. Nutr. Diet. 2018, 31, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, N.; Agostoni, C. Nutritional aspects of gluten-free products. J. Sci. Food Agric. 2015, 95, 2380–2385. [Google Scholar] [CrossRef] [PubMed]
- Vici, G.; Belli, L.; Biondi, M.; Polzonetti, V. Gluten free diet and nutrient deficiencies: A review. Clin. Nutr. 2016, 35, 1236–1241. [Google Scholar] [CrossRef] [PubMed]
- Niland, B.; Cash, B.D. Health Benefits and Adverse Effects of a Gluten-Free Diet in Non–Celiac Disease Patients. Gastroenterol. Hepatol. 2018, 14, 82–91. [Google Scholar]
- Cabrera-Chávez, F.; Dezar, G.V.A.; Islas-Zamorano, A.P.; Espinoza-Alderete, J.G.; Vergara-Jiménez, M.J.; Magaña-Ordorica, D.; Ontiveros, N. Prevalence of Self-Reported Gluten Sensitivity and Adherence to a Gluten-Free Diet in Argentinian Adult Population. Nutrients 2017, 9, 81. [Google Scholar] [CrossRef]
- Ontiveros, N.; Rodríguez-Ontiveros, N.; Rodríguez-Bellegarrigue, C.I.; Galicia-Rodríguez, G.; Vergara-Jiménez, M.D.J.; Zepeda-Gómez, E.M.; Arámburo-Galvez, J.G.; Gracia-Valenzuela, M.H.; Cabrera-Chávez, F. Prevalence of Self-Reported Glu-ten-Related Disorders and Adherence to a Gluten-Free Diet in Salvadoran Adult Population. Int. J. Environ. Res. Public. Health 2018, 15, 786. [Google Scholar] [CrossRef]
- Christoph, M.J.; Larson, N.; Hootman, K.C.; Miller, J.M.; Neumark-Sztainer, D. Who Values Gluten-Free? Dietary Intake, Be-haviors, and Sociodemographic Characteristics of Young Adults Who Value Gluten-Free Food. J. Acad. Nutr. Diet. 2018, 118, 1389–1398. [Google Scholar] [CrossRef]
- Perrin, L.; Allès, B.; Buscail, C.; Ravel, C.; Hercberg, S.; Julia, C.; Kesse-Guyot, E. Gluten-free diet in French adults without coeliac disease: Sociodemographic characteristics, motives and dietary profile. Br. J. Nutr. 2019, 122, 231–239. [Google Scholar] [CrossRef]
- Palma, G.D.; Nadal, I.; Collado, M.C.; Sanz, Y. Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects. Br. J. Nutr. 2009, 102, 1154–1160. [Google Scholar] [CrossRef]
- Caio, G.; Volta, U.; Sapone, A.; Leffler, D.A.; De Giorgio, R.; Catassi, C.; Fasano, A. Celiac disease: A comprehensive current review. BMC Med. 2019, 17, 142. [Google Scholar] [CrossRef] [PubMed]
- Lionetti, E.; Pjetraj, D.; Gatti, S.; Catassi, G.; Bellantoni, A.; Boffardi, M.; Cananzi, M.; Cinquetti, M.; Francavilla, R.; Malamisura, B.; et al. Prevalence and detection rate of celiac disease in Italy: Results of a SIGENP multicenter screening in school-age children. Dig. Liver Dis. 2023, 55, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Arora, A.; Strand, T.A.; Leffler, D.A.; Catassi, C.; Green, P.H.; Kelly, C.P.; Ahuja, V.; Makharia, G.K. Global Prevalence of Celiac Disease: Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2018, 16, 823–836. [Google Scholar] [CrossRef] [PubMed]
- Mäki, M.; Collin, P. Coeliac disease. Lancet 1997, 349, 1755–1759. [Google Scholar] [CrossRef] [PubMed]
- Volta, U.; Caio, G.; Tovoli, F.; De Giorgio, R. Gut-liver axis: An immune link between celiac disease and primary biliary cirrhosis. Expert Rev. Gastroenterol. Hepatol. 2013, 7, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Caio, G.; De Giorgio, R.; Ursini, F.; Fanaro, S.; Volta, U. Prevalence of celiac disease serological markers in a cohort of Italian rheumatological patients. Gastroenterol. Hepatol. Bed Bench 2018, 11, 244–249. [Google Scholar] [PubMed]
