Impact of CYP1A2 Genotypes on the Ergogenic Effects and Subjective Mood States of Caffeine Ingestion in Resistance-Trained Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
Testing Protocol
2.3. Genotype Analysis
2.4. Statistical Design
3. Results
3.1. Participant Characteristics
3.2. Exercise Performance
3.2.1. Maximum Strength (1RM)
3.2.2. Muscular Endurance (RTF)
3.2.3. Anaerobic Power
3.2.4. Subjective Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salinero, J.; Lara, B.; Ruiz-Vicente, D.; Areces, F.; Puente-Torres, C.; Gallo-Salazar, C.; Pascual, T.; Del Coso, J. CYP1A2 genotype variations do not modify the benefits and drawbacks of caffeine during exercise: A pilot study. Nutrients 2017, 9, 269. [Google Scholar] [CrossRef]
- Rahimi, R. The effect of CYP1A2 genotype on the ergogenic properties of caffeine during resistance exercise: A randomized, double-blind, placebo-controlled, crossover study. Ir. J. Med. Sci. 2019, 188, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Sachse, C.; Brockmöller, J.; Bauer, S.; Roots, I. Functional significance of a C→A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br. J. Clin. Pharm. 1999, 47, 445–449. [Google Scholar] [CrossRef]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sports Nut. 2021, 18, 1. [Google Scholar] [CrossRef]
- Lane, J.D.; Steege, J.F.; Rupp, S.L.; Kuhn, C.M. Menstrual cycle effects on caffeine elimination in the human female. Eur. J. Clin. Pharm. 1992, 43, 543–546. [Google Scholar] [CrossRef] [PubMed]
- Nehlig, A. Interindividual differences in caffeine metabolism and factors driving caffeine consumption. Pharm. Rev. 2018, 70, 384–411. [Google Scholar] [CrossRef]
- Ruiz-Moreno, C.; Lara, B.; Salinero, J.J.; Brito de Souza, D.; Ordovas, J.M.; Del Coso, J. Time course of tolerance to adverse effects associated with the ingestion of a moderate dose of caffeine. Eur. J. Nutr. 2020, 59, 3293–3302. [Google Scholar] [CrossRef] [PubMed]
- Stadheim, H.K.; Spencer, M.; Olsen, R.; Jensen, J. Caffeine and performance over consecutive days of simulated competition. Med. Sci. Sport Exerc. 2014, 46, 1787–1796. [Google Scholar] [CrossRef]
- Womack, C.J.; Saunders, M.J.; Bechtel, M.K.; Bolton, D.J.; Martin, M.; Luden, N.D.; Dunham, W.; Hancock, M. The influence of a CYP1A2 polymorphism on the ergogenic effects of caffeine. J. Int. Soc. Sports Nutr. 2012, 9, 7. [Google Scholar] [CrossRef]
- Guest, N.; Corey, P.; Vescovi, J.; El-Sohemy, A. Caffeine, CYP1A2 genotype, and endurance performance in athletes. Med. Sci. Sports Exerc. 2018, 50, 1570–1578. [Google Scholar] [CrossRef]
- Algrain, H.A.; Thomas, R.M.; Carrillo, A.E.; Ryan, E.J.; Kim, C.; Lettan, R.B.; Ryan, E.J. The effects of a polymorphism in the cytochrome P450 CYP1A2 gene on performance enhancement with caffeine in recreational cyclists. J. Caffeine Res. 2016, 6, 34–39. [Google Scholar] [CrossRef]
- Pataky, M.W.; Womack, C.J.; Saunders, M.J.; Goffe, J.L.; D’Lugos, A.C.; El-Sohemy, A.; Luden, N.D. Caffeine and 3-km cycling performance: Effects of mouth rinsing, genotype, and time of day. Scand. J. Med. Sci. Sports 2015, 26, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Giersch, G.E.; Boyett, J.C.; Hargens, T.A.; Luden, N.D.; Saunders, M.J.; Daley, H.; Hughey, C.A.; El-Sohemy, A.; Womack, C.J. The effect of the CYP1A2 −163 C>A polymorphism on caffeine metabolism and subsequent cycling performance. J. Caffeine Adenosine Res. 2018, 8, 65–70. [Google Scholar] [CrossRef]
- Grgic, J.; Pickering, C.; Bishop, D.J.; Schoenfeld, B.J.; Mikulic, P.; Pedisic, Z. CYP1A2 genotype and acute effects of caffeine on resistance exercise, jumping, and sprinting performance. J. Int. Soc. Sports Nutr. 2020, 17, 21. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, A.; López-Samanes, Á.; Aguilar-Navarro, M.; Varillas-Delgado, D.; Rivilla-García, J.; Moreno-Pérez, V.; Del Coso, J. Effects of CYP1A2 and ADORA2A genotypes on the ergogenic response to caffeine in professional handball players. Genes 2020, 11, 933. [Google Scholar] [CrossRef] [PubMed]
- Puente, C.; Abián-Vicén, J.; Del Coso, J.; Lara, B.; Salinero, J.J. The CYP1A2 -163C>A polymorphism does not alter the effects of caffeine on basketball performance. PLoS ONE 2018, 13, e0195943. [Google Scholar] [CrossRef] [PubMed]
