Can Functional Motor Capacity Influence Mortality in Advanced Chronic Kidney Disease Patients?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study of Functional Capacity and Muscle Strength
2.1.1. Functional Capacity Was Assessed Using the Following Tests
Short Physical Performance Battery Test (SPPB)
6-Minute Walk Test (6MWT)
Timed Up and Go Test (TUTG)
Sit-to-Stand Test (STS5)
2.1.2. Muscle Strength Was Assessed with the Hand Grip Test
2.2. Comorbidity
2.3. Frailty
2.4. Nutritional Status Study
2.4.1. Body Composition Study: Bioimpedance
2.4.2. Laboratory Parameters
2.5. Statistical Analysis
3. Results
3.1. General Characteristics of the Study Population
3.2. Mortality Outcome
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, M.M.; Shafat, Z.; Tazyeen, S.; Ali, R.; Almashjary, M.N.; Al-Raddadi, R.; Harakeh, S.; Alam, A.; Haque, S.; Ishrat, R. Identification of pathogenic genes associated with CKD: An integrated bioinformatics approach. Front. Genet. 2022, 13, 891055. [Google Scholar] [CrossRef] [PubMed]
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef]
- Mora-Gutiérrez, J.M.; Slon Roblero, M.F.; Castaño Bilbao, I.; Izquierdo Bautista, D.; Arteaga Coloma, J.; Martínez Velilla, N. Enfermedad renal crónica en el paciente anciano [Chronic kidney disease in the elderly patient]. Rev. Esp. Geriatr. Gerontol. 2017, 52, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Corsonello, A.; Mattace-Raso, F.; Tap, L.; Maggio, M.; Zerbinati, L.; Guarasci, F.; Cozza, A.; D’Alia, S.; Soraci, L.; Corigliano, V.; et al. Design and methodology of the chronic kidney disease as a dysmetabolic determinant of disability among older people (CKD-3D) study: A multicenter cohort observational study. Aging Clin. Exp. Res. 2021, 33, 2445–2451. [Google Scholar] [CrossRef] [PubMed]
- Bhat, P.R.; Urooj, A.; Nalloor, S. Changes in body composition in relation to estimated glomerular filtration rate and physical activity in predialysis chronic kidney disease. Chronic Dis. Transl. Med. 2022, 8, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhang, M.; Ye, T.; Wang, Z.; Yao, Y. Application of Bioelectrical Impedance Analysis in Nutritional Management of Patients with Chronic Kidney Disease. Nutrients 2023, 15, 3941. [Google Scholar] [CrossRef]
- Reinders, I.; Visser, M.; Schaap, L. Body weight and body composition in old age and their relationship with frailty. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 11–15. [Google Scholar] [CrossRef]
- Mishra, M.; Wu, J.; Kane, A.E.; Howlett, S.E. The intersection of frailty and metabolism. Cell Metab. 2024, 36, 893–911. [Google Scholar] [CrossRef]
- Arena, R.; Cahalin, L.P.; Borghi-Silva, A.; Phillips, S.A. Improving functional capacity in heart failure: The need for a multifaceted approach. Curr. Opin. Cardiol. 2014, 29, 467–474. [Google Scholar] [CrossRef]
- Kennard, A.; Glasgow, N.; Rainsford, S.; Talaulikar, G. Frailty in chronic kidney disease: Challenges in nephrology practice. A review of current literature. Intern. Med. J. 2023, 53, 465–472. [Google Scholar] [CrossRef]
