Nutrition and Lifestyle-Related Factors as Predictors of Muscle Atrophy in Hematological Cancer Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Data Collection
2.3. Questionnaires
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Body Composition
3.3. Nutritional Intake
3.4. QoL, Physical Activity and Eating Situations
3.5. LASSO Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fearon, K.C.; Glass, D.J.; Guttridge, D. Cancer cachexia: Mediators, signaling, and metabolic pathways. Cell Metab. 2012, 16, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Honors, M.A.; Kinzig, K.P. The role of insulin resistance in the development of muscle wasting during cancer cachexia. J. Cachexia Sarcopenia Muscle 2012, 3, 5–11. [Google Scholar] [CrossRef]
- Fonseca, G.W.P.D.; Farkas, J.; Dora, E.; von Haehling, S.; Lainscak, M. Cancer Cachexia and Related Metabolic Dysfunction. Int. J. Mol. Sci. 2020, 21, 2321. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Barazzoni, R.; Austin, P.; Ballmer, P.; Biolo, G.; Bischoff, S.C.; Compher, C.; Correia, I.; Higashiguchi, T.; Holst, M.; et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin. Nutr. 2017, 36, 49–64. [Google Scholar] [CrossRef]
- Szeja, N.; Grosicki, S. Nutritional status of patients with lymphoproliferative neoplasms before and after the first-line treatment. Expert Rev. Hematol. 2022, 15, 83–91. [Google Scholar] [CrossRef]
- Sitzia, J.; Dikken, C.; Hughes, J. Psychometric evaluation of a questionnaire to document side-effects of chemotherapy. J. Adv. Nurs. 1997, 25, 999–1007. [Google Scholar] [CrossRef]
- Ramsenthaler, C.; Kane, P.; Gao, W.; Siegert, R.J.; Edmonds, P.M.; Schey, S.A.; Higginson, I.J. Prevalence of symptoms in patients with multiple myeloma: A systematic review and meta-analysis. Eur. J. Haematol. 2016, 97, 416–429. [Google Scholar] [CrossRef] [PubMed]
- McBride, A.; Daniel, S.; Driessen, M.T.; Szende, A.; Choudhry, A.; Tian, M.; Ariely, R.; Thompson, S. Assessment of rituximab-abbs, a biosimilar, and rituximab outcomes in patients with CLL or NHL: A real-world UK study. Leuk. Res. 2021, 111, 106671. [Google Scholar] [CrossRef]
- Lindman, A.; Rasmussen, H.B.; Andersen, N.F. Food caregivers influence on nutritional intake among admitted hematological cancer patients—A prospective study. Eur. J. Oncol. Nurs. 2013, 17, 827–834. [Google Scholar] [CrossRef]
- Baumgartner, A.; Zueger, N.; Bargetzi, A.; Medinger, M.; Passweg, J.R.; Stanga, Z.; Mueller, B.; Bargetzi, M.; Schuetz, P. Association of Nutritional Parameters with Clinical Outcomes in Patients with Acute Myeloid Leukemia Undergoing Haematopoietic Stem Cell Transplantation. Ann. Nutr. Metab. 2016, 69, 89–98. [Google Scholar] [CrossRef]
- Prado, C.M.M.; Lima, I.S.F.; Baracos, V.E.; Bies, R.R.; McCargar, L.J.; Reiman, T.; Mackey, J.R.; Kuzma, M.; Damaraju, V.L.; Sawyer, M.B. An exploratory study of body composition as a determinant of epirubicin pharmacokinetics and toxicity. Cancer Chemother. Pharmacol. 2011, 67, 93–101. [Google Scholar] [CrossRef]