- Caio, G.; De Giorgio, R.; Venturi, A.; Giancola, F.; Latorre, R.; Boschetti, E.; Serra, M.; Ruggeri, E.; Volta, U. Clinical and immu-nological relevance of anti-neuronal antibodies in celiac disease with neurological manifestations. Gastroenterol. Hepatol. Bed Bench 2015, 8, 146–152. [Google Scholar]
- Volta, U.; Caio, G.; Stanghellini, V.; De Giorgio, R. The changing clinical profile of celiac disease: A 15-year experience (1998–2012) in an Italian referral center. BMC Gastroenterol. 2014, 14, 194. [Google Scholar] [CrossRef]
- Jacobsson, L.R.; Hallert, C.; Milberg, A.; Friedrichsen, M. Coeliac disease—Women’s experiences in everyday life. J. Clin. Nurs. 2012, 21, 3442–3450. [Google Scholar] [CrossRef]
- Hallert, C.; Sandlund, O.; Broqvist, M. Perceptions of health-related quality of life of men and women living with coeliac disease. Scand. J. Caring Sci. 2003, 17, 301–307. [Google Scholar] [CrossRef]
- Ciacci, C.; Iavarone, A.; Siniscalchi, M.; Romano, R.; De Rosa, A. Psychological dimensions of celiac disease: Toward an integrated approach. Dig. Dis. Sci. 2002, 47, 2082–2087. [Google Scholar] [CrossRef]
- Lasa, J.S.; Zubiaurre, I.; Soifer, L.O. RISK OF INFERTILITY IN PATIENTS WITH CELIAC DISEASE: A meta-analysis of observa-tional studies. Arq. Gastroenterol. 2014, 51, 144–150. [Google Scholar] [CrossRef]
- Khoshbaten, M.; Rostami Nejad, M.; Farzady, L.; Sharifi, N.; Hashemi, S.H.; Rostami, K. Fertility disorder associated with celiac disease in males and females: Fact or fiction? J. Obstet. Gynaecol. Res. 2011, 37, 1308–1312. [Google Scholar] [CrossRef]
- Meloni, G.F.; Dessole, S.; Vargiu, N.; Tomasi, P.A.; Musumeci, S. The prevalence of coeliac disease in infertility. Hum. Reprod. 1999, 14, 2759–2761. [Google Scholar] [CrossRef]
- Collin, P.; Vilska, S.; Heinonen, P.K.; Hällström, O.; Pikkarainen, P. Infertility and coeliac disease. Gut 1996, 39, 382–384. [Google Scholar] [CrossRef]
- Shah, S.; Leffler, D. Celiac disease: An underappreciated issue in women’s health. Womens Health 2010, 6, 753–766. [Google Scholar] [CrossRef]
- Tursi, A.; Giorgetti, G.; Brandimarte, G.; Elisei, W. Effect of Gluten-Free Diet on Pregnancy Outcome in Celiac Disease Patients with Recurrent Miscarriages. Dig. Dis. Sci. 2008, 53, 2925–2928. [Google Scholar] [CrossRef]
- Lungaro, L.; Manza, F.; Costanzini, A.; Barbalinardo, M.; Gentili, D.; Caputo, F.; Guarino, M.; Zoli, G.; Volta, U.; De Giorgio, R.; et al. Osteoporosis and Celiac Disease: Updates and Hidden Pitfalls. Nutrients 2023, 15, 1089. [Google Scholar] [CrossRef]
- Verma, A.; Lata, K.; Khanna, A.; Singh, R.; Sachdeva, A.; Jindal, P.; Yadav, S. Study of effect of gluten-free diet on vitamin D levels and bone mineral density in celiac disease patients. J. Fam. Med. Prim. Care 2022, 11, 603–607. [Google Scholar] [CrossRef]