- Yang, L.; He, Y.; Li, X. Physical function and all-cause mortality in patients with chronic kidney disease and end-stage renal disease: A systematic review and meta-analysis. Int. Urol. Nephrol. 2023, 55, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Ju, S.H.; Yi, H.S. Clinical features and molecular mechanism of muscle wasting in end stage renal disease. BMB Rep. 2023, 56, 426–438. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, Á.; Álvarez, G.; Russo, F.; San-José, B.; Sánchez-Tomero, J.A.; Barril, G. Is SPPB useful as a screening method of functional capacity in patients with advanced chronic kidney disease? Nephrology 2019, 39, 489–496. [Google Scholar] [CrossRef]
- Schrauben, S.J.; Chang, A.R. Functional Status in CKD: What Measures to Use? Kidney360 2021, 2, 608–610. [Google Scholar] [CrossRef] [PubMed]
- Painter, P.; Marcus, R.L. Assessing physical function and physical activity in patients with CKD. Clin. J. Am. Soc. Nephrol. 2013, 8, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Guralnik, J.M.; Ferrucci, L.; Simonsick, E.M.; Salive, M.E.; Wallace, R.B. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N. Engl. J. Med. 1995, 332, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. Med. Sci. 1994, 49, M85–M94. [Google Scholar] [CrossRef]
- ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117, Erratum in Am. J. Respir. Crit. Care Med. 2016, 193, 1185. [Google Scholar]
- Matos Casano, H.A.; Anjum, F. Six-Minute Walk Test. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar]
- Csuka, M.; McCarty, D.J. Simple method for measurement of lower extremity muscle strength. Am. J. Med. 1985, 78, 77–81. [Google Scholar] [CrossRef]
- Cruz-Montecinos, C.; Castro, R.T.M.; Otto-Yáñez, M.; Barros-Poblete, M.M.; Valencia, C.; Campos, A.; Jadue, L.; Barros, M.; Solis-Navarro, L.M.; Resqueti, V. Which sit-to-stand test best differentiates functional capacity in older people? Am. J. Phys. Med. Rehabil. 2024. [Google Scholar] [CrossRef]
- Alcazar, J.; Losa-Reyna, J.; Rodriguez-Lopez, C.; Alfaro-Acha, A.; Rodriguez-Mañas, L.; Ara, I.; García-García, F.J.; Alegre, L.M. The sit-to-stand muscle power test: An easy, inexpensive and portable procedure to assess muscle power in older people. Exp. Gerontol. 2018, 112, 38–43. [Google Scholar] [CrossRef]
- Leal, V.O.; Mafra, D.; Fouque, D.; Anjos, L.A. Use of handgrip strength in the assessment of the muscle function of chronic kidney disease patients on dialysis: A systematic review. Nephrol. Dial. Transplant. 2011, 26, 1354–1360. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.C.; Bufarah, M.N.B.; Balbi, A.L. Handgrip strength in end stage of renal disease: A narrative review. Nutrire 2018, 43, 14. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef] [PubMed]
- Eyre, S.; Stenberg, J.; Wallengren, O.; Keane, D.; Avesani, C.M.; Bosaeus, I.; Clyne, N.; Heimbürger, O.; Indurain, A.; Johansson, A.; et al. Bioimpedance analysis in patients with chronic kidney disease. J. Ren. Care 2023, 49, 147–157. [Google Scholar] [CrossRef]
