Effects of Soy Protein Isolate on Fragile X Phenotypes in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mouse Husbandry
2.2. Study Design
2.3. Diets
2.4. Growth Anthropometrics
2.5. Actigraphy
2.6. Rotarod
2.7. Passive Avoidance
2.8. Tissue Collection
2.9. Amino Acid Analysis
2.10. Phytoestrogen Levels
2.11. Bone Density
3. Results
3.1. Postnatal Mortality
3.2. Phytoestrogen Levels in Diets
3.3. Growth Metrics
3.4. Activity Levels
3.5. Behavior
3.6. Blood Biomarkers
3.7. Organ Measurements
4. Discussion
4.1. Study Findings in Context of the Scientific Literature
4.2. Possible Mechanisms Underlying Dietary Soy-Induced Effects
4.3. Abnormal Pathology in Response to Purified Ingredient Casein Protein-Based Diet
4.4. Study Limitations
4.5. Clinical Applications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verkerk, A.J.; Pieretti, M.; Sutcliffe, J.S.; Fu, Y.H.; Kuhl, D.P.; Pizzuti, A.; Reiner, O.; Richards, S.; Victoria, M.F.; Zhang, F.P. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 1991, 65, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Oberlé, I.; Rousseau, F.; Heitz, D.; Kretz, C.; Devys, D.; Hanauer, A.; Boué, J.; Bertheas, M.F.; Mandel, J.L. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 1991, 252, 1097–1102. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.K.; Broadie, K. Multifarious Functions of the Fragile X Mental Retardation Protein. Trends Genet. 2017, 33, 703–714. [Google Scholar] [CrossRef]
- Hagerman, R.J.; Hagerman, P.J. Fragile X Syndrome: Diagnosis, Treatment, and Research, 3rd ed.; Johns Hopkins University Press: Baltimore, MD, USA, 2002; 540p. [Google Scholar]
- Loesch, D.Z.; Huggins, R.M.; Hoang, N.H. Growth in stature in fragile X families: A mixed longitudinal study. Am. J. Med. Genet. 1995, 58, 249–256. [Google Scholar] [CrossRef]
- De Vries, B.B.; Robinson, H.; Stolte-Dijkstra, I.; Tjon Pian Gi, C.V.; Dijkstra, P.F.; van Doorn, J.; Halley, D.J.; Oostra, B.A.; Turner, G.; Niermeijer, M.F. General overgrowth in the fragile X syndrome: Variability in the phenotypic expression of the FMR1 gene mutation. J. Med. Genet. 1995, 32, 764–769. [Google Scholar] [CrossRef] [PubMed]
- Raspa, M.; Bailey, D.B.; Bishop, E.; Holiday, D.; Olmsted, M. Obesity, food selectivity, and physical activity in individuals with fragile X syndrome. Am. J. Intellect. Dev. Disabil. 2010, 115, 482–495. [Google Scholar] [CrossRef]
- Kugel, R.B. Mental retardation, 1990: An overview. J. Okla. State. Med. Assoc. 1990, 83, 489–492. [Google Scholar]
- Farooqi, I.S. Genetic and hereditary aspects of childhood obesity. Best. Pract. Res. Clin. Endocrinol. Metab. 2005, 19, 359–374. [Google Scholar] [CrossRef] [PubMed]
- Flores-Dorantes, M.T.; Díaz-López, Y.E.; Gutiérrez-Aguilar, R. Environment and Gene Association with Obesity and Their Impact on Neurodegenerative and Neurodevelopmental Diseases. Front. Neurosci. 2020, 14, 863. [Google Scholar] [CrossRef]
- Westmark, C.J.; Filon, M.J.; Maina, P.; Steinberg, L.I.; Ikonomidou, C.; Westmark, P.R. Effects of Soy-Based Infant Formula on Weight Gain and Neurodevelopment in an Autism Mouse Model. Cells 2022, 11, 1350. [Google Scholar] [CrossRef]
- Pietropaolo, S.; Goubran, M.G.; Joffre, C.; Aubert, A.; Lemaire-Mayo, V.; Crusio, W.E.; Layé, S. Dietary supplementation of omega-3 fatty acids rescues fragile X phenotypes in Fmr1-Ko mice. Psychoneuroendocrinology 2014, 49, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Dong, Z.; Shang, Q.; Zhao, H.; Wang, L.; Guo, C.; Gao, F.; Zhang, L.; Wang, Q. Pdcd4 Is Involved in the Formation of Stress Granule in Response to Oxidized Low-Density Lipoprotein or High-Fat Diet. PLoS ONE 2016, 11, e0159568. [Google Scholar] [CrossRef] [PubMed]
- Nolan, S.O.; Hodges, S.L.; Okoh, J.T.; Binder, M.S.; Lugo, J.N. Prenatal High-Fat Diet Rescues Communication Deficits in Fmr1 Mutant Mice in a Sex-Specific Manner. Dev. Neurosci. 2020, 42, 94–104. [Google Scholar] [CrossRef]
- Westmark, P.R.; Gutierrez, A.; Gholston, A.K.; Wilmer, T.M.; Westmark, C.J. Preclinical testing of the ketogenic diet in fragile X mice. Neurochem. Int. 2020, 134, 104687. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, D.; Garg, D.; Sharma, S. Emerging Role of the Ketogenic Dietary Therapies beyond Epilepsy in Child Neurology. Ann. Indian. Acad. Neurol. 2021, 24, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Nolan, S.O.; Hodges, S.L.; Binder, M.S.; Smith, G.D.; Okoh, J.T.; Jefferson, T.S.; Escobar, B.; Lugo, J.N. Dietary rescue of adult behavioral deficits in the Fmr1 knockout mouse. PLoS ONE 2022, 17, e0262916. [Google Scholar] [CrossRef]