- Prado, C.M.; Cushen, S.J.; Orsso, C.E.; Ryan, A.M. Sarcopenia and cachexia in the era of obesity: Clinical and nutritional impact. Proc. Nutr. Soc. 2016, 75, 1–11. [Google Scholar] [CrossRef]
- Inui, A. Cancer Anorexia-Cachexia Syndrome: Current Issues in Research and Management. CA Cancer J. Clin. 2002, 52, 72–91. [Google Scholar] [CrossRef]
- Muscaritoli, M.; Costelli, P.; Aversa, Z.; Bonetto, A.; Baccino, F.M.; Rossi Fanelli, F. New strategies to overcome cancer cachexia: From molecular mechanisms to the ‘Parallel Pathway’. Asia Pac. J. Clin. Nutr. 2008, 17, 387–390. [Google Scholar] [PubMed]
- Kurk, S.; Peeters, P.; Stellato, R.; Dorresteijn, B.; de Jong, P.; Jourdan, M.; Creemers, G.J.; Erdkamp, F.; de Jongh, F.; Kint, P.; et al. Skeletal muscle mass loss and dose-limiting toxicities in metastatic colorectal cancer patients. J. Cachexia Sarcopenia Muscle 2019, 10, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Ali, R.; Baracos, V.E.; Sawyer, M.B.; Bianchi, L.; Roberts, S.; Assenat, E.; Mollevi, C.; Senesse, P. Lean body mass as an independent determinant of dose-limiting toxicity and neuropathy in patients with colon cancer treated with FOLFOX regimens. Cancer Med. 2016, 5, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Camus, V.; Lanic, H.; Kraut, J.; Modzelewski, R.; Clatot, F.; Picquenot, J.M.; Contentin, N.; Lenain, P.; Groza, L.; Lemasle, E.; et al. Prognostic impact of fat tissue loss and cachexia assessed by computed tomography scan in elderly patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Eur. J. Haematol. 2014, 93, 9–18. [Google Scholar] [CrossRef]
- Nakamura, N.; Hara, T.; Shibata, Y.; Matsumoto, T.; Nakamura, H.; Ninomiya, S.; Kito, Y.; Kitagawa, J.; Kanemura, N.; Goto, N.; et al. Sarcopenia is an independent prognostic factor in male patients with diffuse large B-cell lymphoma. Ann. Hematol. 2015, 94, 2043–2053. [Google Scholar] [CrossRef]
- Chu, M.P.; Lieffers, J.; Ghosh, S.; Belch, A.; Chua, N.S.; Fontaine, A.; Sangha, R.; Turner, R.A.; Baracos, V.E.; Sawyer, M.B. Skeletal muscle density is an independent predictor of diffuse large B-cell lymphoma outcomes treated with rituximab-based chemoimmunotherapy. J. Cachexia Sarcopenia Muscle 2017, 8, 298–304. [Google Scholar] [CrossRef]
- Lanic, H.; Kraut-Tauzia, J.; Modzelewski, R.; Clatot, F.; Mareschal, S.; Picquenot, J.M.; Stamatoullas, A.; Leprêtre, S.; Tilly, H.; Jardin, F. Sarcopenia is an independent prognostic factor in elderly patients with diffuse large B-cell lymphoma treated with immunochemotherapy. Leuk. Lymphoma 2014, 55, 817–823. [Google Scholar] [CrossRef]
- Rier, H.N.; Jager, A.; Sleijfer, S.; Maier, A.B.; Levin, M.D. The Prevalence and Prognostic Value of Low Muscle Mass in Cancer Patients: A Review of the Literature. Oncologist 2016, 21, 1396–1409. [Google Scholar] [CrossRef] [PubMed]
