Relationship between Markers of Gut Barrier Function and Erythrocyte Membrane PUFAs in Diarrhea-Predominant IBS Patients Undergoing a Low-FODMAP Diet
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Recruitment
2.2. Study Design
2.3. Intervention Diet
2.4. Symptom Profile
2.5. Assessment of Nutrient Intake
2.6. Anthropometric Profile Assessment
2.7. Intestinal Barrier Function Biomarkers and Integrity and the Indices of Inflammation
2.8. Sugar Absorption Test (SAT)
2.9. Fatty Acids Analysis
2.10. Statistical Analysis
3. Results
3.1. The Number of Patients, Their Anthropometric Traits, and the Intervention Diet
3.2. The Symptom Profile
3.3. Fecal and Serum Zonulin Levels
3.4. Gastrointestinal Permeability
3.5. PUFAs Profile
3.6. Biomarkers of Intestinal Barrier Integrity and the Indices of Inflammation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AA | Arachidonic Acid |
BMI | Body Mass Index |
DAO | diamine oxidase |
EPA | Eicosapentaenoic Acid |
FAMEs | Fatty acid methyl esters |
FAs | Fatty Acids |
FID | Flame ionization detector |
FODMAPs | fermentable oligosaccharides, disaccharides, monosaccharides, and polyols |
GI | Gastrointestinal |
H-FZ | patients with high levels of fecal zonulin |
IBS | Irritable bowel syndrome |
IBS-C | constipated IBS |
IBS-D | diarrheal IBS, |
IBS-M | mixed-pattern constipated and diarrheal IBS |
IBS-SSS | IBS-Severity Scoring System |
IBS-U | unclassified IBS |
IDARS | IBS diet adherence report scale |
I-FABP | intestinal-fatty acid-binding protein |
IL-6, IL-8, IL-10 | interleukins 6, 8, 10 |
Lac | Lactulose |
LFD | Low FODMAP Diet |
Man | Mannitol |
N-FZ | patients with normal levels of fecal zonulin |
PUFAs | Polyunsaturated fatty acids |
SAT | Sugar absorption testing |
s-IP | small intestinal permeability |
Suc | Sucrose |
TJs | Tight junctions |
TNF-α | Tumor Necrosis Factor-alpha |
References
- Huang, K.Y.; Wang, F.Y.; Lv, M.; Ma, X.X.; Tang, X.D.; Lv, L. Irritable bowel syndrome: Epidemiology, overlap disorders, pathophysiology and treatment. World J. Gastroenterol. 2023, 29, 4120–4135. [Google Scholar] [CrossRef] [PubMed]
- Lacy, B.E.; Patel, N.K. Rome Criteria and a Diagnostic Approach to Irritable Bowel Syndrome. J. Clin. Med. 2017, 6, 99. [Google Scholar] [CrossRef] [PubMed]
- Hanning, N.; Edwinson, A.L.; Ceuleers, H.; Peters, S.A.; De Man, J.G.; Hassett, L.C.; De Winter, B.Y.; Grover, M. Intestinal barrier dysfunction in irritable bowel syndrome: A systematic review. Therap Adv. Gastroenterol. 2021, 14, 1756284821993586. [Google Scholar] [CrossRef] [PubMed]
- Chelakkot, C.; Ghim, J.; Ryu, S.H. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp. Mol. Med. 2018, 50, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Linsalata, M.; Riezzo, G.; Clemente, C.; D’Attoma, B.; Russo, F. Noninvasive Biomarkers of Gut Barrier Function in Patients Suffering from Diarrhea Predominant-IBS: An Update. Dis. Markers 2020, 2020, 2886268. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Wang, X.; Huang, S.; Wang, H.; Shen, G. Low-level inflammation, immunity, and brain-gut axis in IBS: Unraveling the complex relationships. Gut Microbes 2023, 15, 2263209. [Google Scholar] [CrossRef] [PubMed]