- Schiavi, S.; Carbone, E.; Melancia, F.; Buzzelli, V.; Manduca, A.; Campolongo, P.; Pallottini, V.; Trezza, V. Perinatal supplementation with omega-3 fatty acids corrects the aberrant social and cognitive traits observed in a genetic model of autism based on FMR1 deletion in rats. Nutr. Neurosci. 2022, 25, 898–911. [Google Scholar] [CrossRef]
- Abolghasemi, A.; Carullo, M.P.; Aguilera, E.C.; Laroui, A.; Plantefeve, R.; Rojas, D.; Benachenhou, S.; Ramírez, M.V.; Proteau-Lemieux, M.; Lepage, J.F.; et al. Alteration of Fatty Acid Profile in Fragile X Syndrome. Int. J. Mol. Sci. 2022, 23, 10815. [Google Scholar] [CrossRef]
- Westmark, P.R.; Gholston, A.K.; Swietlik, T.J.; Maganti, R.K.; Westmark, C.J. Ketogenic Diet Affects Sleep Architecture in C57BL/6J Wild Type and Fragile X Mice. Int. J. Mol. Sci. 2023, 24, 14460. [Google Scholar] [CrossRef]
- Alam, S.; Westmark, C.J.; McCullagh, E.A. Diet in treatment of autism spectrum disorders. Front. Neurosci. 2022, 16, 1031016. [Google Scholar] [CrossRef]
- Barnhill, K.; Devlin, M.; Moreno, H.T.; Potts, A.; Richardson, W.; Schutte, C.; Hewitson, L. Brief Report: Implementation of a Specific Carbohydrate Diet for a Child with Autism Spectrum Disorder and Fragile X Syndrome. J. Autism Dev. Disord. 2020, 50, 1800–1808. [Google Scholar] [CrossRef]
- Westmark, C.J. Parental Reports on Early Autism Behaviors in Their Children with Fragile X Syndrome as a Function of Infant Feeding. Nutrients 2021, 13, 2888. [Google Scholar] [CrossRef] [PubMed]
- Westmark, C.J. A hypothesis regarding the molecular mechanism underlying dietary soy-induced effects on seizure propensity. Front. Neurol. 2014, 5, 169. [Google Scholar] [CrossRef] [PubMed]
- Westmark, C.J.; Westmark, P.R.; Malter, J.S. Soy-based diet exacerbates seizures in mouse models of neurological disease. J. Alzheimers Dis. 2013, 33, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Gould, J.M.; Smith, P.J.; Airey, C.J.; Mort, E.J.; Airey, L.E.; Warricker, F.D.M.; Pearson-Farr, J.E.; Weston, E.C.; Gould, P.J.W.; Semmence, O.G.; et al. Mouse maternal protein restriction during preimplantation alone permanently alters brain neuron proportion and adult short-term memory. Proc. Natl. Acad. Sci. USA 2018, 115, E7398–E7407. [Google Scholar] [CrossRef]
- Weghofer, A.; Kim, A.; Barad, D.H.; Gleicher, N. The impact of androgen metabolism and FMR1 genotypes on pregnancy potential in women with dehydroepiandrosterone (DHEA) supplementation. Hum. Reprod. 2012, 27, 3287–3293. [Google Scholar] [CrossRef] [PubMed]
- Crawfurd, M.D. Severe mental handicap: Pathogenesis, treatment, and prevention. Br. Med. J. 1982, 285, 762–766. [Google Scholar] [CrossRef]
- Dansky, L.V.; Rosenblatt, D.S.; Andermann, E. Mechanisms of teratogenesis: Folic acid and antiepileptic therapy. Neurology 1992, 42, 32–42. [Google Scholar]
- Fleming, K.; Riser, D.K.; Kumari, D.; Usdin, K. Instability of the fragile X syndrome repeat in mice: The effect of age, diet and mutations in genes that affect DNA replication, recombination and repair proficiency. Cytogenet. Genome Res. 2003, 100, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Schaevitz, L.; Berger-Sweeney, J.; Ricceri, L. One-carbon metabolism in neurodevelopmental disorders: Using broad-based nutraceutics to treat cognitive deficits in complex spectrum disorders. Neurosci. Biobehav. Rev. 2014, 46, 270–284. [Google Scholar] [CrossRef] [PubMed]
- Dulman, R.S.; Auta, J.; Wandling, G.M.; Patwell, R.; Zhang, H.; Pandey, S.C. Persistence of cerebellar ataxia during chronic ethanol exposure is associated with epigenetic up-regulation of Fmr1 gene expression in rat cerebellum. Alcohol. Clin. Exp. Res. 2021, 45, 2006–2016. [Google Scholar] [CrossRef]
- Liu, Z.H.; Huang, T.; Smith, C.B. Lithium reverses increased rates of cerebral protein synthesis in a mouse model of fragile X syndrome. Neurobiol. Dis. 2012, 45, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Keil Stietz, K.P.; Valenzuela, A.E.; Klocke, C.R.; Silverman, J.L.; Puschner, B.; Pessah, I.N.; Lein, P.J. Developmental Exposure to a Human-Relevant Polychlorinated Biphenyl Mixture Causes Behavioral Phenotypes That Vary by Sex and Genotype in Juvenile Mice Expressing Human Mutations That Modulate Neuronal Calcium. Front. Neurosci. 2021, 15, 766826. [Google Scholar] [CrossRef]
- Rude, K.M.; Pusceddu, M.M.; Keogh, C.E.; Sladek, J.A.; Rabasa, G.; Miller, E.N.; Sethi, S.; Keil, K.P.; Pessah, I.N.; Lein, P.J.; et al. Developmental exposure to polychlorinated biphenyls (PCBs) in the maternal diet causes host-microbe defects in weanling offspring mice. Environ. Pollut. 2019, 253, 708–721. [Google Scholar] [CrossRef] [PubMed]