- Bozzetti, F.; Mariani, L.; Lo Vullo, S.; Amerio, M.L.; Biffi, R.; Caccialanza, G.; Capuano, G.; Correja, I.; Cozzaglio, L.; Di Leo, A.; et al. The nutritional risk in oncology: A study of 1,453 cancer outpatients. Support. Care Cancer 2012, 20, 1919–1928. [Google Scholar] [CrossRef] [PubMed]
- Gil-Montoya, J.A.; Ponce, G.; Sánchez Lara, I.; Barrios, R.; Llodra, J.C.; Bravo, M. Association of the oral health impact profile with malnutrition risk in Spanish elders. Arch. Gerontol. Geriatr. 2013, 57, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Kenis, C.; Bron, D.; Libert, Y.; Decoster, L.; Van Puyvelde, K.; Scalliet, P.; Cornette, P.; Pepersack, T.; Luce, S.; Langenaeken, C.; et al. Relevance of a systematic geriatric screening and assessment in older patients with cancer: Results of a prospective multicentric study. Ann. Oncol. 2013, 24, 1306–1312. [Google Scholar] [CrossRef] [PubMed]
- Mansour, F.; Mekhancha, D.E.; Kadi, H.; Yagoubi-Benatallah, L.; Karoune, R.; Colette-Dahel-Mekhancha, C.; Nezzal, L. Malnutrition in patients with breast cancer during treatments. Nutr. Clin. Métabolisme 2018, 32, 129–137. [Google Scholar] [CrossRef]
- Stauder, R.; Augschoell, J.; Hamaker, M.E.; Koinig, K.A. Malnutrition in Older Patients with Hematological Malignancies at Initial Diagnosis—Association with Impairments in Health Status, Systemic Inflammation and Adverse Outcome. HemaSphere 2020, 4, e332. [Google Scholar] [CrossRef] [PubMed]
- Kadakia, K.C.; Symanowski, J.T.; Aktas, A.; Szafranski, M.L.; Salo, J.C.; Meadors, P.L.; Walsh, D. Malnutrition risk at solid tumor diagnosis: The malnutrition screening tool in a large US cancer institute. Support. Care Cancer 2022, 30, 2237–2244. [Google Scholar] [CrossRef]
- Sonneborn-Papakostopoulos, M.; Dubois, C.; Mathies, V.; Heß, M.; Erickson, N.; Ernst, T.; Huebner, J. Quality of life, symptoms and dietary habits in oncology outpatients with malnutrition: A cross-sectional study. Med. Oncol. 2021, 38, 20. [Google Scholar] [CrossRef]
- Andreyev, H.J.; Norman, A.R.; Oates, J.; Cunningham, D. Why do patients with weight loss have a worse outcome when undergoing chemotherapy for gastrointestinal malignancies? Eur. J. Cancer 1998, 34, 503–509. [Google Scholar] [CrossRef]
- Morishita, S.; Kaida, K.; Tanaka, T.; Itani, Y.; Ikegame, K.; Okada, M.; Ishii, S.; Kodama, N.; Ogawa, H.; Domen, K. Prevalence of sarcopenia and relevance of body composition, physiological function, fatigue, and health-related quality of life in patients before allogeneic hematopoietic stem cell transplantation. Support. Care Cancer 2012, 20, 3161–3168. [Google Scholar] [CrossRef]