- Barreto, G.; Grecco, B.; Merola, P.; Eduardo Goncalves Reis, C.; Gualano, B.; Saunders, B. Novel Insights on caffeine supplementation, CYP1A2 genotype, physiological responses and exercise performance. Eur. J. App. Phys. 2021, 121, 749–769. [Google Scholar] [CrossRef]
- Song, M.K.; Lin, F.C.; Ward, S.E.; Fine, J.P. Composite variables: When and how. Nurs. Res. 2013, 62, 45–49. [Google Scholar] [CrossRef]
- Alkharusi, H. A descriptive analysis and interpretation of data from Likert scales in educational and psychological research. Indian J. Psychol. Educ. 2022, 12, 13–16. [Google Scholar]
- Bucher, J.; Fitzpatrick, D.; Swanson, A.G.; Abraham, S.P. Caffeine intake habits ad the perception of its effects on health among college students. Health Care Manag. 2019, 38, 44–49. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Spineli, H.; Pinto, M.; Dos Santos, B.; Lima-Silva, A.; Bertuzzi, R.; Gitaí, D.; Araujo, G. Caffeine improves various aspects of athletic performance in adolescents independent of their 163 C > A CYP1A2 genotypes. Scand. J. Med. Sci. Sports 2020, 30, 1869–1877. [Google Scholar] [CrossRef] [PubMed]
- Marriott, B.M.; Penetar, D.M.; McCann, U.; Thorne, D.; Scheling, A.; Galinski, C.; Sing, H.; Thomas, M.; Belenky, G. Effects of caffeine on cognitive performance, mood, and alertness in sleep-deprived humans. In Food Components to Enhance Performance: An Evaluation of Potential Performance-Enhancing Food Components for Operational Rations; Essay; National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- Nehlig, A. Is caffeine a cognitive enhancer? J. Alzheimers Dis. 2010, 20 (Suppl. S1), S85–S94. [Google Scholar] [CrossRef] [PubMed]
- Doepker, C.; Lieberman, H.R.; Smith, A.P.; Peck, J.D.; El-Sohemy, A.; Welsh, B.T. Caffeine: Friend or Foe? Annu. Rev. Food Sci. Technol. 2016, 7, 117–137. [Google Scholar] [CrossRef] [PubMed]
- Wikoff, D.; Welsh, B.T.; Henderson, R.; Brorby, G.P.; Britt, J.; Myers, E.; Goldberger, J.; Lieberman, H.R.; O’Brien, C.; Peck, J.; et al. Systematic review of the potential adverse effects of caffeine consumption in healthy adults, pregnant women, adolescents, and children. Food Chem. Toxicol. 2017, 109 Pt 1, 585–648. [Google Scholar] [CrossRef] [PubMed]
Characteristic | FAST (n = 20) | SLOW (n = 16) |
---|---|---|
Age (yrs) | 21.6 ± 2.2 | 22.3 ± 3.8 |
Height (cm) | 163.2 ± 9.6 | 165.6 ± 5.3 |
Weight (kg) | 70.3 ± 15.4 | 68.7 ± 14.3 |
Lean Body Mass (kg) | 45.2 ± 8.3 | 43.4 ± 7.2 |
Fat Mass (kg) | 20.5 ± 8.9 | 20.4 ± 9.7 |
Percent Body Fat (%) | 29.4 ± 7.1 | 29.9 ± 7.2 |
Follow-Up Variable | CAF | PLA | p-Value |
---|---|---|---|
Dizziness | 0.76 ± 1.075 | 0.35 ± 0.812 | 0.003 * |
Headache | 0.44 ± 0.991 | 0.35 ± 0.774 | 0.608 |
Fast/Racing Heart Rate | 1.79 ± 1.338 | 1.74 ± 1.421 | 0.754 |
Heart Skipping/Palpitations | 0.24 ± 0.699 | 0.15 ± 0.558 | 0.586 |
Shortness of Breath | 1.32 ± 1.364 | 1.26 ± 1.483 | 0.494 |
Nervousness | 0.59 ± 1.048 | 0.35 ± 0.849 | 0.304 |
Blurred Vision | 0.26 ± 0.618 | 0.09 ± 0.288 | 0.084 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prather, J.M.; Florez, C.M.; Vargas, A.; Soto, B.; Ross, A.; Harrison, A.; Secrest, A.H.; Willoughby, D.S.; Kutter, S.; Taylor, L.W. Impact of CYP1A2 Genotypes on the Ergogenic Effects and Subjective Mood States of Caffeine Ingestion in Resistance-Trained Women. Nutrients 2024, 16, 2767. https://doi.org/10.3390/nu16162767
Prather JM, Florez CM, Vargas A, Soto B, Ross A, Harrison A, Secrest AH, Willoughby DS, Kutter S, Taylor LW. Impact of CYP1A2 Genotypes on the Ergogenic Effects and Subjective Mood States of Caffeine Ingestion in Resistance-Trained Women. Nutrients. 2024; 16(16):2767. https://doi.org/10.3390/nu16162767
Chicago/Turabian StylePrather, Jessica M., Christine M. Florez, Amie Vargas, Bella Soto, Audrey Ross, Abby Harrison, Ariane H. Secrest, Darryn S. Willoughby, Sydney Kutter, and Lem W. Taylor. 2024. "Impact of CYP1A2 Genotypes on the Ergogenic Effects and Subjective Mood States of Caffeine Ingestion in Resistance-Trained Women" Nutrients 16, no. 16: 2767. https://doi.org/10.3390/nu16162767
APA StylePrather, J. M., Florez, C. M., Vargas, A., Soto, B., Ross, A., Harrison, A., Secrest, A. H., Willoughby, D. S., Kutter, S., & Taylor, L. W. (2024). Impact of CYP1A2 Genotypes on the Ergogenic Effects and Subjective Mood States of Caffeine Ingestion in Resistance-Trained Women. Nutrients, 16(16), 2767. https://doi.org/10.3390/nu16162767