- Matelski, L.; Keil Stietz, K.P.; Sethi, S.; Taylor, S.L.; Van de Water, J.; Lein, P.J. The influence of sex, genotype, and dose on serum and hippocampal cytokine levels in juvenile mice developmentally exposed to a human-relevant mixture of polychlorinated biphenyls. Curr. Res. Toxicol. 2020, 1, 85–103. [Google Scholar] [CrossRef] [PubMed]
- Keil Stietz, K.P.; Sethi, S.; Klocke, C.R.; de Ruyter, T.E.; Wilson, M.D.; Pessah, I.N.; Lein, P.J. Sex and Genotype Modulate the Dendritic Effects of Developmental Exposure to a Human-Relevant Polychlorinated Biphenyls Mixture in the Juvenile Mouse. Front. Neurosci. 2021, 15, 766802. [Google Scholar] [CrossRef]
- Westmark, C.J. Toward an understanding of the role of the exposome on fragile X phenotypes. Int. Rev. Neurobiol. 2023, 173, 141–170. [Google Scholar] [CrossRef] [PubMed]
- Varian, B.J.; Weber, K.T.; Kim, L.J.; Chavarria, T.E.; Carrasco, S.E.; Muthupalani, S.; Poutahidis, T.; Zafarullah, M.; Al Olaby, R.R.; Barboza, M.; et al. Maternal Microbiota Modulate a Fragile X-like Syndrome in Offspring Mice. Genes 2022, 13, 1409. [Google Scholar] [CrossRef]
- AlOlaby, R.R.; Zafarullah, M.; Barboza, M.; Peng, G.; Varian, B.J.; Erdman, S.E.; Lebrilla, C.; Tassone, F. Differential Methylation Profile in Fragile X Syndrome-Prone Offspring Mice after in Utero Exposure to Lactobacillus Reuteri. Genes 2022, 13, 1300. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, J.; Eberth, J.M.; Zgodic, A.; Federico, A.; Flory, K.; McLain, A.C. County-Level Prevalence Estimates of Autism Spectrum Disorder in Children in the United States. J. Autism Dev. Disord. 2023. online ahead of print. [Google Scholar] [CrossRef]
- Ogden, C.L.; Carroll, M.D.; Lawman, H.G.; Fryar, C.D.; Kruszon-Moran, D.; Kit, B.K.; Flegal, K.M. Trends in Obesity Prevalence Among Children and Adolescents in the United States, 1988–1994 Through 2013–2014. JAMA 2016, 315, 2292–2299. [Google Scholar] [CrossRef]
- Egan, A.M.; Dreyer, M.L.; Odar, C.C.; Beckwith, M.; Garrison, C.B. Obesity in young children with autism spectrum disorders: Prevalence and associated factors. Child. Obes. 2013, 9, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Bandini, L.; Danielson, M.; Esposito, L.E.; Foley, J.T.; Fox, M.H.; Frey, G.C.; Fleming, R.K.; Krahn, G.; Must, A.; Porretta, D.L.; et al. Obesity in children with developmental and/or physical disabilities. Disabil. Health J. 2015, 8, 309–316. [Google Scholar] [CrossRef]
- Lozano, R.; Azarang, A.; Wilaisakditipakorn, T.; Hagerman, R.J. Fragile X syndrome: A review of clinical management. Intractable Rare Dis. Res. 2016, 5, 145–157. [Google Scholar] [CrossRef]
- McLennan, Y.; Polussa, J.; Tassone, F.; Hagerman, R. Fragile x syndrome. Curr. Genomics 2011, 12, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Berseth, C.L.; Mitmesser, S.H.; Ziegler, E.E.; Marunycz, J.D.; Vanderhoof, J. Tolerance of a standard intact protein formula versus a partially hydrolyzed formula in healthy, term infants. Nutr. J. 2009, 8, 27. [Google Scholar] [CrossRef]
- Westmark, C.J.; Brower, J.; Held, P.K. Improving Reproducibility to Enhance Scientific Rigor through Consideration of Mouse Diet. Animals 2022, 12, 3448. [Google Scholar] [CrossRef] [PubMed]
- Westmark, C.J. Soy Infant Formula may be Associated with Autistic Behaviors. Autism Open Access 2013, 3, 20727. [Google Scholar] [CrossRef]
- Westmark, C.J. Soy infant formula and seizures in children with autism: A retrospective study. PLoS ONE 2014, 9, e80488. [Google Scholar] [CrossRef] [PubMed]
- Westmark, C.J. Soy-Based Therapeutic Baby Formulas: Testable Hypotheses Regarding the Pros and Cons. Front. Nutr. 2016, 3, 59. [Google Scholar] [CrossRef]
- Westmark, C.J.; Kniss, C.; Sampene, E.; Wang, A.; Milunovich, A.; Elver, K.; Hessl, D.; Talboy, A.; Picker, J.; Haas-Givler, B.; et al. Soy-Based Infant Formula is Associated with an Increased Prevalence of Comorbidities in Fragile X Syndrome. Nutrients 2020, 12, 3136. [Google Scholar] [CrossRef] [PubMed]
- Westmark, C.J. Increased Incidence of Epilepsy in Response to Soy-Based Infant Formula in a National Korean Cohort Study. J. Nutr. 2022, 152, 1378–1379. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Yu, Q.; Delafield, D.G.; Cui, Y.; Li, Z.; Li, M.; Wu, W.; Shi, X.; Westmark, P.R.; Gutierrez, A.; et al. On-tissue spatial proteomics integrating MALDI-MS imaging with shotgun proteomics reveals soy consumption-induced biomarkers in a fragile X syndrome mouse model. ACS Chem. Neurosci. 2024, 15, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Westmark, P.R.; Gutierrez, A.; Westmark, C.J. A Simple, Reliable and Inexpensive Method to Individually Identify Neonate Mice. Lab. Anim. Sci. Prof. 2021, 9, 46–48. [Google Scholar]