- Bye, A.; Sjøblom, B.; Wentzel-Larsen, T.; Grønberg, B.H.; Baracos, V.E.; Hjermstad, M.J.; Aass, N.; Bremnes, R.M.; Fløtten, Ø.; Jordhøy, M. Muscle mass and association to quality of life in non-small cell lung cancer patients. J. Cachexia Sarcopenia Muscle 2017, 8, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Nipp, R.D.; Fuchs, G.; El-Jawahri, A.; Mario, J.; Troschel, F.M.; Greer, J.A.; Gallagher, E.R.; Jackson, V.A.; Kambadakone, A.; Hong, T.S.; et al. Sarcopenia Is Associated with Quality of Life and Depression in Patients with Advanced Cancer. Oncologist 2018, 23, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Hua, X.; Liao, J.F.; Liu, S.; Zhang, J.; Huang, H.Y.; Wen, W.; Long, Z.Q.; Zhang, W.W.; Guo, L.; Lin, H.X. Low Skeletal Muscle Mass Impairs Quality of Life in Nasopharyngeal Carcinoma Patients Treated with Concurrent Chemoradiotherapy. Front. Nutr. 2020, 6, 195. [Google Scholar] [CrossRef] [PubMed]
- Prado, C.M.; Lieffers, J.R.; McCargar, L.J.; Reiman, T.; Sawyer, M.B.; Martin, L.; Baracos, V.E. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: A population-based study. Lancet Oncol. 2008, 9, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Chabowski, M.; Polański, J.; Jankowska-Polańska, B.; Janczak, D.; Rosińczuk, J. Is nutritional status associated with the level of anxiety, depression and pain in patients with lung cancer? J. Thorac. Dis. 2018, 10, 2303–2310. [Google Scholar] [CrossRef] [PubMed]
- Polański, J.; Jankowska-Polańska, B.; Mazur, G. Relationship between Nutritional Status and Quality of Life in Patients with Lung Cancer. Cancer Manag. Res. 2021, 13, 1407–1416. [Google Scholar] [CrossRef] [PubMed]
- Mavropalias, G.; Sim, M.; Taaffe, D.R.; Galvão, D.A.; Spry, N.; Kraemer, W.J.; Häkkinen, K.; Newton, R.U. Exercise medicine for cancer cachexia: Targeted exercise to counteract mechanisms and treatment side effects. J. Cancer Res. Clin. Oncol. 2022, 148, 1389–1406. [Google Scholar] [CrossRef]
- Stubbins, R.; Bernicker, E.H.; Quigley, E.M.M. Cancer cachexia: A multifactorial disease that needs a multimodal approach. Curr. Opin. Gastroenterol. 2020, 36, 141–146. [Google Scholar] [CrossRef]
- Kafri, M.W.; Potter, J.F.; Myint, P.K. Multi-frequency bioelectrical impedance analysis for assessing fat mass and fat-free mass in stroke or transient ischaemic attack patients. Eur. J. Clin. Nutr. 2014, 68, 677–682. [Google Scholar] [CrossRef]
- Thompson, F.; Subar, A. Dietary Assessment Methodology. In Nutrition in the Prevention and Treatment of Disease, 4th ed.; Coulston, A.M., Boushey, C.J., Ferruzzi, M.G., Delahnty, L.M., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 5–48. [Google Scholar] [CrossRef]
- EORTC. Available online: https://www.eortc.org/app/uploads/sites/2/2018/08/Specimen-QLQ-C30-English.pdf (accessed on 9 November 2020).
- FACT-Lym. Available online: https://www.facit.org/measures/fact-lym (accessed on 9 November 2020).
- GPAQ Analysis Guide. Available online: https://www.who.int/docs/default-source/ncds/ncd-surveillance/gpaq-analysis-guide.pdf (accessed on 9 November 2020).
