Sex- and Age-Specific Differences in Mice Fed a Ketogenic Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Animal Model
2.3. Animal Diets
2.4. Measurement of Food and Caloric Intake
2.5. Glucose Tolerance Testing
2.6. Tissue Harvest
2.7. Rotarod Performance Test
2.8. Open Field Test
2.9. Blood and Serum Analysis
2.10. Statistical Analysis
3. Results
3.1. Sex and Aging Differences in Anthropometric Measures in Response to Ketogenic Diet
3.2. Changes in Serum Ketone Body and Lipid Metabolism after Ketogenic Diet
3.3. Assessment of Glucose Metabolism in Mice Fed the Ketogenic Diet
3.4. Lipid Accumulation and Glycogen Depletion in Heart, Liver, and Skeletal Muscle
3.5. Behavioral Testing in Mice Fed the Ketogenic Diet
3.6. Analysis of Sex Hormones after Ketogenic Diet
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cotter, D.G.; Schugar, R.C.; Crawford, P.A. Ketone Body Metabolism and Cardiovascular Disease. Am. J. Physiol. Heart Circ. Physiol. 2013, 304, H1060–H1076. [Google Scholar] [CrossRef]
- Kolwicz, S.C., Jr. Ketone Body Metabolism in the Ischemic Heart. Front. Cardiovasc. Med. 2021, 8, 789458. [Google Scholar] [CrossRef]
- Aubert, G.; Martin, O.J.; Horton, J.L.; Lai, L.; Vega, R.B.; Leone, T.C.; Koves, T.; Gardell, S.J.; Kruger, M.; Hoppel, C.L.; et al. The Failing Heart Relies on Ketone Bodies as a Fuel. Circulation 2016, 133, 698–705. [Google Scholar] [CrossRef]
- Bedi, K.C., Jr.; Snyder, N.W.; Brandimarto, J.; Aziz, M.; Mesaros, C.; Worth, A.J.; Wang, L.L.; Javaheri, A.; Blair, I.A.; Margulies, K.B.; et al. Evidence for Intramyocardial Disruption of Lipid Metabolism and Increased Myocardial Ketone Utilization in Advanced Human Heart Failure. Circulation 2016, 133, 706–716. [Google Scholar] [CrossRef] [PubMed]
- Cox, P.J.; Kirk, T.; Ashmore, T.; Willerton, K.; Evans, R.; Smith, A.; Murray, A.J.; Stubbs, B.; West, J.; McLure, S.W.; et al. Nutritional Ketosis Alters Fuel Preference and Thereby Endurance Performance in Athletes. Cell Metab. 2016, 24, 256–268. [Google Scholar] [CrossRef]
- Holcomb, L.E.; O’Neill, C.C.; DeWitt, E.A.; Kolwicz, S.C., Jr. The Effects of Fasting or Ketogenic Diet on Endurance Exercise Performance and Metabolism in Female Mice. Metabolites 2021, 11, 397. [Google Scholar] [CrossRef] [PubMed]
- Holcomb, L.E.; Rowe, P.; O’Neill, C.C.; DeWitt, E.A.; Kolwicz, S.C., Jr. Sex Differences in Endurance Exercise Capacity and Skeletal Muscle Lipid Metabolism in Mice. Physiol. Rep. 2022, 10, e15174. [Google Scholar] [CrossRef]
- Peterman, M.G. The Ketogenic Diet in Epilepsy. JAMA 1925, 84, 1979–1983. [Google Scholar] [CrossRef]
- Wilder, R.M. The Effect of Ketonemia on the Course of Epilepsy. Mayo Clin. Bull. 1921, 2, 307–308. [Google Scholar]
- Wheless, J.W. History of the Ketogenic Diet. Epilepsia 2008, 49 (Suppl. 8), 3–5. [Google Scholar] [CrossRef]
- Browning, J.D.; Baker, J.A.; Rogers, T.; Davis, J.; Satapati, S.; Burgess, S.C. Short-Term Weight Loss and Hepatic Triglyceride Reduction: Evidence of a Metabolic Advantage with Dietary Carbohydrate Restriction. Am. J. Clin. Nutr. 2011, 93, 1048–1052. [Google Scholar] [CrossRef] [PubMed]
- Garbow, J.R.; Doherty, J.M.; Schugar, R.C.; Travers, S.; Weber, M.L.; Wentz, A.E.; Ezenwajiaku, N.; Cotter, D.G.; Brunt, E.M.; Crawford, P.A. Hepatic Steatosis, Inflammation, and Er Stress in Mice Maintained Long Term on a Very Low-Carbohydrate Ketogenic Diet. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 300, G956–G967. [Google Scholar] [CrossRef] [PubMed]