- Filon, M.J.; Wallace, E.; Wright, S.; Douglas, D.J.; Steinberg, L.I.; Verkuilen, C.L.; Westmark, P.R.; Maganti, R.K.; Westmark, C.J. Sleep and diurnal rest-activity rhythm disturbances in a mouse model of Alzheimer’s disease. Sleep 2020, 43, zsaa087. [Google Scholar] [CrossRef]
- Stroup, B.M.; Held, P.K.; Williams, P.; Clayton, M.K.; Murali, S.G.; Rice, G.M.; Ney, D.M. Clinical relevance of the discrepancy in phenylalanine concentrations analyzed using tandem mass spectrometry compared with ion-exchange chromatography in phenylketonuria. Mol. Genet. Metab. Rep. 2016, 6, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Stein, W.H.; Moore, S. The free amino acids of human blood plasma. J. Biol. Chem. 1954, 211, 915–926. [Google Scholar] [CrossRef]
- Prasain, J.K.; Arabshahi, A.; Moore, D.R.; Greendale, G.A.; Wyss, J.M.; Barnes, S. Simultaneous determination of 11 phytoestrogens in human serum using a 2 min liquid chromatography/tandem mass spectrometry method. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010, 878, 994–1002. [Google Scholar] [CrossRef]
- Jensen, M.N.; Ritskes-Hoitinga, M. How isoflavone levels in common rodent diets can interfere with the value of animal models and with experimental results. Lab. Anim. 2007, 41, 1–18. [Google Scholar] [CrossRef]
- Brown, N.M.; Setchell, K.D. Animal models impacted by phytoestrogens in commercial chow: Implications for pathways influenced by hormones. Lab. Investig. 2001, 81, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Forsythe, W.A. Comparison of dietary casein or soy protein effects on plasma lipids and hormone concentrations in the gerbil (Meriones unguiculatus). J. Nutr. 1986, 116, 1165–1171. [Google Scholar] [CrossRef] [PubMed]
- Liisberg, U.; Myrmel, L.S.; Fjære, E.; Rønnevik, A.K.; Bjelland, S.; Fauske, K.R.; Holm, J.B.; Basse, A.L.; Hansen, J.B.; Liaset, B.; et al. The protein source determines the potential of high protein diets to attenuate obesity development in C57BL/6J mice. Adipocyte 2016, 5, 196–211. [Google Scholar] [CrossRef]
- Yan, L.; Graef, G.L.; Claycombe, K.J.; Johnson, L.K. Effects of voluntary running and soy supplementation on diet-induced metabolic disturbance and inflammation in mice. J. Agric. Food Chem. 2013, 61, 9373–9379. [Google Scholar] [CrossRef]
- Wróblewska, B.; Juśkiewicz, J.; Kroplewski, B.; Jurgoński, A.; Wasilewska, E.; Złotkowska, D.; Markiewicz, L. The effects of whey and soy proteins on growth performance, gastrointestinal digestion, and selected physiological responses in rats. Food Funct. 2018, 9, 1500–1509. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.R.; Lazarenko, O.P.; Blackburn, M.L.; Badeaux, J.V.; Badger, T.M.; Ronis, M.J. Infant formula promotes bone growth in neonatal piglets by enhancing osteoblastogenesis through bone morphogenic protein signaling. J. Nutr. 2009, 139, 1839–1847. [Google Scholar] [CrossRef] [PubMed]
- Junghans, P.; Derno, M.; Jentsch, W.; Kuhla, S.; Beyer, M. Effect of a soy protein diet on protein and energy metabolism and organ development in protein-restricted growing pigs. Arch. Anim. Nutr. 2004, 58, 453–461. [Google Scholar] [CrossRef]
- Jahan-Mihan, A.; Szeto, I.M.; Luhovyy, B.L.; Huot, P.S.; Anderson, G.H. Soya protein- and casein-based nutritionally complete diets fed during gestation and lactation differ in effects on characteristics of the metabolic syndrome in male offspring of Wistar rats. Br. J. Nutr. 2012, 107, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.D.; Jorgensen, M.J.; Cline, J.M.; Lees, C.J.; Franke, A.A.; Zhang, L.; Ayers, M.R.; Schultz, C.; Kaplan, J.R. Effects of soy vs. casein protein on body weight and glycemic control in female monkeys and their offspring. Am. J. Primatol. 2009, 71, 802–811. [Google Scholar] [CrossRef] [PubMed]
- Cederroth, C.R.; Vinciguerra, M.; Gjinovci, A.; Kühne, F.; Klein, M.; Cederroth, M.; Caille, D.; Suter, M.; Neumann, D.; James, R.W.; et al. Dietary phytoestrogens activate AMP-activated protein kinase with improvement in lipid and glucose metabolism. Diabetes 2008, 57, 1176–1185. [Google Scholar] [CrossRef] [PubMed]
- Khandjian, E.W.; Fortin, A.; Thibodeau, A.; Tremblay, S.; Côté, F.; Devys, D.; Mandel, J.L.; Rousseau, F. A heterogeneous set of FMR1 proteins is widely distributed in mouse tissues and is modulated in cell culture. Hum. Mol. Genet. 1995, 4, 783–789. [Google Scholar] [CrossRef]