- Dewys, W.D.; Begg, C.; Lavin, P.T.; Band, P.R.; Bennett, J.M.; Bertino, J.R.; Cohen, M.H.; Douglass, H.O., Jr.; Engstrom, P.F.; Ezdinli, E.Z.; et al. Prognostic effect of weight loss prior to chemotherapy in cancer patients. Am. J. Med. 1980, 69, 491–497. [Google Scholar] [CrossRef]
- Eriksson, K.M.; Cederholm, T.; Palmblad, J.E.W. Nutrition and acute leukemia in adults. Cancer 2000, 82, 1071–1077. [Google Scholar] [CrossRef]
- Ross, C.; Caballero, B.; Cousins, R.J.; Tucker, K.L.; Ziegler, T.R. Modern Nutrition in Health and Disease, 11th ed.; Wolters Kluwer-Lippincot, Williams & Wilkins: Philadelphia, PA, USA, 2012. [Google Scholar]
- Martin, L.; Birdsell, L.; Macdonald, N.; Reiman, T.; Clandinin, M.T.; McCargar, L.J.; Murphy, R.; Ghosh, S.; Sawyer, M.B.; Baracos, V.E. Cancer cachexia in the age of obesity: Skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J. Clin. Oncol. 2013, 31, 1539–1547. [Google Scholar] [CrossRef] [PubMed]
- Courneya, K.S.; Sellar, C.M.; Stevinson, C.; McNeely, M.L.; Peddle, C.J.; Friedenreich, C.M.; Tankel, K.; Basi, S.; Mazurek, A.; Reiman, T. Randomized Controlled Trial of the Effects of Aerobic Exercise on Physical Functioning and Quality of Life in Lymphoma Patients. J. Clin. Oncol. 2009, 27, 4605–4612. [Google Scholar] [CrossRef]
- Furzer, B.J.; Ackland, T.R.; Wallman, K.E.; Petterson, A.S.; Gordon, S.M.; Wright, K.E.; Joske, D.J.L. A randomised controlled trial comparing the effects of a 12-week supervised exercise versus usual care on outcomes in haematological cancer patients. Support. Care Cancer 2016, 24, 1697–1707. [Google Scholar] [CrossRef]
- Schink, K.; Reljic, D.; Herrmann, H.J.; Meyer, J.; Mackensen, A.; Neurath, M.F.; Zopf, Y. Whole-Body Electromyostimulation Combined with Individualized Nutritional Support Improves Body Composition in Patients with Hematological—A Pilot Study. Front. Physiol. 2018, 9, 1808. [Google Scholar] [CrossRef] [PubMed]
- Husson, O.; Oerlemans, S.; Mols, F.; Schep, G.; Van De Poll-Franse, L.V. High levels of physical activity are associated with lower levels of fatigue among lymphoma patients: Results from the longitudinal PROFILES registry. Acta Oncol. 2015, 54, 678–684. [Google Scholar] [CrossRef]
- Fischetti, F.; Greco, G.; Cataldi, S.; Minoia, C.; Loseto, G.; Guarini, A. Effects of Physical Exercise Intervention on Psychological and Physical Fitness in Lymphoma Patients. Medicina 2019, 55, 379. [Google Scholar] [CrossRef]
- Cohen, L.; Warneke, C.; Fouladi, R.T.; Rodriguez, M.A.; Chaoul-Reich, A. Psychological adjustment and sleep quality in a randomized trial of the effects of a Tibetan yoga intervention in patients with lymphoma. Cancer 2004, 100, 2253–2260. [Google Scholar] [CrossRef]
- Sprod, L.K.; Palesh, O.G.; Janelsins, M.C.; Peppone, L.J.; Heckler, C.E.; Adams, M.J.; Morrow, G.R.; Mustian, K.M. Exercise, sleep quality, and mediators of sleep in breast and prostate cancer patients receiving radiation therapy. Community Oncol. 2010, 7, 463–471. [Google Scholar] [CrossRef]