- McGinlay, J.M.; Payne, R.B. Serum albumin by dye-binding: Bromocresol green or bromocresol purple? The case for conservatism. Ann. Clin. Biochem. 1988, 25, 417–421. [Google Scholar] [CrossRef]
- Serra-Prat, M.; Lorenzo, I.; Papiol, M.; Palomera, E.; Bartolomé, M.; Pleguezuelos, E.; Burdoy, E. Intracellular Water Content in Lean Mass as an Indicator of Muscle Quality in an Older Obese Population. J. Clin. Med. 2020, 9, 1580. [Google Scholar] [CrossRef]
- Tian, M.; Yuan, J.; Yu, F.; He, P.; Zhang, Q.; Zha, Y. Decreased intracellular water is associated with sarcopenic obesity in chronic haemodialysis patients. BMC Geriatr. 2023, 23, 630. [Google Scholar] [CrossRef]
- Nogueira, Á.; Álvarez, G.; Barril, G. Impact of the Nutrition-Inflammation Status on the Functionality of Patients with Chronic Kidney Disease. Nutrients 2022, 14, 4745. [Google Scholar] [CrossRef] [PubMed]
- Barril, G.; Nogueira, A.; Alvarez-García, G.; Núñez, A.; Sánchez-González, C.; Ruperto, M. Nutritional Predictors of Mortality after 10 Years of Follow-Up in Patients with Chronic Kidney Disease at a Multidisciplinary Unit of Advanced Chronic Kidney Disease. Nutrients 2022, 14, 3848. [Google Scholar] [CrossRef] [PubMed]
- Ekramzadeh, M.; Santoro, D.; Kopple, J.D. The Effect of Nutrition and Exercise on Body Composition, Exercise Capacity, and Physical Functioning in Advanced CKD Patients. Nutrients 2022, 14, 2129. [Google Scholar] [CrossRef]
- Hanna, R.M.; Ghobry, L.; Wassef, O.; Rhee, C.M.; Kalantar-Zadeh, K. A Practical Approach to Nutrition, Protein-Energy Wasting, Sarcopenia, and Cachexia in Patients with Chronic Kidney Disease. Blood Purif. 2020, 49, 202–211. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31, Erratum in Age Ageing 2019, 48, 601. [Google Scholar] [CrossRef]
- Hwang, S.H.; Lee, D.H.; Min, J.; Jeon, J.Y. Handgrip Strength as a Predictor of All-Cause Mortality in Patients With Chronic Kidney Disease Undergoing Dialysis: A Meta-Analysis of Prospective Cohort Studies. J. Ren. Nutr. 2019, 29, 471–479. [Google Scholar] [CrossRef]
- Wilkinson, T.J.; Miksza, J.; Yates, T.; Lightfoot, C.J.; Baker, L.A.; Watson, E.L.; Zaccardi, F.; Smith, A.C. Association of sarcopenia with mortality and end-stage renal disease in those with chronic kidney disease: A UK Biobank study. J. Cachexia Sarcopenia Muscle 2021, 12, 586–598. [Google Scholar] [CrossRef]
- de Fátima Ribeiro Silva, C.; Ohara, D.G.; Matos, A.P.; Pinto, A.C.P.N.; Pegorari, M.S. Short Physical Performance Battery as a Measure of Physical Performance and Mortality Predictor in Older Adults: A Comprehensive Literature Review. Int. J. Environ. Res. Public Health 2021, 18, 10612. [Google Scholar] [CrossRef]
- Pavasini, R.; Guralnik, J.; Brown, J.C.; di Bari, M.; Cesari, M.; Landi, F.; Vaes, B.; Legrand, D.; Verghese, J.; Wang, C.; et al. Short Physical Performance Battery and all-cause mortality: Systematic review and meta-analysis. BMC Med. 2016, 14, 215. [Google Scholar] [CrossRef]
- Belkin, M.D.; Doerfler, R.M.; Wagner l Zhan m Fink, J.C. Associations of Performance-Based Functional Assessments and Adverse Outcomes in CKD. Kidney360 2021, 2, 629–638. [Google Scholar] [CrossRef]