- Leboucher, A.; Bermudez-Martin, P.; Mouska, X.; Amri, E.Z.; Pisani, D.F.; Davidovic, L. Fmr1-Deficiency Impacts Body Composition, Skeleton, and Bone Microstructure in a Mouse Model of Fragile X Syndrome. Front. Endocrinol. 2019, 10, 678. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Graef, G.L.; Nielsen, F.H.; Johnson, L.K.; Cao, J. Soy protein is beneficial but high-fat diet and voluntary running are detrimental to bone structure in mice. Nutr. Res. 2015, 35, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Hagerman, R.J.; Van Housen, K.; Smith, A.C.; McGavran, L. Consideration of connective tissue dysfunction in the fragile X syndrome. Am. J. Med. Genet. 1984, 17, 111–121. [Google Scholar] [CrossRef]
- Opitz, J.M.; Westphal, J.M.; Daniel, A. Discovery of a connective tissue dysplasia in the Martin-Bell syndrome. Am. J. Med. Genet. 1984, 17, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Waldstein, G.; Mierau, G.; Ahmad, R.; Thibodeau, S.N.; Hagerman, R.J.; Caldwell, S. Fragile X syndrome: Skin elastin abnormalities. Birth Defects Orig. Artic. Ser. 1987, 23, 103–114. [Google Scholar]
- Tarnutzer, K.; Siva Sankar, D.; Dengjel, J.; Ewald, C.Y. Collagen constitutes about 12% in females and 17% in males of the total protein in mice. Sci. Rep. 2023, 13, 4490. [Google Scholar] [CrossRef] [PubMed]
- Saré, R.M.; Harkless, L.; Levine, M.; Torossian, A.; Sheeler, C.A.; Smith, C.B. Deficient Sleep in Mouse Models of Fragile X Syndrome. Front. Mol. Neurosci. 2017, 10, 280. [Google Scholar] [CrossRef]
- Bonasera, S.J.; Chaudoin, T.R.; Goulding, E.H.; Mittek, M.; Dunaevsky, A. Decreased home cage movement and oromotor impairments in adult Fmr1-KO mice. Genes. Brain Behav. 2017, 16, 564–573. [Google Scholar] [CrossRef]
- Angelakos, C.C.; Tudor, J.C.; Ferri, S.L.; Jongens, T.A.; Abel, T. Home-cage hypoactivity in mouse genetic models of autism spectrum disorder. Neurobiol. Learn. Mem. 2019, 165, 107000. [Google Scholar] [CrossRef]
- Pietropaolo, S.; Guilleminot, A.; Martin, B.; D’Amato, F.R.; Crusio, W.E. Genetic-background modulation of core and variable autistic-like symptoms in Fmr1 knock-out mice. PLoS ONE 2011, 6, e17073. [Google Scholar] [CrossRef]
- Ruggiero-Ruff, R.E.; Villa, P.A.; Hijleh, S.A.; Avalos, B.; DiPatrizio, N.V.; Haga-Yamanaka, S.; Coss, D. Increased body weight in mice with fragile X messenger ribonucleoprotein 1 (Fmr1) gene mutation is associated with hypothalamic dysfunction. Sci. Rep. 2023, 13, 12666. [Google Scholar] [CrossRef]
- Long, J.Y.; Jiang, W.; Xia, H.B.; Fu, J.Y.; Lu, P.; Hu, F.; Feng, W.C.; Sun, W.W.; Gao, M.M.; Yi, Y.H.; et al. FMRP-absence-induced up-regulation of hypothalamic MAP1B expression decreases AgRP level linking with reduces in food intake and body weight. Neurochem. Int. 2020, 140, 104847. [Google Scholar] [CrossRef] [PubMed]
- Kurpad, A.V. 90th Anniversary Commentary: Amino Acid Imbalances: Still in the Balance. J. Nutr. 2018, 148, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; van Loon, L.J.C. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef]
- Gietzen, D.W.; Lindström, S.H.; Sharp, J.W.; Teh, P.S.; Donovan, M.J. Indispensable Amino Acid-Deficient Diets Induce Seizures in Ketogenic Diet-Fed Rodents, Demonstrating a Role for Amino Acid Balance in Dietary Treatments for Epilepsy. J. Nutr. 2018, 148, 480–489. [Google Scholar] [CrossRef]
- Boehm, G.; Cervantes, H.; Georgi, G.; Jelinek, J.; Sawatzki, G.; Wermuth, B.; Colombo, J.P. Effect of increasing dietary threonine intakes on amino acid metabolism of the central nervous system and peripheral tissues in growing rats. Pediatr. Res. 1998, 44, 900–906. [Google Scholar] [CrossRef] [PubMed]
- Meguid, N.A.; Hashem, H.S.; Ghanem, M.H.; Helal, S.A.; Semenova, Y.; Hashem, S.; Hashish, A.; Chirumbolo, S.; Elwan, A.M.; Bjørklund, G. Evaluation of Branched-Chain Amino Acids in Children with Autism Spectrum Disorder and Epilepsy. Mol. Neurobiol. 2023, 60, 1997–2004. [Google Scholar] [CrossRef]
- West, P.R.; Amaral, D.G.; Bais, P.; Smith, A.M.; Egnash, L.A.; Ross, M.E.; Palmer, J.A.; Fontaine, B.R.; Conard, K.R.; Corbett, B.A.; et al. Metabolomics as a tool for discovery of biomarkers of autism spectrum disorder in the blood plasma of children. PLoS ONE 2014, 9, e112445. [Google Scholar] [CrossRef]
- Li, Y.J.; Zhang, K.; Sun, T.; Guo, Y.Y.; Yang, Q.; Liu, S.B.; Wu, Y.M.; Zhao, M.G. Improvement of Learning and Memory by Elevating Brain D-Aspartate in a Mouse Model of Fragile X Syndrome. Mol. Neurobiol. 2023, 60, 6410–6423. [Google Scholar] [CrossRef]