- Derksen, J.W.G.; Kurk, S.A.; Peeters, P.H.M.; Dorresteijn, B.; Jourdan, M.; van der Velden, A.M.T.; Nieboer, P.; de Jong, R.S.; Honkoop, A.H.; Punt, C.J.A.; et al. The association between changes in muscle mass and quality of life in patients with metastatic colorectal cancer. J. Cachexia Sarcopenia Muscle 2020, 11, 919–928. [Google Scholar] [CrossRef]
- Hung, Y.C.; Bauer, J.; Horsley, P.; Waterhouse, M.; Bashford, J.; Isenring, E. Changes in nutritional status, body composition, quality of life, and physical activity levels of cancer patients undergoing autologous peripheral blood stem cell transplantation. Support. Care Cancer 2013, 21, 1579–1586. [Google Scholar] [CrossRef] [PubMed]
- Gulbrandsen, N.; Hjermstad, M.J.; Wisløff, F. Interpretation of quality of life scores in multiple myeloma by comparison with a reference population and assessment of the clinical importance of score differences. Eur. J. Haematol. 2004, 72, 172–180. [Google Scholar] [CrossRef]
- Walston, J.D. Sarcopenia in older adults. Curr. Opin. Rheumatol. 2012, 24, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Riuzzi, F.; Sorci, G.; Arcuri, C.; Giambanco, I.; Bellezza, I.; Minelli, A.; Donato, R. Cellular and molecular mechanisms of sarcopenia: The S100B perspective. J. Cachexia Sarcopenia Muscle 2018, 9, 1255–1268. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, S.K. Sarcopenia: A Contemporary Health Problem among Older Adult Populations. Nutrients 2020, 12, 1293. [Google Scholar] [CrossRef]
- Stobäus, N.; Müller, M.J.; Küpferling, S.; Schulzke, J.D.; Norman, K. Low Recent Protein Intake Predicts Cancer-Related Fatigue and Increased Mortality in Patients with Advanced Tumor Disease Undergoing Chemotherapy. Nutr. Cancer 2015, 67, 818–824. [Google Scholar] [CrossRef]
- Prado, C.M.; Purcell, S.A.; Laviano, A. Nutrition interventions to treat low muscle mass in cancer. J. Cachexia Sarcopenia Muscle 2020, 11, 366–380. [Google Scholar] [CrossRef]
- Capitão, C.; Coutinho, D.; Neves, P.M.; Capelas, M.L.; Pimenta, N.M.; Santos, T.; Mäkitie, A.; Ravasio, P. Protein intake and muscle mass maintenance in patients with cancer types with high prevalence of sarcopenia: A systematic review. Support. Care Cancer 2022, 30, 3007–3015. [Google Scholar] [CrossRef]
- McCurdy, B.; Nejatinamini, S.; Debenham, B.J.; Álvarez-Camacho, M.; Kubrak, C.; Wismer, W.V.; Mazurak, V.C. Meeting Minimum ESPEN Energy Recommendations Is Not Enough to Maintain Muscle Mass in Head and Neck Cancer Patients. Nutrients 2019, 11, 2743. [Google Scholar] [CrossRef]
- Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Fearon, K.; Hütterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN guidelines on nutrition in cancer patients. Clin. Nutr. 2017, 36, 11–48. [Google Scholar] [CrossRef]
- Madzima, T.A.; Ormsbee, M.J.; Schleicher, E.A.; Moffatt, R.J.; Panton, L.B. Effects of resistance training and protein supplementation in breast cancer survivors. Med. Sci. Sports Exerc. 2017, 49, 1283–1292. [Google Scholar] [CrossRef] [PubMed]