- de Koning, L.; Fung, T.T.; Liao, X.; Chiuve, S.E.; Rimm, E.B.; Willett, W.C.; Spiegelman, D.; Hu, F.B. Low-Carbohydrate Diet Scores and Risk of Type 2 Diabetes in Men. Am. J. Clin. Nutr. 2011, 93, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Dashti, H.M.; NAl-Zaid, S.; Mathew, T.C.; Al-Mousawi, M.; Talib, H.; Asfar, S.K.; Behbahani, A.I. Long Term Effects of Ketogenic Diet in Obese Subjects with High Cholesterol Level. Mol. Cell Biochem. 2006, 286, 1–9. [Google Scholar] [CrossRef]
- Ellenbroek, J.H.; van Dijck, L.; Tons, H.A.; Rabelink, T.J.; Carlotti, F.; Ballieux, B.E.; de Koning, E.J. Long-Term Ketogenic Diet Causes Glucose Intolerance and Reduced Beta- and Alpha-Cell Mass but No Weight Loss in Mice. Am. J. Physiol. Endocrinol. Metab. 2014, 306, E552–E558. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.J.; Sharma, A.P.; Ross, M.L.; Welvaert, M.; Slater, G.J.; Burke, L.M. Chronic Ketogenic Low Carbohydrate High Fat Diet Has Minimal Effects on Acid-Base Status in Elite Athletes. Nutrients 2018, 10, 236. [Google Scholar] [CrossRef] [PubMed]
- Shaw, D.M.; Merien, F.; Braakhuis, A.; Maunder, E.; Dulson, D.K. Effect of a Ketogenic Diet on Submaximal Exercise Capacity and Efficiency in Runners. Med. Sci. Sports Exerc. 2019, 51, 2135–2146. [Google Scholar] [CrossRef]
- Zinn, C.; Wood, M.; Williden, M.; Chatterton, S.; Maunder, E. Ketogenic Diet Benefits Body Composition and Well-Being but Not Performance in a Pilot Case Study of New Zealand Endurance Athletes. J. Int. Soc. Sports Nutr. 2017, 14, 22. [Google Scholar] [CrossRef]
- Greene, D.A.; Varley, B.J.; Hartwig, T.B.; Chapman, P.; Rigney, M. A Low-Carbohydrate Ketogenic Diet Reduces Body Mass without Compromising Performance in Powerlifting and Olympic Weightlifting Athletes. J. Strength Cond. Res. 2018, 32, 3373–3382. [Google Scholar] [CrossRef]
- Kephart, W.C.; Pledge, C.D.; Roberson, P.A.; Mumford, P.W.; Romero, M.A.; Mobley, C.B.; Martin, J.S.; Young, K.C.; Lowery, R.P.; Wilson, J.M.; et al. The Three-Month Effects of a Ketogenic Diet on Body Composition, Blood Parameters, and Performance Metrics in Crossfit Trainees: A Pilot Study. Sports 2018, 6, 1. [Google Scholar] [CrossRef]
- Paoli, A. Ketogenic Diet for Obesity: Friend or Foe? Int. J. Environ. Res. Public Health 2014, 11, 2092–2107. [Google Scholar] [CrossRef]
- Wilson, J.M.; Lowery, R.P.; Roberts, M.D.; Sharp, M.H.; Joy, J.M.; Shields, K.A.; Partl, J.; Volek, J.S.; D’Agostino, D. The Effects of Ketogenic Dieting on Body Composition, Strength, Power, and Hormonal Profiles in Resistance Training Males. J. Strength Cond. Res. 2017, 34, 3463–3474. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, M.L.; Usselman, C.W.; Ripplinger, C.M.; Carter, J.R.; DeLeon-Pennell, K.Y. Sex as a Biological Variable for Cardiovascular Physiology. Am. J. Physiol. Heart Circ. Physiol. 2024, 326, H459–H469. [Google Scholar] [CrossRef] [PubMed]
- Usselman, C.W.; Lindsey, M.L.; Robinson, A.T.; Habecker, B.A.; Taylor, C.E.; Merryman, W.D.; Kimmerly, D.; Bender, J.R.; Regensteiner, J.G.; Moreau, K.L.; et al. Guidelines on the Use of Sex and Gender in Cardiovascular Research. Am. J. Physiol. Heart Circ. Physiol. 2024, 326, H238–H255. [Google Scholar] [CrossRef] [PubMed]