- Davidovic, L.; Navratil, V.; Bonaccorso, C.M.; Catania, M.V.; Bardoni, B.; Dumas, M.E. A metabolomic and systems biology perspective on the brain of the fragile X syndrome mouse model. Genome Res. 2011, 21, 2190–2202. [Google Scholar] [CrossRef]
- Gruss, M.; Braun, K. Alterations of amino acids and monoamine metabolism in male Fmr1 knockout mice: A putative animal model of the human fragile X mental retardation syndrome. Neural Plast. 2001, 8, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Gruss, M.; Braun, K. Age- and region-specific imbalances of basal amino acids and monoamine metabolism in limbic regions of female Fmr1 knock-out mice. Neurochem. Int. 2004, 45, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Xu, S.; Waddell, J.; Scafidi, S.; Roys, S.; Gullapalli, R.P.; McKenna, M.C. Longitudinal in vivo developmental changes of metabolites in the hippocampus of Fmr1 knockout mice. J. Neurochem. 2012, 123, 971–981. [Google Scholar] [CrossRef]
- Menzies, C.; Naz, S.; Patten, D.; Alquier, T.; Bennett, B.M.; Lacoste, B. Distinct Basal Metabolism in Three Mouse Models of Neurodevelopmental Disorders. eNeuro 2021, 8, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.; King, J.J.; West, P.R.; Ludwig, M.A.; Donley, E.L.R.; Burrier, R.E.; Amaral, D.G. Amino Acid Dysregulation Metabotypes: Potential Biomarkers for Diagnosis and Individualized Treatment for Subtypes of Autism Spectrum Disorder. Biol. Psychiatry 2019, 85, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.; Natowicz, M.R.; Braas, D.; Ludwig, M.A.; Ney, D.M.; Donley, E.L.R.; Burrier, R.E.; Amaral, D.G. A Metabolomics Approach to Screening for Autism Risk in the Children’s Autism Metabolome Project. Autism Res. 2020, 13, 1270–1285. [Google Scholar] [CrossRef]
- Hou, H.; Uusküla-Reimand, L.; Makarem, M.; Corre, C.; Saleh, S.; Metcalf, A.; Goldenberg, A.; Palmert, M.R.; Wilson, M.D. Gene expression profiling of puberty-associated genes reveals abundant tissue and sex-specific changes across postnatal development. Hum. Mol. Genet. 2017, 26, 3585–3599. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.F.; Karelus, K.; Felicio, L.S.; Johnson, T.E. Genetic influences on the timing of puberty in mice. Biol. Reprod. 1990, 42, 649–655. [Google Scholar] [CrossRef]
- Bell, M.R. Comparing Postnatal Development of Gonadal Hormones and Associated Social Behaviors in Rats, Mice, and Humans. Endocrinology 2018, 159, 2596–2613. [Google Scholar] [CrossRef]
- Villa, P.A.; Lainez, N.M.; Jonak, C.R.; Berlin, S.C.; Ethell, I.M.; Coss, D. Altered GnRH neuron and ovarian innervation characterize reproductive dysfunction linked to the Fragile X messenger ribonucleoprotein. Front. Endocrinol. 2023, 14, 1129534. [Google Scholar] [CrossRef]
- Soukup, S.T.; Helppi, J.; Müller, D.R.; Zierau, O.; Watzl, B.; Vollmer, G.; Diel, P.; Bub, A.; Kulling, S.E. Phase II metabolism of the soy isoflavones genistein and daidzein in humans, rats and mice: A cross-species and sex comparison. Arch. Toxicol. 2016, 90, 1335–1347. [Google Scholar] [CrossRef]
- Mayo, B.; Vázquez, L.; Flórez, A.B. Equol: A Bacterial Metabolite from The Daidzein Isoflavone and Its Presumed Beneficial Health Effects. Nutrients 2019, 11, 2231. [Google Scholar] [CrossRef]
- Setchell, K.D.; Clerici, C. Equol: Pharmacokinetics and biological actions. J. Nutr. 2010, 140, 1363S–1368S. [Google Scholar] [CrossRef]
- Wisniewski, A.B.; Klein, S.L.; Lakshmanan, Y.; Gearhart, J.P. Exposure to genistein during gestation and lactation demasculinizes the reproductive system in rats. J. Urol. 2003, 169, 1582–1586. [Google Scholar] [CrossRef]
- Tan, K.A.; Walker, M.; Morris, K.; Greig, I.; Mason, J.I.; Sharpe, R.M. Infant feeding with soy formula milk: Effects on puberty progression, reproductive function and testicular cell numbers in marmoset monkeys in adulthood. Hum. Reprod. 2006, 21, 896–904. [Google Scholar] [CrossRef]
- Sharpe, R.M.; Martin, B.; Morris, K.; Greig, I.; McKinnell, C.; McNeilly, A.S.; Walker, M. Infant feeding with soy formula milk: Effects on the testis and on blood testosterone levels in marmoset monkeys during the period of neonatal testicular activity. Hum. Reprod. 2002, 17, 1692–1703. [Google Scholar] [CrossRef]
- Chin, H.B.; Kelly, A.; Adgent, M.A.; Patchel, S.A.; James, K.; Vesper, H.W.; Botelho, J.C.; Chandler, D.W.; Zemel, B.S.; Schall, J.I.; et al. Reproductive Hormone Concentrations and Associated Anatomical Responses: Does Soy Formula Affect Minipuberty in Boys? J. Clin. Endocrinol. Metab. 2021, 106, 2635–2645. [Google Scholar] [CrossRef]