- Kousparou, C.; Fyrilla, M.; Stephanou, A.; Patrikios, I. DHA/EPA (Omega-3) and LA/GLA (Omega-6) as Bioactive Molecules in Neurodegenerative Diseases. Int. J. Mol. Sci. 2023, 24, 10717. [Google Scholar] [CrossRef] [PubMed]
- Siriwardhana, N.; Kalupahana, N.S.; Fletcher, S.; Xin, W.; Claycombe, K.J.; Quignard-Boulange, A.; Zhao, L.; Saxton, A.M.; Moustaid-Moussa, N. n-3 and n-6 polyunsaturated fatty acids differentially regulate adipose angiotensinogen and other inflammatory adipokines in part via NF-κB-dependent mechanisms. J. Nutr. Biochem. 2012, 23, 1661–1667. [Google Scholar] [CrossRef]
- Rodrigues, P.B.; Dátilo, M.N.; Sant’Ana, M.R.; Nogueira, G.A.D.S.; Marin, R.M.; Nakandakari, S.C.B.R.; de Moura, L.P.; da Silva, A.S.R.; Ropelle, E.R.; Pauli, J.R.; et al. The early impact of diets enriched with saturated and unsaturated fatty acids on intestinal inflammation and tight junctions. J. Nutr. Biochem. 2023, 119, 109410. [Google Scholar] [CrossRef]
- Seethaler, B.; Nguyen, N.K.; Basrai, M.; Kiechle, M.; Walter, J.; Delzenne, N.M.; Bischoff, S.C. Short-chain fatty acids are key mediators of the favorable effects of the Mediterranean diet on intestinal barrier integrity: Data from the randomized controlled LIBRE trial. Am. J. Clin. Nutr. 2022, 116, 928–942. [Google Scholar] [CrossRef]
- Léniz, A.; Fernández-Quintela, A.; Arranz, S.; Portune, K.; Tueros, I.; Arana, E.; Castaño, L.; Velasco, O.; Portillo, M.P. Altered Red Blood Cell Fatty Acid and Serum Adipokine Profiles in Subjects with Obesity. Biomedicines 2023, 11, 3320. [Google Scholar] [CrossRef] [PubMed]
- Linsalata, M.; D’Attoma, B.; Orlando, A.; Guerra, V.; Russo, F. Comparison of an enzymatic assay with liquid chromatography-pulsed amperometric detection for the determination of lactulose and mannitol in urine of healthy subjects and patients with active celiac disease. Clin. Chem. Lab. Med. 2014, 52, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Seethaler, B.; Basrai, M.; Neyrinck, A.M.; Nazare, J.A.; Walter, J.; Delzenne, N.M.; Bischoff, S.C. Biomarkers for assessment of intestinal permeability in clinical practice. Am. J. Physiol. Gastrointest. Liver Physiol. 2021, 321, G11–G17. [Google Scholar] [CrossRef] [PubMed]
- Martínez Gallego, M.Á.; Crespo Sánchez, M.G.; Serrano Olmedo, M.G.; Buño Soto, A.; Álvarez Casasempere, S.; Nozal, P.; Martínez-Ojinaga, E.; Molina Arias, M.; Losantos-García, I.; Molero-Luis, M. Trends in Faecal Zonulin Concentrations in Paediatric Patients with Celiac Disease at Baseline and on a Gluten-Free Diet: Exploring Correlations with Other Faecal Biomarkers. Nutrients 2024, 16, 684. [Google Scholar] [CrossRef]
- Cai, Y.; Gong, D.; Xiang, T.; Zhang, X.; Pan, J. Markers of intestinal barrier damage in patients with chronic insomnia disorder. Front. Psychiatry 2024, 15, 1373462. [Google Scholar] [CrossRef]