- Newman, J.C.; Covarrubias, A.J.; Zhao, M.; Yu, X.; Gut, P.; Ng, C.P.; Huang, Y.; Haldar, S.; Verdin, E. Ketogenic Diet Reduces Midlife Mortality and Improves Memory in Aging Mice. Cell Metab. 2017, 26, 547–557.e8. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.N.; Wallace, M.A.; Tomilov, A.A.; Zhou, Z.; Marcotte, G.R.; Tran, D.; Perez, G.; Gutierrez-Casado, E.; Koike, S.; Knotts, T.A.; et al. A Ketogenic Diet Extends Longevity and Healthspan in Adult Mice. Cell Metab. 2017, 26, 539–546.e5. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.J.; Schell, J.R.; Chocron, E.S.; Varmazyad, M.; Xu, G.; Chen, W.H.; Martinez, G.M.; Dong, F.F.; Sreenivas, P.; Trevino, R., Jr.; et al. Ketogenic Diet Induces P53-Dependent Cellular Senescence in Multiple Organs. Sci. Adv. 2024, 10, eado1463. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, C.C.; Locke, E.J.; Sipf, D.A.; Thompson, J.H.; Drebushenko, E.K.; Berger, N.S.; Segich, B.S.; Kolwicz, S.C., Jr. The Effects of Exercise Training on Glucose Homeostasis and Muscle Metabolism in Type 1 Diabetic Female Mice. Metabolites 2022, 12, 948. [Google Scholar] [CrossRef]
- Harvey, K.L.; Holcomb, L.E.; Kolwicz, S.C., Jr. Ketogenic Diets and Exercise Performance. Nutrients 2019, 11, 2296. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, J.; Yang, S.; Gao, M.; Cao, L.; Li, X.; Hong, D.; Tian, S.; Sun, C. Effect of the Ketogenic Diet on Glycemic Control, Insulin Resistance, and Lipid Metabolism in Patients with T2dm: A Systematic Review and Meta-Analysis. Nutr. Diabetes 2020, 10, 38. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, X.; Zhang, J.; Jiang, T.; Zhang, Z.; Wang, Z.; Gong, M.; Zhao, L.; Zhang, C. Ketogenic Diets Induced Glucose Intolerance and Lipid Accumulation in Mice with Alterations in Gut Microbiota and Metabolites. mBio 2021, 12, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Ravaut, G.; Carneiro, A.; Mounier, C. Exploring the Impacts of Ketogenic Diet on Reversible Hepatic Steatosis: Initial Analysis in Male Mice. Front. Nutr. 2024, 11, 1290540. [Google Scholar] [CrossRef] [PubMed]
- Smolensky, I.; Zajac-Bakri, K.; Odermatt, T.S.; Bregere, C.; Cryan, J.F.; Guzman, R.; Timper, K.; Inta, D. Sex-Specific Differences in Metabolic Hormone and Adipose Tissue Dynamics Induced by Moderate Low-Carbohydrate and Ketogenic Diet. Sci. Rep. 2023, 13, 16465. [Google Scholar] [CrossRef]
- Kennedy, A.R.; Pissios, P.; Otu, H.; Roberson, R.; Xue, B.; Asakura, K.; Furukawa, N.; Marino, F.E.; Liu, F.F.; Kahn, B.B.; et al. A High-Fat, Ketogenic Diet Induces a Unique Metabolic State in Mice. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E1724–E1739. [Google Scholar] [CrossRef]
- Weber, A.; Medak, K.D.; Townsend, L.K.; Wright, D.C. Ketogenic Diet-Induced Weight Loss Occurs Independent of Housing Temperature and Is Followed by Hyperphagia and Weight Regain after Cessation in Mice. J. Physiol. 2022, 600, 4677–4693. [Google Scholar] [CrossRef]
- Garcia-Menendez, L.; Karamanlidis, G.; Kolwicz, S.; Tian, R. Substrain Specific Response to Cardiac Pressure Overload in C57bl/6 Mice. Am. J. Physiol. Heart Circ. Physiol. 2013, 305, H397–H402. [Google Scholar] [CrossRef] [PubMed]