- Valdimarsson, T.; Löfman, O.; Toss, G.; Ström, M. Reversal of osteopenia with diet in adult coeliac disease. Gut 1996, 38, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Ludvigsson, J.F.; Bai, J.C.; Biagi, F.; Card, T.R.; Ciacci, C.; Ciclitira, P.J.; Green, P.H.R.; Hadjivassiliou, M.; Holdoway, A.; van Heel, D.A.; et al. Diagnosis and management of adult coeliac disease: Guidelines from the British Society of Gastroenterology. Gut 2014, 63, 1210–1228. [Google Scholar] [CrossRef] [PubMed]
- Itzlinger, A.; Branchi, F.; Elli, L.; Schumann, M. Gluten-Free Diet in Celiac Disease—Forever and for All? Nutrients 2018, 10, 1796. [Google Scholar] [CrossRef]
- Abdi, F.; Zuberi, S.; Blom, J.-J.; Armstrong, D.; Pinto-Sanchez, M.I. Nutritional Considerations in Celiac Disease and Non-Celiac Gluten/Wheat Sensitivity. Nutrients 2023, 15, 1475. [Google Scholar] [CrossRef] [PubMed]
- Leffler, D.A.; Dennis, M.; Hyett, B.; Kelly, E.; Schuppan, D.; Kelly, C.P. Etiologies and predictors of diagnosis in nonresponsive celiac disease. Clin. Gastroenterol. Hepatol. 2007, 5, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Van Megen, F.; Skodje, G.I.; Stendahl, M.; Veierød, M.B.; Lundin, K.E.A.; Henriksen, C. High disease burden in treated celiac patients—A web-based survey. Scand. J. Gastroenterol. 2021, 56, 882–888. [Google Scholar] [CrossRef]
- Husby, S.; Bai, J.C. Follow-up of Celiac Disease. Gastroenterol. Clin. N. Am. 2019, 48, 127–136. [Google Scholar] [CrossRef]
- Catassi, C.; Elli, L.; Bonaz, B.; Bouma, G.; Carroccio, A.; Castillejo, G.; Cellier, C.; Cristofori, F.; de Magistris, L.; Dolinsek, J.; et al. Diagnosis of Non-Celiac Gluten Sensitivity (NCGS): The Salerno Experts’ Criteria. Nutrients 2015, 7, 4966–4977. [Google Scholar] [CrossRef]
- Reese, I.; Schäfer, C.; Kleine-Tebbe, J.; Ahrens, B.; Bachmann, O.; Ballmer-Weber, B.; Beyer, K.; Bischoff, S.C.; Blümchen, K.; Dölle, S.; et al. Non-celiac gluten/wheat sensitivity (NCGS)—A currently undefined disorder without validated diagnostic criteria and of unknown prevalence. Allergo J. Int. 2018, 27, 147–151. [Google Scholar] [CrossRef]
- Sergi, C.; Villanacci, V.; Carroccio, A. Non-celiac wheat sensitivity: Rationality and irrationality of a gluten-free diet in individuals affected with non-celiac disease: A review. BMC Gastroenterol. 2021, 21, 5. [Google Scholar] [CrossRef]
- Carroccio, A.; Soresi, M.; D’Alcamo, A.; Sciumè, C.; Iacono, G.; Geraci, G.; Brusca, I.; Seidita, A.; Adragna, F.; Carta, M.; et al. Risk of low bone mineral density and low body mass index in patients with non-celiac wheat-sensitivity: A prospective observation study. BMC Med. 2014, 12, 230. [Google Scholar] [CrossRef]
- Mansueto, P.; Soresi, M.; Candore, G.; Garlisi, C.; Fayer, F.; Gambino, C.M.; La Blasca, F.; Seidita, A.; D’Alcamo, A.; Lo Sasso, B.; et al. Autoimmunity Features in Patients with Non-Celiac Wheat Sensitivity. Am. J. Gastroenterol. 2021, 116, 1015–1023. [Google Scholar] [CrossRef] [PubMed]
- Sperber, A.D.; Bangdiwala, S.I.; Drossman, D.A.; Ghoshal, U.C.; Simren, M.; Tack, J.; Whitehead, W.E.; Dumitrascu, D.L.; Fang, X.; Fukudo, S.; et al. Worldwide Prevalence and Burden of Functional Gastrointestinal Disorders, Results of Rome Foundation Global Study. Gastroenterology 2021, 160, 99–114. [Google Scholar] [CrossRef] [PubMed]
- Drossman, D.A. Functional Gastrointestinal Disorders: History, Pathophysiology, Clinical Features and Rome IV. Gastroenter-ology 2016, 150, 1262–1279. [Google Scholar] [CrossRef]