- Dimidi, E.; Whelan, K. Food supplements and diet as treatment options in irritable bowel syndrome. Neurogastroenterol. Motil. 2020, 32, e13951. [Google Scholar] [CrossRef]
- Prospero, L.; Riezzo, G.; Linsalata, M.; Orlando, A.; D’Attoma, B.; Russo, F. Psychological and Gastrointestinal Symptoms of Patients with Irritable Bowel Syndrome Undergoing a Low-FODMAP Diet: The Role of the Intestinal Barrier. Nutrients 2021, 13, 2469. [Google Scholar] [CrossRef] [PubMed]
- Russo, F.; Riezzo, G.; Orlando, A.; Linsalata, M.; D’Attoma, B.; Prospero, L.; Ignazzi, A.; Giannelli, G. A Comparison of the Low-FODMAPs Diet and a Tritordeum-Based Diet on the Gastrointestinal Symptom Profile of Patients Suffering from Irritable Bowel Syndrome-Diarrhea Variant (IBS-D): A Randomized Controlled Trial. Nutrients 2022, 14, 1544. [Google Scholar] [CrossRef]
- Orlando, A.; Tutino, V.; Notarnicola, M.; Riezzo, G.; Linsalata, M.; Clemente, C.; Prospero, L.; Martulli, M.; D’Attoma, B.; De Nunzio, V.; et al. Improved Symptom Profiles and Minimal Inflammation in IBS-D Patients Undergoing a Long-Term Low-FODMAP Diet: A Lipidomic Perspective. Nutrients 2020, 12, 1652. [Google Scholar] [CrossRef]
- Schmulson, M.J.; A Drossman, D. What Is New in Rome IV. J. Neurogastroenterol. Motil. 2017, 23, 151–163. [Google Scholar] [CrossRef]
- Mårild, K.; Söderling, J.; Lebwohl, B.; Green, P.H.R.; Törnblom, H.; Simrén, M.; Staller, K.; Olén, O.; Ludvigsson, J.F. Association Between Celiac Disease and Irritable Bowel Syndrome: A Nationwide Cohort Study. Clin. Gastroenterol. Hepatol. 2024, 7, 1404–1415. [Google Scholar] [CrossRef] [PubMed]
- Francis, C.Y.; Morris, J.; Whorwell, P.J. The irritable bowel severity scoring system: A simple method of monitoring irritable bowel syndrome and its progress. Aliment. Pharmacol. Ther. 1997, 11, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Lomer, M.C.E. The low FODMAP diet in clinical practice: Where are we and what are the long-term considerations? Proc. Nutr. Soc. 2024, 83, 17–27. [Google Scholar] [CrossRef]
- Monash University. The Monash University Low FODMAP App. 2017. Available online: https://monashfodmap.com/ibs-central/i-have-ibs/get-the-app/ (accessed on 4 September 2019).
- Mínguez Pérez, M.; Benages Martínez, A. The Bristol scale—A useful system to assess stool form? Rev. Esp. Enferm. Dig. 2009, 101, 305–311. [Google Scholar]
- Hilsden, R.; Meddings, J.; Sutherland, L. Intestinal permeability changes in response to acetylsalicylic acid in relatives of patients with Crohn’s disease. Gastroenterology 1996, 110, 1395–1403. [Google Scholar] [CrossRef]
- Breil, C.; Vian, M.A.; Zemb, T.; Kunz, W.; Chemat, F. “Bligh and Dyer” and folch methods for solid–liquid–liquid extraction of lipids from microorganisms. comprehension of solvatation mechanisms and towards substitution with alternative solvents. Int. J. Mol. Sci. 2017, 18, 708. [Google Scholar] [CrossRef] [PubMed]