- Nickel, A.G.; von Hardenberg, A.; Hohl, M.; Loffler, J.R.; Kohlhaas, M.; Becker, J.; Reil, J.C.; Kazakov, A.; Bonnekoh, J.; Stadelmaier, M.; et al. Reversal of Mitochondrial Transhydrogenase Causes Oxidative Stress in Heart Failure. Cell Metab. 2015, 22, 472–484. [Google Scholar] [CrossRef]
- Nilsson, J.; Ericsson, M.; Joibari, M.M.; Anderson, F.; Carlsson, L.; Nilsson, S.K.; Sjodin, A.; Buren, J. A Low-Carbohydrate High-Fat Diet Decreases Lean Mass and Impairs Cardiac Function in Pair-Fed Female C57bl/6j Mice. Nutr. Metab. 2016, 13, 79. [Google Scholar] [CrossRef]
- Popiolek-Kalisz, J. Ketogenic Diet and Cardiovascular Risk—State of the Art Review. Curr. Probl. Cardiol. 2024, 49, 102402. [Google Scholar] [CrossRef]
- Huang, Q.; Ma, S.; Tominaga, T.; Suzuki, K.; Liu, C. An 8-Week, Low Carbohydrate, High Fat, Ketogenic Diet Enhanced Exhaustive Exercise Capacity in Mice Part 2: Effect on Fatigue Recovery, Post-Exercise Biomarkers and Anti-Oxidation Capacity. Nutrients 2018, 10, 1339. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Huang, Q.; Yada, K.; Liu, C.; Suzuki, K. An 8-Week Ketogenic Low Carbohydrate, High Fat Diet Enhanced Exhaustive Exercise Capacity in Mice. Nutrients 2018, 10, 673. [Google Scholar] [CrossRef]
- Deacon, R.M. Measuring Motor Coordination in Mice. J. Vis. Exp. 2013, 75, e2609. [Google Scholar] [CrossRef]
- Kraeuter, A.K.; Guest, P.C.; Sarnyai, Z. The Open Field Test for Measuring Locomotor Activity and Anxiety-Like Behavior. Methods Mol. Biol. 2019, 1916, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Beckett, T.L.; Studzinski, C.M.; Keller, J.N.; Murphy, M.P.; Niedowicz, D.M. A Ketogenic Diet Improves Motor Performance but Does Not Affect Beta-Amyloid Levels in a Mouse Model of Alzheimer’s Disease. Brain Res. 2013, 1505, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Brownlow, M.L.; Benner, L.; D’Agostino, D.; Gordon, M.N.; Morgan, D. Ketogenic Diet Improves Motor Performance but Not Cognition in Two Mouse Models of Alzheimer’s Pathology. PLoS ONE 2013, 8, e75713. [Google Scholar] [CrossRef]
- Dearlove, D.J.; Faull, O.K.; Rolls, E.; Clarke, K.; Cox, P.J. Nutritional Ketoacidosis During Incremental Exercise in Healthy Athletes. Front. Physiol. 2019, 10, 290. [Google Scholar] [CrossRef]
- Evans, M.; Egan, B. Intermittent Running and Cognitive Performance after Ketone Ester Ingestion. Med. Sci. Sports Exerc. 2018, 50, 2330–2338. [Google Scholar] [CrossRef]
- Garner, S.; Davies, E.; Barkus, E.; Kraeuter, A.K. Ketogenic Diet Has a Positive Association with Mental and Emotional Well-Being in the General Population. Nutrition 2024, 124, 112420. [Google Scholar] [CrossRef] [PubMed]
- La-Vu, M.; Tobias, B.C.; Schuette, P.J.; Adhikari, A. To Approach or Avoid: An Introductory Overview of the Study of Anxiety Using Rodent Assays. Front. Behav. Neurosci. 2020, 14, 145. [Google Scholar] [CrossRef]
- Grabowska, K.; Grabowski, M.; Przybyla, M.; Pondel, N.; Barski, J.J.; Nowacka-Chmielewska, M.; Liskiewicz, D. Ketogenic Diet and Behavior: Insights from Experimental Studies. Front. Nutr. 2024, 11, 1322509. [Google Scholar] [CrossRef]
- Davidyan, A.; Pathak, S.; Baar, K.; Bodine, S.C. Maintenance of Muscle Mass in Adult Male Mice Is Independent of Testosterone. PLoS ONE 2021, 16, e0240278. [Google Scholar] [CrossRef] [PubMed]