- Altobelli, E.; Del Negro, V.; Angeletti, P.M.; Latella, G. Low-FODMAP Diet Improves Irritable Bowel Syndrome Symptoms: A Meta-Analysis. Nutrients 2017, 9, 940. [Google Scholar] [CrossRef] [PubMed]
- Varjú, P.; Farkas, N.; Hegyi, P.; Garami, A.; Szabó, I.; Illés, A.; Solymár, M.; Vincze, Á.; Balaskó, M.; Pár, G.; et al. Low fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) diet improves symptoms in adults suffering from irritable bowel syndrome (IBS) compared to standard IBS diet: A meta-analysis of clinical studies. PLoS ONE 2017, 12, e0182942. [Google Scholar] [CrossRef] [PubMed]
- Haskå, L.; Nyman, M.; Andersson, R. Distribution and characterisation of fructan in wheat milling fractions. J. Cereal Sci. 2008, 48, 768–774. [Google Scholar] [CrossRef]
- Biesiekierski, J.R.; Rosella, O.; Rose, R.; Liels, K.; Barrett, J.S.; Shepherd, S.J.; Gibson, P.R.; Muir, J.G. Quantification of fructans, galacto-oligosacharides and other short-chain carbohydrates in processed grains and cereals. J. Hum. Nutr. Diet. 2011, 24, 154–176. [Google Scholar] [CrossRef]
- Catassi, C.; Alaedini, A.; Bojarski, C.; Bonaz, B.; Bouma, G.; Carroccio, A.; Castillejo, G.; De Magistris, L.; Dieterich, W.; Di Liberto, D.; et al. The Overlapping Area of Non-Celiac Gluten Sensitivity (NCGS) and Wheat-Sensitive Irritable Bowel Syndrome (IBS): An Update. Nutrients 2017, 9, 1268. [Google Scholar] [CrossRef]
- Aziz, I.; Lewis, N.R.; Hadjivassiliou, M.; Winfield, S.N.; Rugg, N.; Kelsall, A.; Newrick, L.; Sanders, D.S. A UK study assessing the population prevalence of self-reported gluten sensitivity and referral characteristics to secondary care. Eur. J. Gastroenterol. Hepatol. 2014, 26, 33–39. [Google Scholar] [CrossRef]
- Volta, U.; Caio, G.; De Giorgio, R.; Henriksen, C.; Skodje, G.; Lundin, K.E. Non-celiac gluten sensitivity: A work-in-progress entity in the spectrum of wheat-related disorders. Best Pr. Res. Clin. Gastroenterol. 2015, 29, 477–491. [Google Scholar] [CrossRef]
- Macfarlane, G.J.; Kronisch, C.; Dean, L.E.; Atzeni, F.; Häuser, W.; Fluß, E.; Choy, E.; Kosek, E.; Amris, K.; Branco, J.; et al. EULAR revised recommendations for the management of fibromyalgia. Ann. Rheum. Dis. 2017, 76, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Aman, M.M.; Jason Yong, R.; Kaye, A.D.; Urman, R.D. Evidence-Based Non-Pharmacological Therapies for Fibromyalgia. Curr. Pain Headache Rep. 2018, 22, 33. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, L.; Blanco, I.; Bobes, J.; de Serres, F.J. Effect of one year of a gluten-free diet on the clinical evolution of irritable bowel syndrome plus fibromyalgia in patients with associated lymphocytic enteritis: A case-control study. Arthritis Res. Ther. 2014, 16, 421. [Google Scholar] [CrossRef] [PubMed]