- Corsonello, A.; Soraci, L.; Ärnlöv, J.; Carlsson, A.C.; Mattace-Raso, F.; Tap, L.; Formiga, F.; Moreno-González, R.; Kostka, T.; Guligowska, A.; et al. The relevance of geriatric assessments on the association between chronic kidney disease stages and mortality among older people: A secondary analysis of a multicentre cohort study. Age Ageing 2022, 51, afac168. [Google Scholar] [CrossRef]
- Lattanzio, F.; Corsonello, A.; Montesanto, A.; Abbatecola, A.M.; Lofaro, D.; Passarino, G.; Fusco, S.; Corica, F.; Pedone, C.; Maggio, M.; et al. Disentangling the Impact of Chronic Kidney Disease, Anemia, and Mobility Limitation on Mortality in Older Patients Discharged from Hospital. J. Gerontol. A Biol. Sci. Med. Sci. 2015, 70, 1120–1127. [Google Scholar] [CrossRef]
- Soto, R.; Díaz, L.A.; Rivas, V.; Fuentes-López, E.; Zalaquett, M.; Bruera, M.J.; González, C.; Mezzano, G.; Benítez, C. Frailty and reduced gait speed are independently related to mortality of cirrhotic patients in long-term follow-up. Ann. Hepatol. 2021, 25, 100327. [Google Scholar] [CrossRef]
- Vestergaard, S.; Patel, K.V.; Bandinelli, S.; Ferrucci, L.; Guralnik, J.M. Characteristics of 400-meter walk test performance and subsequent mortality in older adults. Rejuvenation Res. 2009, 12, 177–184. [Google Scholar] [CrossRef]
- Souza, R.; Channick, R.N.; Delcroix, M.; Galiè, N.; Ghofrani, H.-A.; Jansa, P.; Le Brun, F.-O.; Mehta, S.; Perchenet, L.; Pulido, T.; et al. Association between six-minute walk distance and long-term outcomes in patients with pulmonary arterial hypertension: Data from the randomized SERAPHIN trial. PLoS ONE 2018, 13, e0193226. [Google Scholar] [CrossRef]
- Roshanravan, B.; Robinson-Cohen, C.; Patel, K.V.; Ayers, E.; Littman, A.J.; de Boer, I.H.; Ikizler, T.A.; Himmelfarb, J.; Katzel, L.I.; Kestenbaum, B.; et al. Association between physical performance and all-cause mortality in CKD. J. Am. Soc. Nephrol. 2013, 24, 822–830. [Google Scholar] [CrossRef]
- Díaz, P.; Orellana, J.; Soto, C. Incremental Shuttle Walking Test (Incremental Shuttle Walking Test) in healthy children. Rev. Chil. Enfermedades Respir. 2018, 34, 160–164. [Google Scholar]
- Tudor-Locke, C.; Craig, C.L.; Thyfault, J.P.; Spence, J.C. A step-defined sedentary lifestyle index: <5000 steps/day. Appl. Physiol. Nutr. Metab. 2013, 38, 100–114. [Google Scholar] [PubMed]
- Paluch, A.E.; Gabriel, K.P.; Fulton, J.E.; Lewis, C.E.; Schreiner, P.J.; Sternfeld, B.; Sidney, S.; Siddique, J.; Whitaker, K.M.; Carnethon, M.R. Steps per Day and All-Cause Mortality in Middle-aged Adults in the Coronary Artery Risk Development in Young Adults Study. JAMA Netw. Open 2021, 4, e2124516. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.S.; Hyde, E.T.; Bassett, D.R.; Carlson, S.A.; Carnethon, M.R.; Ekelund, U.; Evenson, K.R.; Galuska, D.A.; Kraus, W.E.; Lee, I.M.; et al. Systematic review of the prospective association of daily step counts with risk of mortality, cardiovascular disease, and dysglycemia. Int. J. Behav. Nutr. Phys. Act 2020, 17, 78. [Google Scholar] [CrossRef]