- Tutino, V.; Gigante, I.; Scavo, M.P.; Refolo, M.; De Nunzio, V.; Milella, R.A.; Caruso, M.G.; Notarnicola, M. Stearoyl-CoA-Desaturase-1 enzyme inhibition by grape skin extracts affects membrane fluidity in human colon cancer cell lines. Nutrients 2020, 12, 693. [Google Scholar] [CrossRef]
- Del Duca, E.; Sansone, A.; Sgrulletti, M.; Di Nolfo, F.; Chini, L.; Ferreri, C.; Moschese, V. Fatty-Acid-Based Membrane Lipidome Profile of Peanut Allergy Patients: An Exploratory Study of a Lifelong Health Condition. Int. J. Mol. Sci. 2022, 24, 120. [Google Scholar] [CrossRef] [PubMed]
- Holtmann, G.J.; Ford, A.C.; Talley, N.J. Pathophysiology of irritable bowel syndrome. Lancet Gastroenterol. Hepatol. 2016, 1, 133–146. [Google Scholar] [CrossRef]
- Irún, P.; Lanas, A.; Piazuelo, E. Omega-3 Polyunsaturated Fatty Acids and Their Bioactive Metabolites in gastrointestinal Malignancies Related to Unresolved Inflammation. A Review. Front. Pharmacol. 2019, 10, 852. [Google Scholar] [CrossRef]
- Durkin, L.A.; Childs, C.E.; Calder, P.C. Omega-3 Polyunsaturated Fatty Acids and the Intestinal Epithelium-A Review. Foods 2021, 10, 199. [Google Scholar] [CrossRef] [PubMed]
- Veres-Székely, A.; Szász, C.; Pap, D.; Szebeni, B.; Bokrossy, P.; Vannay, Á. Zonulin as a Potential Therapeutic Target in Microbiota-Gut-Brain Axis Disorders: Encouraging Results and Emerging Questions. Int. J. Mol. Sci. 2023, 24, 7548. [Google Scholar] [CrossRef]
- Singh, P.; Silvester, J.; Chen, X.; Xu, H.; Sawhney, V.; Rangan, V.; Iturrino, J.; Nee, J.; Duerksen, D.R.; Lembo, A. Serum zonulin is elevated in IBS and correlates with stool frequency in IBS-D. United Eur. Gastroenterol. J. 2019, 7, 709–715. [Google Scholar] [CrossRef]
- Piche, T. Tight junctions and IBS--the link between epithelial permeability, low-grade inflammation, and symptom generation? Neurogastroenterol. Motil. 2014, 26, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Chua, C.S.; Huang, S.Y.; Cheng, C.W.; Bai, C.H.; Hsu, C.Y.; Chiu, H.W.; Hsu, J.L. Fatty acid components in Asian female patients with irritable bowel syndrome. Medicine 2017, 96, e9094. [Google Scholar] [CrossRef] [PubMed]
- Clarke, G.; Fitzgerald, P.; Hennessy, A.A.; Cassidy, E.M.; Quigley, E.M.M.; Ross, P.; Stanton, C.; Cryan, J.F.; Dinan, T.G. Marked elevations in pro-inflammatory polyunsaturated fatty acid metabolites in females with irritable bowel syndrome. J. Lipid Res. 2010, 51, 1186–1192. [Google Scholar] [CrossRef]
- Nikolaki, M.D.; Kasti, A.N.; Katsas, K.; Petsis, K.; Lambrinou, S.; Patsalidou, V.; Stamatopoulou, S.; Karlatira, K.; Kapolos, J.; Papadimitriou, K.; et al. The Low-FODMAP Diet, IBS, and BCFAs: Exploring the Positive, Negative, and Less Desirable Aspects—A Literature Review. Microorganisms 2023, 11, 2387. [Google Scholar] [CrossRef] [PubMed]
- Peron, P.; Gargari, G.; Merono, T.; Mi~narro, A.; Vegas Lozano, E.; Escuder, P.C.; Gonzalez-Domínguez, R.; Nicole Hidalgo-Liberona, N.; Del Bo’, C.; Bernardi, S.; et al. Crosstalk among intestinal barrier, gut microbiota and serum metabolome after a polyphenol-rich diet in older subjects with “leaky gut”: The MaPLE trial. Clin. Nutr. 2021, 40, 5288–5297. [Google Scholar] [CrossRef] [PubMed]