- Slim, M.; Calandre, E.P.; Garcia-Leiva, J.M.; Rico-Villademoros, F.; Molina-Barea, R.; Rodriguez-Lopez, C.M.; Morillas-Arques, P. The Effects of a Gluten-free Diet Versus a Hypocaloric Diet Among Patients with Fibromyalgia Experiencing Gluten Sensitivity-like Symptoms: A Pilot, Open-Label Randomized Clinical Trial. J. Clin. Gastroenterol. 2017, 51, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Almirall, M.; Casellas, F.; Dot, J.; de Torres, I.; Segurola, H.; Marsal, S. Prevalence of non-coeliac gluten sensitivity and assessment of the response to gluten-free diet in a cohort of patients with fibromyalgia. Rheumatology 2023, 62, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Volta, U. Gluten-free diet in the management of patients with irritable bowel syndrome, fibromyalgia and lymphocytic enteritis. Arthritis Res. Ther. 2014, 16, 505. [Google Scholar] [CrossRef]
- Rodrigo, L.; Blanco, I.; Bobes, J.; de Serres, F.J. Clinical impact of a gluten-free diet on health-related quality of life in seven fi-bromyalgia syndrome patients with associated celiac disease. BMC Gastroenterol. 2013, 13, 157. [Google Scholar] [CrossRef]
- Isasi, C.; Colmenero, I.; Casco, F.; Tejerina, E.; Fernandez, N.; Serrano-Vela, J.I.; Castro, M.J.; Villa, L.F. Fibromyalgia and non-celiac gluten sensitivity: A description with remission of fibromyalgia. Rheumatol. Int. 2014, 34, 1607–1612. [Google Scholar] [CrossRef]
- Malandrini, S.; Trimboli, P.; Guzzaloni, G.; Virili, C.; Lucchini, B. What about TSH and Anti-Thyroid Antibodies in Patients with Autoimmune Thyroiditis and Celiac Disease Using a Gluten-Free Diet? A Systematic Review. Nutrients 2022, 14, 1681. [Google Scholar] [CrossRef]
- Lundin, K.E.A.; Wijmenga, C. Coeliac disease and autoimmune disease—Genetic overlap and screening. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 507–515. [Google Scholar] [CrossRef]
- Piticchio, T.; Frasca, F.; Malandrino, P.; Trimboli, P.; Carrubba, N.; Tumminia, A.; Vinciguerra, F.; Frittitta, L. Effect of gluten-free diet on autoimmune thyroiditis progression in patients with no symptoms or histology of celiac disease: A meta-analysis. Front. Endocrinol. 2023, 14, 1200372. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Szkróbka, W.; Okopień, B. The Effect of Gluten-Free Diet on Thyroid Autoimmunity in Drug-Naïve Women with Hashimoto’s Thyroiditis: A Pilot Study. Exp. Clin. Endocrinol. Diabetes 2019, 127, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Pobłocki, J.; Pańka, T.; Szczuko, M.; Telesiński, A.; Syrenicz, A. Whether a Gluten-Free Diet Should Be Recommended in Chronic Autoimmune Thyroiditis or Not?—A 12-Month Follow-Up. J. Clin. Med. 2021, 10, 3240. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Kowalcze, K.; Okopień, B. Gluten-free diet attenuates the impact of exogenous vitamin D on thyroid autoimmunity in young women with autoimmune thyroiditis: A pilot study. Scand. J. Clin. Lab. Investig. 2022, 82, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Abbott, R.D.; Sadowski, A.; Alt, A.G. Efficacy of the Autoimmune Protocol Diet as Part of a Multi-disciplinary, Supported Lifestyle Intervention for Hashimoto’s Thyroiditis. Cureus 2019, 11, e4556. [Google Scholar] [CrossRef] [PubMed]
- Melini, V.; Melini, F. Gluten-Free Diet: Gaps and Needs for a Healthier Diet. Nutrients 2019, 11, 170. [Google Scholar] [CrossRef]
- Taylor, H.S.; Kotlyar, A.M.; Flores, V.A. Endometriosis is a chronic systemic disease: Clinical challenges and novel innovations. Lancet 2021, 397, 839–852. [Google Scholar] [CrossRef]