- Wang, Y.; Nie, J.; Ferrari, G.; Rey-Lopez, J.P.; Rezende, L.F.M. Association of Physical Activity Intensity with Mortality: A National Cohort Study of 403,681 US Adults. JAMA Intern. Med. 2021, 181, 203–211. [Google Scholar] [CrossRef]
- Kim, J.C.; Kalantar-Zadeh, K.; Kopple, J.D. Frailty and protein-energy wasting in elderly patients with end stage kidney disease. J. Am. Soc. Nephrol. 2013, 24, 337–351. [Google Scholar] [CrossRef]
- Clarke, A.L.; Zaccardi, F.; Gould, D.W.; Hull, K.L.; Smith, A.C.; Burton, J.O.; Yates, T. Association of self-reported physical function with survival in patients with chronic kidney disease. Clin. Kidney J. 2019, 12, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Kohzuki, M.; Ono, M.; Muto, M.; Osugi, T.; Kawamura, K.; Naganuma, W.; Sato, M.; Shishito, N. Association between physical activity and change in renal function in patients after acute myocardial infarction. PLoS ONE 2019, 14, e0212100. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, M.J.; Bennett, P.N.; Fraser, S.F.; Warmington, S.A. Exercise interventions for improving objective physical function in patients with end-stage kidney disease on dialysis: A systematic review and meta-analysis. Am. J. Physiol. Renal Physiol. 2019, 316, F856–F872. [Google Scholar] [CrossRef]
- Joo, Y.S.; Jhee, J.H.; Kim, H.W.; Han, S.H.; Yoo, T.H.; Kang, S.W.; Park, J.T. Physical performance and chronic kidney disease development in elderly adults: Results from a nationwide cohort study. Aging 2020, 12, 17393–17417. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Crouch, R. 1-Minute Sit-to-Stand Test: Systematic review of procedures, performance, and clinimetric properties. J. Cardiopulm. Rehabil. Prev. 2019, 39, 2–8. [Google Scholar] [CrossRef]
- Höglund, J.; Boström, C.; Sundh, J. Six-Minute Walking Test and 30 Seconds Chair-Stand-Test as Predictors of Mortality in COPD—A Cohort Study. Int. J. Chron. Obstruct Pulmon Dis. 2022, 17, 2461–2469. [Google Scholar] [CrossRef] [PubMed]
- Medina-Mirapeix, F.; Valera-Novella, E.; Morera-Balaguer, J.; Bernabeu-Mora, R. Prognostic value of the five-repetition sit-to-stand test for mortality in people with chronic obstructive pulmonary disease. Ann. Phys. Rehabil. Med. 2022, 65, 101598. [Google Scholar] [CrossRef]
- Morishita, S.; Tsubaki, A.; Shirai, N. Physical function was related to mortality in patients with chronic kidney disease and dialysis. Hemodial. Int. 2017, 21, 483–489. [Google Scholar] [CrossRef]
Overall n = 225 | Men n = 148 (65.8%) | Women n = 77 (34.2%) | p-Value | |
---|---|---|---|---|
Age (yrs, mean ± SD) | 70.65 ± 11.97 | 69.85 ± 11.16 | 72.19 ± 13.33 | 0.189 |
BMI | 27.00 ± 4.91 | 27.62 ± 4.38 | 27.23 ± 5.82 | 0.574 |
Age in groups (yrs, mean ± SD) | ||||
<55 | 48.29 ± 5.57 | 48.00 ± 5.27 | 48.72 ± 6.21 | <0.001 |
55–64 | 59.50 ± 2.73 | 59.85 ± 2.78 | 58.55 ± 2.45 | |
65–74 | 70.21 ± 2.82 | 70.39 ± 2.53 | 69.66 ± 3.61 | |
75–84 | 79.19 ± 3.11 | 78.8 ± 3.03 | 79.75 ± 3.21 | |
≥85 | 87.65 ± 2.66 | 87.85 ± 3.33 | 87.53 ± 2.36 | |
Age group n (%) | ||||
<55 | 27 (12) | 16 (10.8) | 11 (14.3) | 0.012 |