- Habermehl, T.L.; Underwood, K.B.; Welch, K.D.; Gawrys, S.P.; Parkinson, K.C.; Schneider, A.; Masternak, M.M.; Mason, J.B. Aging-Associated Changes in Motor Function Are Ovarian Somatic Tissue-Dependent, but Germ Cell and Estradiol Independent in Post-Reproductive Female Mice Exposed to Young Ovarian Tissue. Geroscience 2022, 44, 2157–2169. [Google Scholar] [CrossRef] [PubMed]
- Klatt, K.C.; Bass, K.; Speakman, J.R.; Hall, K.D. Chowing Down: Diet Considerations in Rodent Models of Metabolic Disease. Life Metab. 2023, 2, load013. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Blazquez, R.; Alcala, M.; Fernandez-Alfonso, M.S.; Villa-Valverde, P.; Viana, M.; Gil-Ortega, M.; Somoza, B. Relevance of Control Diet Choice in Metabolic Studies: Impact in Glucose Homeostasis and Vascular Function. Sci. Rep. 2020, 10, 2902. [Google Scholar] [CrossRef]
- Schugar, R.C.; Huang, X.; Moll, A.R.; Brunt, E.M.; Crawford, P.A. Role of Choline Deficiency in the Fatty Liver Phenotype of Mice Fed a Low Protein, Very Low Carbohydrate Ketogenic Diet. PLoS ONE 2013, 8, e74806. [Google Scholar] [CrossRef]
- Liisberg, U.; Myrmel, L.S.; Fjaere, E.; Ronnevik, A.K.; Bjelland, S.; Fauske, K.R.; Holm, J.B.; Basse, A.L.; Hansen, J.B.; Liaset, B.; et al. The Protein Source Determines the Potential of High Protein Diets to Attenuate Obesity Development in C57bl/6j Mice. Adipocyte 2016, 5, 196–211. [Google Scholar] [CrossRef]
- Ijaz, M.U.; Ahmed, M.I.; Zou, X.; Hussain, M.; Zhang, M.; Zhao, F.; Xu, X.; Zhou, G.; Li, C. Beef, Casein, and Soy Proteins Differentially Affect Lipid Metabolism, Triglycerides Accumulation and Gut Microbiota of High-Fat Diet-Fed C57bl/6j Mice. Front. Microbiol. 2018, 9, 2200. [Google Scholar] [CrossRef]
- Pellizzon, M.A.; Ricci, M.R. The Common Use of Improper Control Diets in Diet-Induced Metabolic Disease Research Confounds Data Interpretation: The Fiber Factor. Nutr. Metab. 2018, 15, 3. [Google Scholar] [CrossRef]
- Tuck, C.J.; De Palma, G.; Takami, K.; Brant, B.; Caminero, A.; Reed, D.E.; Muir, J.G.; Gibson, P.R.; Winterborn, A.; Verdu, E.F.; et al. Nutritional Profile of Rodent Diets Impacts Experimental Reproducibility in Microbiome Preclinical Research. Sci. Rep. 2020, 10, 17784. [Google Scholar] [CrossRef]
- Cameron, K.M.; Speakman, J.R. The Extent and Function of ‘Food Grinding’ in the Laboratory Mouse (Mus Musculus). Lab. Anim. 2010, 44, 298–304. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sprankle, K.W.; Knappenberger, M.A.; Locke, E.J.; Thompson, J.H.; Vinovrski, M.F.; Knapsack, K.; Kolwicz, S.C., Jr. Sex- and Age-Specific Differences in Mice Fed a Ketogenic Diet. Nutrients 2024, 16, 2731. https://doi.org/10.3390/nu16162731
Sprankle KW, Knappenberger MA, Locke EJ, Thompson JH, Vinovrski MF, Knapsack K, Kolwicz SC Jr. Sex- and Age-Specific Differences in Mice Fed a Ketogenic Diet. Nutrients. 2024; 16(16):2731. https://doi.org/10.3390/nu16162731
Chicago/Turabian StyleSprankle, Kenyon W., Mya A. Knappenberger, Erica J. Locke, Jack H. Thompson, Madison F. Vinovrski, Kaylin Knapsack, and Stephen C. Kolwicz, Jr. 2024. "Sex- and Age-Specific Differences in Mice Fed a Ketogenic Diet" Nutrients 16, no. 16: 2731. https://doi.org/10.3390/nu16162731
APA StyleSprankle, K. W., Knappenberger, M. A., Locke, E. J., Thompson, J. H., Vinovrski, M. F., Knapsack, K., & Kolwicz, S. C., Jr. (2024). Sex- and Age-Specific Differences in Mice Fed a Ketogenic Diet. Nutrients, 16(16), 2731. https://doi.org/10.3390/nu16162731