- Barrett, J.S. How to institute the low-FODMAP diet. J. Gastroenterol. Hepatol. 2017, 32 (Suppl. 1), 8–10. [Google Scholar] [CrossRef] [PubMed]
- Bertin, L.; Zanconato, M.; Crepaldi, M.; Marasco, G.; Cremon, C.; Barbara, G.; Barberio, B.; Zingone, F.; Savarino, E.V. The Role of the FODMAP Diet in IBS. Nutrients 2024, 16, 370. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, Y.; Gao, H.; Li, D.; Jiang, R.; Ge, L.; Tong, C.; Xu, K. Associations among Dietary Omega-3 Polyunsaturated Fatty Acids, the Gut Microbiota, and Intestinal Immunity. Mediat. Inflamm. 2021, 2021, 8879227. [Google Scholar] [CrossRef]
- Usami, M.; Muraki, K.; Ivamoto, M.; Ohata, A.; Matsushita, E.; Miki, A. Effect of eicosapentaenoic acid (EPA) on tight junction permeability in intestinal monolayer cells. Clin. Nutr. 2001, 20, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Li, E.; Horn, N.; Ajuwon, K.M. EPA and DHA inhibit endocytosis of claudin-4 and protect against deoxynivalenol-induced intestinal barrier dysfunction through PPARγ dependent and independent pathways in jejunal IPEC-J2 cells. Food Res. Int. 2022, 157, 111420. [Google Scholar] [CrossRef] [PubMed]
- Hollander, D. Intestinal permeability, leaky gut, and intestinal disorders. Curr. Gastroenterol. Rep. 1999, 1, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Seethaler, B.; Lehnert, K.; Yahiaoui-Doktor, M.; Basrai, M.; Vetter, W.; Kiechle, M.; Bischoff, S.C. Omega-3 polyunsaturated fatty acids improve intestinal barrier integrity—Albeit to a lesser degree than short-chain fatty acids: An exploratory analysis of the randomized controlled LIBRE trial. Eur. J. Nutr. 2023, 62, 2779–2791. [Google Scholar] [CrossRef]
- Khoshbin, K.; Camilleri, M. Effects of dietary components on intestinal permeability in health and disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 319, G589–G608. [Google Scholar] [CrossRef]
Total Pre (n = 38) | Total Post (n = 38) | p | N-FZ Pre (n = 20) | N-FZ Post (n = 20) | p | H-FZ Pre (n = 18) | H-FZ Post (n = 18) | p | |
---|---|---|---|---|---|---|---|---|---|
Weight (kg) | 65.4 ± 1.9 | 62.0 ± 1.8 | <0.0001 | 64.0 ± 2.4 | 61.1 ± 2.3 | <0.0001 | 67 ± 3.0 | 62.9 ± 2.8 | <0.0001 |
Height (m) | 1.61 ± 0.01 | 1.61 ± 0.01 | 1.59 ± 0.01 | 1.59 ± 0.01 | 1.63 ± 0.02 | 1.63 ± 0.02 | |||
BMI (kg/m2) | 25.1 ± 0.7 | 23.8 ± 0.7 | <0.0001 | 25.2 ± 0.9 | 24.1 ± 0.8 | <0.0001 | 25.0 ± 1.1 | 23.5 ± 1.2 | <0.0001 |
Waist circumference (cm) | 79.3 ± 1.3 | 76.3 ± 1.7 | <0.0001 | 79.4 ± 2.5 | 76.9 ± 2.1 | 0.0027 | 79.1 ± 3.1 | 75.6 ± 2.9 | 0.0001 |
Red Blood Cell Membrane PUFAs (% rel) | Total Pre (n = 38) | Total Post (n = 38) | p | N-FZ Pre (n = 20) | N-FZ Post (n = 20) | p | H-FZ Pre (n = 18) | H-FZ Post (n = 18) | p | n.v. (% rel.) |
---|---|---|---|---|---|---|---|---|---|---|
C20:4n6 AA) | 17.42 ± 0.76 | 16.60 ± 0.69 | ns | 17.01 ± 1.32 | 15.92 ± 1.06 | ns | 17.88 ± 0.71 | 17.37 ± 0.84 | ns | 13–17 |