- Ronis, M.J.J.; Gomez-Acevedo, H.; Shankar, K.; Hennings, L.; Sharma, N.; Blackburn, M.L.; Miousse, I.; Dawson, H.; Chen, C.; Mercer, K.E.; et al. Soy Formula Is Not Estrogenic and Does Not Result in Reproductive Toxicity in Male Piglets: Results from a Controlled Feeding Study. Nutrients 2022, 14, 1126. [Google Scholar] [CrossRef]
- Liu, Z.; Udenigwe, C.C. Role of food-derived opioid peptides in the central nervous and gastrointestinal systems. J. Food Biochem. 2019, 43, e12629. [Google Scholar] [CrossRef]
- Zioudrou, C.; Streaty, R.A.; Klee, W.A. Opioid peptides derived from food proteins. The exorphins. J. Biol. Chem. 1979, 254, 2446–2449. [Google Scholar] [CrossRef]
- Ohinata, K.; Agui, S.; Yoshikawa, M. Soymorphins, novel mu opioid peptides derived from soy beta-conglycinin beta-subunit, have anxiolytic activities. Biosci. Biotechnol. Biochem. 2007, 71, 2618–2621. [Google Scholar] [CrossRef]
- Kaneko, K.; Iwasaki, M.; Yoshikawa, M.; Ohinata, K. Orally administered soymorphins, soy-derived opioid peptides, suppress feeding and intestinal transit via gut mu(1)-receptor coupled to 5-HT(1A), D(2), and GABA(B) systems. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 299, G799–G805. [Google Scholar] [CrossRef]
- Liu, Z.H.; Chuang, D.M.; Smith, C.B. Lithium ameliorates phenotypic deficits in a mouse model of fragile X syndrome. Int. J. Neuropsychopharmacol. 2011, 14, 618–630. [Google Scholar] [CrossRef]
- Reyes, S.T.; Deacon, R.M.J.; Guo, S.G.; Altimiras, F.J.; Castillo, J.B.; van der Wildt, B.; Morales, A.P.; Park, J.H.; Klamer, D.; Rosenberg, J.; et al. Effects of the sigma-1 receptor agonist blarcamesine in a murine model of fragile X syndrome: Neurobehavioral phenotypes and receptor occupancy. Sci. Rep. 2021, 11, 17150. [Google Scholar] [CrossRef]
- Cogram, P.; Deacon, R.M.J.; Klamer, D.; Rebowe, N.; Sprouse, J.; Reyes, S.T.; Missling, C.U.; Kaufmann, W.E. Brain cell signaling abnormalities are detected in blood in a murine model of Fragile X syndrome and corrected by Sigma-1 receptor agonist Blarcamesine. Am. J. Med. Genet. A 2022, 188, 2497–2500. [Google Scholar] [CrossRef]
- McCarthy, D. The Long Pursuit of a Fragile X Syndrome Treatment. 2021. Available online: https://www.hcplive.com/view/mccarthy-fragile-x-syndrome-treatment (accessed on 11 January 2024).
- Griffiths, K.K.; Wang, A.; Wang, L.; Tracey, M.; Kleiner, G.; Quinzii, C.M.; Sun, L.; Yang, G.; Perez-Zoghbi, J.F.; Licznerski, P.; et al. Inefficient thermogenic mitochondrial respiration due to futile proton leak in a mouse model of fragile X syndrome. FASEB J. 2020, 34, 7404–7426. [Google Scholar] [CrossRef]
- Hukema, R.K.; Buijsen, R.A.; Raske, C.; Severijnen, L.A.; Nieuwenhuizen-Bakker, I.; Minneboo, M.; Maas, A.; de Crom, R.; Kros, J.M.; Hagerman, P.J.; et al. Induced expression of expanded CGG RNA causes mitochondrial dysfunction in vivo. Cell Cycle 2014, 13, 2600–2608. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Ke, J.Y.; Pellizzon, M.A. Targeted Nutrient Modifications in Purified Diets Differentially Affect Nonalcoholic Fatty Liver Disease and Metabolic Disease Development in Rodent Models. Curr. Dev. Nutr. 2020, 4, nzaa078. [Google Scholar] [CrossRef]
- Ramadori, P.; Weiskirchen, R.; Trebicka, J.; Streetz, K. Mouse models of metabolic liver injury. Lab. Anim. 2015, 49, 47–58. [Google Scholar] [CrossRef]
- Farias Santos, J.; Suruagy Amaral, M.; Lima Oliveira, S.; Porto Barbosa, J.; Rego Cabral, C.; Sofia Melo, I.; Bezerra Bueno, N.; Duarte Freitas, J.; Goulart Sant’ana, A.; Rocha Ataíde, T. Dietary intake of ain-93 standard diet induces Fatty liver with altered hepatic fatty acid profile in Wistar rats. Nutr. Hosp. 2015, 31, 2140–2146. [Google Scholar] [CrossRef]
- Rinella, M.E.; Elias, M.S.; Smolak, R.R.; Fu, T.; Borensztajn, J.; Green, R.M. Mechanisms of hepatic steatosis in mice fed a lipogenic methionine choline-deficient diet. J. Lipid Res. 2008, 49, 1068–1076. [Google Scholar] [CrossRef]
- Leboucher, A.; Pisani, D.F.; Martinez-Gili, L.; Chilloux, J.; Bermudez-Martin, P.; Van Dijck, A.; Ganief, T.; Macek, B.; Becker, J.A.J.; Le Merrer, J.; et al. The translational regulator FMRP controls lipid and glucose metabolism in mice and humans. Mol. Metab. 2019, 21, 22–35. [Google Scholar] [CrossRef]
- Jokinen, E.; Sakai, J.; Yamamoto, T.; Hobbs, H.H. CGG triple repeat polymorphism in VLDL receptor (VLDL-R) gene. Hum. Mol. Genet. 1994, 3, 521. [Google Scholar] [CrossRef]
- Sakai, J.; Hoshino, A.; Takahashi, S.; Miura, Y.; Ishii, H.; Suzuki, H.; Kawarabayasi, Y.; Yamamoto, T. Structure, chromosome location, and expression of the human very low density lipoprotein receptor gene. J. Biol. Chem. 1994, 269, 2173–2182. [Google Scholar] [CrossRef]