- van Barneveld, E.; Manders, J.; van Osch, F.H.M.; van Poll, M.; Visser, L.; van Hanegem, N.; Lim, A.C.; Bongers, M.Y.; Leue, C. Depression, Anxiety, and Correlating Factors in Endometriosis: A Systematic Review and Meta-Analysis. J. Womens Health 2022, 31, 219–230. [Google Scholar] [CrossRef]
- O’Hara, R.; Rowe, H.; Fisher, J. Self-management in condition-specific health: A systematic review of the evidence among women diagnosed with endometriosis. BMC Womens Health 2019, 19, 80. [Google Scholar] [CrossRef]
- Nap, A.; de Roos, N. Endometriosis and the effects of dietary interventions: What are we looking for? Reprod. Fertil. 2022, 3, C14–C22. [Google Scholar] [CrossRef]
- Mazza, E.; Troiano, E.; Mazza, S.; Ferro, Y.; Abbinante, A.; Agneta, M.T.; Montalcini, T.; Pujia, A. The impact of endometriosis on dietary choices and activities of everyday life: A cross-sectional study. Front. Nutr. 2023, 10, 1273976. [Google Scholar] [CrossRef]
- Marziali, M.; Venza, M.; Lazzaro, S.; Lazzaro, A.; Micossi, C.; Stolfi, V.M. Gluten-free diet: A new strategy for management of painful endometriosis related symptoms? Minerva Chir. 2012, 67, 499–504. [Google Scholar]
- Brouns, F.; Van Haaps, A.; Keszthelyi, D.; Venema, K.; Bongers, M.; Maas, J.; Mijatovic, V. Diet associations in endometriosis: A critical narrative assessment with special reference to gluten. Front. Nutr. 2023, 10, 1166929. [Google Scholar] [CrossRef]
Authors | Type of Study | Duration of GFD | Population | Methods | Results | Author’s Conclusions |
---|---|---|---|---|---|---|
Marziali M. et al., 2012 [83] | Retrospective study | 1 year of GFD | 207 women with severe painful endometriosis-related symptoms | Baseline values of painful symptoms were assessed by Visual Analogue Scale (VAS) for dysmenorrhea, nonmenstrual pelvic pain, and dyspareunia, and re-evaluated after 12 months | At 12-month follow-up, 156 patients (75%) reported statistically significant change in painful symptoms (p < 0.005), 51 patients (25%) reported any improvement of symptoms. No patients reported worsening of pain. A considerable increase in scores for all domains of physical functioning, general health perception, vitality, social functioning, and mental health was observed in all patients (p < 0.005) | Painful symptoms of endometriosis decrease after 12 months of GFD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manza, F.; Lungaro, L.; Costanzini, A.; Caputo, F.; Volta, U.; De Giorgio, R.; Caio, G. Gluten and Wheat in Women’s Health: Beyond the Gut. Nutrients 2024, 16, 322. https://doi.org/10.3390/nu16020322
Manza F, Lungaro L, Costanzini A, Caputo F, Volta U, De Giorgio R, Caio G. Gluten and Wheat in Women’s Health: Beyond the Gut. Nutrients. 2024; 16(2):322. https://doi.org/10.3390/nu16020322
Chicago/Turabian StyleManza, Francesca, Lisa Lungaro, Anna Costanzini, Fabio Caputo, Umberto Volta, Roberto De Giorgio, and Giacomo Caio. 2024. "Gluten and Wheat in Women’s Health: Beyond the Gut" Nutrients 16, no. 2: 322. https://doi.org/10.3390/nu16020322
APA StyleManza, F., Lungaro, L., Costanzini, A., Caputo, F., Volta, U., De Giorgio, R., & Caio, G. (2024). Gluten and Wheat in Women’s Health: Beyond the Gut. Nutrients, 16(2), 322. https://doi.org/10.3390/nu16020322