C20:5n3 (EPA) | 0.80 ± 0.08 | 0.91 ± 0.08 | ns | 0.92 ± 0.12 | 1.04 ± 0.14 | ns | 0.68 ± 0.09 | 0.76 ± 0.07 | ns | 0.5–0.9 |
n-6 PUFAs | 28.45 ± 0.79 | 26.64 ± 0.64 | 0.010 | 28.25 ± 1.25 | 26.75 ± 0.85 | ns | 28.67 ± 0.99 | 26.53 ± 0.99 | 0.025 | 24–34 |
n-3 PUFAs | 8.35 ± 0.55 | 8.52 ± 0.48 | ns | 9.74 ± 0.81 * | 8.89 ± 0.81 | ns | 6.81 ± 0.57 * | 8.12 ± 0.51 | 0.043 | 5.7–9 |
Total PUFAs | 36.86 ± 1.05 | 35.59 ± 0.85 | ns | 37.47 ± 1.64 | 35.45 ± 1.32 | ns | 36.19 ± 1.30 | 35.76 ± 1.08 | ns | 28–39 |
AA/EPA ratio | 28.50 ± 3.16 | 23.82 ± 2.55 | ns | 21.26 ± 2.21 *** | 20.59 ± 3.07 | ns | 36.54 ± 5.72 *** | 27.42 ± 4.11 | 0.048 | <15 |
n-6/n-3 PUFAs ratio | 4.17 ± 0.55 | 3.54 ± 0.22 | ns | 3.15 ± 0.22 ** | 3.51 ± 0.33 | ns | 5.31 ± 1.10 ** | 3.56 ± 0.29 | 0.002 | 3–4.5 |
Total Pre (n = 38) | Total Post (n = 38) | p | N-FZ Pre (n = 20) | N-FZ Post (n = 20) | p | H-FZ Pre (n = 18) | H-FZ Post (n = 18) | p | |
---|---|---|---|---|---|---|---|---|---|
IL-6 (pg/mL) | 5.31 ± 0.14 | 5.02 ± 0.12 | 0.021 | 5.14 ± 0.20 | 5.02 ± 0.19 | ns | 5.5 ± 0.19 | 5.02 ± 0.16 | 0.016 |
IL-8 (pg/mL) | 4.53 ± 0.39 | 4.12 ± 0.15 | ns | 4.03 ± 0.15 | 3.97 ± 0.12 | ns | 5.08 ± 0.79 | 4.13 ± 0.29 | 0.0045 |
IL-10 (pg/mL) | 2.85 ± 0.04 | 2.79 ± 0.04 | ns | 2.77 ± 0.04 | 2.72 ± 0.04 | ns | 2.91 ± 0.06 | 2.91 ± 0.08 | ns |
TNF-α (pg/mL) | 3.63 ± 0.14 | 3.64 ± 0.18 | ns | 3.44 ± 0.11 | 3.44 ± 0.13 | ns | 3.85 ± 0.27 | 3.86 ± 0.35 | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linsalata, M.; Ignazzi, A.; D’Attoma, B.; Riezzo, G.; Mallardi, D.; Orlando, A.; Prospero, L.; Notarnicola, M.; De Nunzio, V.; Pinto, G.; et al. Relationship between Markers of Gut Barrier Function and Erythrocyte Membrane PUFAs in Diarrhea-Predominant IBS Patients Undergoing a Low-FODMAP Diet. Nutrients 2024, 16, 2706. https://doi.org/10.3390/nu16162706
Linsalata M, Ignazzi A, D’Attoma B, Riezzo G, Mallardi D, Orlando A, Prospero L, Notarnicola M, De Nunzio V, Pinto G, et al. Relationship between Markers of Gut Barrier Function and Erythrocyte Membrane PUFAs in Diarrhea-Predominant IBS Patients Undergoing a Low-FODMAP Diet. Nutrients. 2024; 16(16):2706. https://doi.org/10.3390/nu16162706
Chicago/Turabian StyleLinsalata, Michele, Antonia Ignazzi, Benedetta D’Attoma, Giuseppe Riezzo, Domenica Mallardi, Antonella Orlando, Laura Prospero, Maria Notarnicola, Valentina De Nunzio, Giuliano Pinto, and et al. 2024. "Relationship between Markers of Gut Barrier Function and Erythrocyte Membrane PUFAs in Diarrhea-Predominant IBS Patients Undergoing a Low-FODMAP Diet" Nutrients 16, no. 16: 2706. https://doi.org/10.3390/nu16162706
APA StyleLinsalata, M., Ignazzi, A., D’Attoma, B., Riezzo, G., Mallardi, D., Orlando, A., Prospero, L., Notarnicola, M., De Nunzio, V., Pinto, G., & Russo, F. (2024). Relationship between Markers of Gut Barrier Function and Erythrocyte Membrane PUFAs in Diarrhea-Predominant IBS Patients Undergoing a Low-FODMAP Diet. Nutrients, 16(16), 2706. https://doi.org/10.3390/nu16162706