- Marinho, E.D.C.; Custódio, I.D.D.; Ferreira, I.B.; Crispim, C.A.; Paiva, C.E.; Maia, Y.C.P. Impact of chemotherapy on perceptions related to food intake in women with breast cancer: A prospective study. PLoS ONE 2017, 12, e0187573. [Google Scholar] [CrossRef] [PubMed]
- Coa, K.I.; Epstein, J.B.; Ettinger, D.; Jatoi, A.; McManus, K.; Platek, M.E.; Price, W.; Stewart, M.; Teknos, T.N.; Moskowitz, B. The Impact of Cancer Treatment on the Diets and Food Preferences of Patients Receiving Outpatient Treatment. Nutr. Cancer 2015, 67, 339–353. [Google Scholar] [CrossRef] [PubMed]
- Stene, G.B.; Helbostad, J.L.; Amundsen, T.; Sørhaug, S.; Hjelde, H.; Kaasa, S.; Grønberg, B.H. Changes in skeletal muscle mass during palliative chemotherapy in patients with advanced lung cancer. Acta Oncol. 2015, 54, 340–348. [Google Scholar] [CrossRef]
- Gibson, R.S.; Charrondiere, U.R.; Bell, W. Measurement Errors in Dietary Assessment Using Self-Reported 24-Hour Recalls in Low-Income Countries and Strategies for Their Prevention. Adv. Nutr. 2017, 8, 980–991. [Google Scholar] [CrossRef]
- Yunsheng, M.A.; Olendzki, B.C.; Pagoto, S.L.; Hurley, T.G.; Magner, R.P.; Ockene, I.S.; Schneider, K.L.; Merriam, P.A.; Hébert, J.R. Number of 24-Hour Diet Recalls Needed to Esimate Energy Intake. Ann. Epidemiol. 2009, 19, 553–559. [Google Scholar] [CrossRef]
Characteristics | Patients, n (%)/Mean ± SD |
---|---|
Sex | |
Men | 40 (65.6%) |
Women | 21 (34.4%) |
Age (years) | 66 ± 13 |
Diagnose | |
Lymphoma | 56 (91.8%) |
Acute leukemia | 3 (4.9%) |
Multiple myeloma | 2 (3.2%) |
Number of cytostatic treatments before inclusion | 2.4 ± 1.4 |
Treatment regime | |
(R)-CHOP (+like) 1 | 34 (55.7%) |
(R)-Benda (+like) 2 | 17 (27.9%) |
ABVD (+like) 3 | 5 (8.2%) |
G-PEBEN 4 | 1 (1.6%) |
CY-VEL-DEX 5 | 2 (3.3%) |
DA 3 + 10 6 | 2 (3.3%) |
Complete remission after end of full course of treatment | 51 (84%) |
BMI at inclusion | |
18.5–24.9 | 21 (34.4%) |
25–29.9 | 28 (45.9%) |
>30 | 12 (19.7%) |
Muscle Mass | Fat Mass | Weight | |
---|---|---|---|
Decrease | 36 (59.0) | 26 (42.6) | 39 (63.9) |
Increase | 23 (37.7) | 34 (55.7) | 22 (36.1) |
No change | 2 (3.3) | 1 (1.6) | 0 |
Daily percentage change | −0.07 ± 0.25 | 0.05 ± 0.44 | −0.03 ± 0.13 |
Variables | Muscle Mass | Weight | ||
---|---|---|---|---|
Pearson’s r | p-Value | Pearson’s r | p-Value | |
Energy intake | 0.09 | 0.48 | 0.12 | 0.34 |
Protein intake | 0.16 | 0.21 | 0.1 | 0.15 |
Decreased appetite | −0.18 | 0.15 | −0.14 | 0.27 |
Experience of residual flavor | −0.14 | 0.30 | −0.08 | 0.56 |
Variables | Decrease in Muscle Mass | No Decrease in Muscle Mass | ||||
---|---|---|---|---|---|---|
Intake | Decreased (%) | Unchanged (%) | Increased (%) | Decreased (%) | Unchanged (%) | Increased (%) |
Meat | 70.3 | 21.6 | 8.1 | 60.9 | 13.0 | 26.1 |
Fruit and vegetables | 57.9 | 10.5 | 31.6 | 60.9 | 21.7 | 17.4 |
Dairy | 52.6 | 29.0 | 18.4 | 65.2 | 13.1 | 21.7 |