- Darnell, J.C.; Van Driesche, S.J.; Zhang, C.; Hung, K.Y.; Mele, A.; Fraser, C.E.; Stone, E.F.; Chen, C.; Fak, J.J.; Chi, S.W.; et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 2011, 146, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Consorthium, T.D.; Bakker, C.E.; Verheij, C.; Willemsen, R.; van der Helm, R.; Oerlemans, F.; Vermey, M.; Bygrave, A.; Hoogeveen, A.; Oostra, B.A.; et al. Fmr1 knockout mice: A model to study fragile X mental retardation. Cell 1994, 78, 23–33. [Google Scholar]
- Pieretti, M.; Zhang, F.; Fu, Y.H.; Warren, S.T.; Oostra, B.A.; Caskey, C.T.; Nelson, D.L. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 1991, 66, 817–822. [Google Scholar] [CrossRef]
- McCarver, G.; Bhatia, J.; Chambers, C.; Clarke, R.; Etzel, R.; Foster, W.; Hoyer, P.; Leeder, J.S.; Peters, J.M.; Rissman, E.; et al. NTP-CERHR expert panel report on the developmental toxicity of soy infant formula. Birth Defects Res. B Dev. Reprod. Toxicol. 2011, 92, 421–468. [Google Scholar] [CrossRef]
- Halken, S.; Muraro, A.; de Silva, D.; Khaleva, E.; Angier, E.; Arasi, S.; Arshad, H.; Bahnson, H.T.; Beyer, K.; Boyle, R.; et al. EAACI guideline: Preventing the development of food allergy in infants and young children (2020 update). Pediatr. Allergy Immunol. 2021, 32, 843–858. [Google Scholar] [CrossRef]
Phenotype | Rodent | Human |
---|---|---|
Seizures | ↑ [25] | ↑ [50,53] |
Body Weight | ↑ [11,48], [Figures 1 and 2] | ↔ [11,51] |
Hyperactivity, ADHD | ↑ [Figure 3] | ↑ [51,53]; ↔ [49] |
Autism | ND | ↑ [23,52] |
RRSB 1 | ND | ↑ [49] |
Motor Coordination | ↑ [Figure 4] | ↔ [23] |
Learning | ↑ [11]; ↔ [Figure 5] | ↓ [23] |
GI Problems | ND | ↑ [52] |
Allergies | ND | ↑ [51,52] |
Altered Blood Biomarkers | Yes [11], [Figures 6 and 7] | ND |
Organ Weight | ↑ [Figure 8] | ND |
Figure | Casein Diet (n) | Soy Diet (n) |
---|---|---|
Figure 2A | 27 Fmr1HET female, 36 Fmr1KO female | 40 Fmr1HET female, 43 Fmr1KO female |
Figure 2B | 23 Fmr1HET female, 31 Fmr1KO female | 23 Fmr1HET female, 39 Fmr1KO female |
Figure 2C | 30 WT male, 38 Fmr1KO male | 49 WT male, 48 Fmr1KO male |
Figure 2D | 28 WT male, 33 Fmr1KO male | 48 WT male, 45 Fmr1KO male |
Figure 3 | 14 Fmr1HET female, 12 Fmr1KO female 10 WT male, 16 Fmr1KO male | 16 Fmr1HET female, 16 Fmr1KO female 20 WT male, 19 Fmr1KO male |
Figure 4A | 16 Fmr1HET female, 17 Fmr1KO female | 25 Fmr1HET female, 28 Fmr1KO female |
Figure 4B | 14 WT male, 20 Fmr1KO male | 32 WT male, 28 Fmr1KO male |
Figure 5A | 16 Fmr1HET female, 17 Fmr1KO female | 25 Fmr1HET female, 28 Fmr1KO female |
Figure 5B | 14 WT male, 20 Fmr1KO male | 32 WT male, 28 Fmr1KO male |
Figure 6 | 10 Fmr1HET female, 10 Fmr1KO female 8 WT male, 13 Fmr1KO male | 18 Fmr1HET female, 21 Fmr1KO female 21 WT male, 20 Fmr1KO male |
Figure 7 | 5 Fmr1HET female, 8 Fmr1KO female 4 WT male, 9 Fmr1KO male | 9 Fmr1HET female, 8 Fmr1KO female 11 WT male, 8 Fmr1KO male |
Figure 8 | 10 Fmr1HET female, 10 Fmr1KO female 8 WT male, 13 Fmr1KO male | 19 Fmr1HET female, 22 Fmr1KO female 21 WT male, 20 Fmr1KO male |
Figure 9 | 6 Fmr1HET female, 7 Fmr1KO female 6 WT male, 7 Fmr1KO male | 6 Fmr1HET female, 6 Fmr1KO female 11 WT male, 8 Fmr1KO male |
Figure 10 | 9 Fmr1HET female, 16 Fmr1KO female 16 WT male, 16 Fmr1KO male | 12 Fmr1HET female, 21 Fmr1KO female 14 WT male, 12 Fmr1KO male |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Westmark, P.R.; Lyon, G.; Gutierrez, A.; Boeck, B.; Van Hammond, O.; Ripp, N.; Pagan-Torres, N.A.; Brower, J.; Held, P.K.; Scarlett, C.; et al. Effects of Soy Protein Isolate on Fragile X Phenotypes in Mice. Nutrients 2024, 16, 284. https://doi.org/10.3390/nu16020284
Westmark PR, Lyon G, Gutierrez A, Boeck B, Van Hammond O, Ripp N, Pagan-Torres NA, Brower J, Held PK, Scarlett C, et al. Effects of Soy Protein Isolate on Fragile X Phenotypes in Mice. Nutrients. 2024; 16(2):284. https://doi.org/10.3390/nu16020284
Chicago/Turabian StyleWestmark, Pamela R., Greg Lyon, Alejandra Gutierrez, Brynne Boeck, Olivia Van Hammond, Nathan Ripp, Nicole Arianne Pagan-Torres, James Brower, Patrice K. Held, Cameron Scarlett, and et al. 2024. "Effects of Soy Protein Isolate on Fragile X Phenotypes in Mice" Nutrients 16, no. 2: 284. https://doi.org/10.3390/nu16020284
APA StyleWestmark, P. R., Lyon, G., Gutierrez, A., Boeck, B., Van Hammond, O., Ripp, N., Pagan-Torres, N. A., Brower, J., Held, P. K., Scarlett, C., & Westmark, C. J. (2024). Effects of Soy Protein Isolate on Fragile X Phenotypes in Mice. Nutrients, 16(2), 284. https://doi.org/10.3390/nu16020284