Grain and cereal | 63.2 | 26.3 | 10.5 | 52.2 | 34.8 | 13.0 |
Soft drinks | 44.7 | 21.1 | 34.2 | 34.8 | 13.0 | 52.2 |
Variables | Muscle Mass | Weight | ||
---|---|---|---|---|
Estimate | p-Value | Estimate | p-Value | |
Increase in intake | ||||
Meat | −0.09 | 0.54 | −0.18 | 0.009 |
Fruit and vegetables | −0.07 | 0.47 | 0.01 | 0.74 |
Dairy | 0.01 | 0.90 | 0.03 | 0.49 |
Grain and cereal | 0.17 | 0.20 | 0.08 | 0.15 |
Soft drinks | 0.04 | 0.60 | 0.07 | 0.02 |
Meat preference | ||||
Red meat | 0.18 | 0.33 | −0.002 | 0.98 |
Dark meat | 0.20 | 0.07 | 0.02 | 0.69 |
Light meat | 0.07 | 0.42 | 0.05 | 0.20 |
Fruit and vegetables preferences | ||||
Sweet | −0.01 | 0.90 | −0.07 | 0.15 |
Sour | −0.01 | 0.89 | 0.006 | 0.82 |
Bitter | 0.05 | 0.31 | 0.01 | 0.68 |
Dairy preferences | ||||
Sweet | −0.03 | 0.45 | −0.02 | 0.63 |
Sour | 0.03 | 0.49 | 0.001 | 0.95 |
Salty | −0.02 | 0.67 | 0.006 | 0.78 |
Umami | 0.004 | 0.94 | −0.008 | 0.70 |
Grain and cereal preferences | ||||
Sweet | −0.01 | 0.81 | 0.02 | 0.44 |
Sour | −0.01 | 0.74 | −0.001 | 0.95 |
Bitter | 0.03 | 0.55 | 0.05 | 0.03 |
Soft drink preferences | ||||
Sweet | −0.0009 | 0.99 | −0.01 | 0.66 |
Sour | 0.03 | 0.58 | 0.002 | 0.94 |
Bitter | −0.01 | 0.85 | 0.006 | 0.72 |
Variables | Muscle Mass | Weight | ||
---|---|---|---|---|
Pearson’s r | p-Value | Pearson’s r | p-Value | |
QoL | ||||
Physical | −0.34 | 0.007 | −0.05 | 0.70 |
Social | −0.25 | 0.05 | 0.10 | 0.43 |
Emotional | −0.23 | 0.08 | −0.15 | 0.26 |
Functional | −0.26 | 0.05 | 0.01 | 0.92 |
Self-perceived health 1 | 0.37 | 0.004 | 0.21 | 0.10 |
Self-perceived QoL 1 | 0.34 | 0.007 | 0.17 | 0.19 |
Physical activity | ||||
PAL | 0.37 | 0.003 | 0.17 | 0.18 |
Eating and TV-habits | ||||
Eating with others | 0.05 | 0.72 | 0.04 | 0.78 |
Eating alone | −0.02 | 0.90 | −0.21 | 0.11 |
TV on with others | −0.06 | 0.66 | 0.008 | 0.95 |
TV on alone | 0.08 | 0.54 | −0.06 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staxen, C.S.; Andersen, S.E.; Pedersen, L.M.; Poulsen, C.B.; Andersen, J.R. Nutrition and Lifestyle-Related Factors as Predictors of Muscle Atrophy in Hematological Cancer Patients. Nutrients 2024, 16, 283. https://doi.org/10.3390/nu16020283
Staxen CS, Andersen SE, Pedersen LM, Poulsen CB, Andersen JR. Nutrition and Lifestyle-Related Factors as Predictors of Muscle Atrophy in Hematological Cancer Patients. Nutrients. 2024; 16(2):283. https://doi.org/10.3390/nu16020283
Chicago/Turabian StyleStaxen, Christiane S., Sara E. Andersen, Lars M. Pedersen, Christian B. Poulsen, and Jens R. Andersen. 2024. "Nutrition and Lifestyle-Related Factors as Predictors of Muscle Atrophy in Hematological Cancer Patients" Nutrients 16, no. 2: 283. https://doi.org/10.3390/nu16020283
APA StyleStaxen, C. S., Andersen, S. E., Pedersen, L. M., Poulsen, C. B., & Andersen, J. R. (2024). Nutrition and Lifestyle-Related Factors as Predictors of Muscle Atrophy in Hematological Cancer Patients. Nutrients, 16(2), 283. https://doi.org/10.3390/nu16020283