55–64 | 36 (16) | 27 (18.2) | 9 (11.7) | |
65–74 | 61 (27.1) | 46 (31.1) | 15 (19.5) | |
75–84 | 81 (36) | 52 (35.1) | 29 (37.7) | |
≥85 | 20 (8.9) | 7 (4.7) | 13 (16.9) | |
ACKD stage n (%) | ||||
Stage 3B | 19 (8.4) | 9 (6.1) | 10 (13) | 0.102 |
Stage 4 | 123 (54.7) | 87 (58.8) | 36 (46.8) | |
Stage 5 (ND) | 83 (36.9) | 52 (35.1) | 31 (40.3) | |
ACKD vintage n (%) | ||||
<6 months | 147 (65.3) | 97 (65.5) | 50 (64.9) | 0.750 |
6–12 months | 29 (12.9) | 21 (14.2) | 8 (10.4) | |
>12 months | 49 (21.8) | 30 (20.3) | 19 (24.7) | |
Comorbidity (mean ± SD/Median) | ||||
Charlson Index | 6.46 ± 1.92/6 | 6.56 ± 1.88/7 | 6.27 ± 1.99/6 | 0.298 |
DM n (%) | ||||
Yes | 98 (43.6) | 73 (49.3) | 25 (32.5) | 0.016 |
No | 127 (56.4) | 75 (50.7) | 52 (67.5) |
Exitus n = 50 | No Exitus n = 175 | p-Value | ||
---|---|---|---|---|
Sex n (%) | Male | 28 (56) | 120 (68.6) | 0.098 |
Female | 22 (44) | 55 (31.4) | ||
Age (mean ± SD) | 79.02 ± 7.39 | 68.26 ± 11.97 | <0.005 | |
Age range n (%) | ||||
<55 | 0 (0) | 27 (15.4) | <0.001 | |
55–64 | 2 (4) | 34 (19.4) | ||
65–74 | 10 (20) | 51 (29.1) | ||
75–84 | 28 (56) | 53 (30.3) | ||
≥85 | 10 (20) | 10 (5.7) | ||
Time in CKD unit n (%) | ||||
<6 months | 35 (70) | 112 (64) | 0.293 | |
6–12 months | 8 (16) | 21 (12) | ||
>12 months | 7 (14) | 42 (24) | ||
Charlson index (mean ± SD) | 7.64 ± 1.61 | 6.12 ± 1.88 | <0.001 | |
Fried criteria (mean ± SD) | 2 ± 1.42 | 0.87 ± 1.11 | <0.001 | |
No frail n (%) | 7 (14) | 85 (48.6) | <0.001 | |
Pre frail n (%) | 26 (52) | 67 (38.3) | ||
Frail n (%) | 34 (17) | 23 (13.1) | ||
Body Composition (mean ± SD) | ||||
Phase angle | 3.81 ± 0.96 | 4.35 ± 1.10 | 0.002 | |
Na/K | 1.52 ± 0.49 | 1.34 ± 0.41 | 0.014 | |
%BCM | 39.16 ± 8.06 | 43.05 ± 8.03 | 0.003 | |
%TBW | 53.90 ± 8.68 | 53.15 ± 7.00 | 0.529 | |
%IBW | 40.57 ± 7.56 | 44.26 ± 7.57 | 0.003 | |
%EBW | 59.42 ± 7.56 | 55.73 ± 7.57 | 0.003 | |
%FM | 31.44 ± 10.51 | 31.16 ± 8.58 | 0.845 | |
%FFM | 68.56 ± 10.51 | 68.83 ± 8.59 | 0.846 | |
%MM | 32.06 ± 9.20 | 32.99 ± 7.32 | 0.460 | |
ASMM | 17.4 ± 14 | 19.55 ± 4.74 | 0.001 | |
BCMI | 7.18 ± 2.00 | 8.11 ± 1.97 | 0.004 | |
BMI | 27.11 ± 5.72 | 27.60 ± 4.67 | 0.541 | |
Laboratory parameters (mean ± SD) | ||||
Albumin (g/dL) | 4.05 ± 0.42 | 4.26 ± 0.40 | 0.002 | |
Prealbumin (mg/dL) | 24.96 ± 6.12 | 28.71 ± 7.97 | 0.004 | |
CRP (mg/dL) | 1.08 ± 1.79 | 0.58 ± 1.25 | 0.028 | |
Lymphocytes (miles/mm3) | 1828.60 ± 911.83 | 2114.16 ± 929.73 | 0.056 | |
Transferrin (mg/dL) | 216.50 ± 49.47 | 220.84 ± 52.27 | 0.602 | |
HB (g/dL) | 11.94 ± 1.39 | 12.33 ± 1.57 | 0.120 | |
CKD-EPI eGFR (mL/min/1.73 m2) | 16.39 ± 5.78 | 19.47 ± 7.99 | 0.011 |
Exitus n = 50 | No Exitus n = 175 | p-Value | |
---|---|---|---|
SPPB | |||
SPPB (mean ± SD) | 6.80 ± 2.24 | 8.99 ± 2.77 | <0.001 |
Severe limitations n (%) | 3 (23.1) | 10 (76.9) | <0.001 |
Moderate limitations n (%) | 17 (42.5) | 23 (57.5) | |
Slight limitations n (%) | 26 (32.5) | 54 (67.5) | |
Minimum/no limitations n (%) | 4 (4.3) | 88 (95.7) | |
6MWT | |||
6MWT (mean ± SD) | 369.53 ± 50.42 | 422.87 ± 95.73 | <0.001 |
<400 m n (%) | 21 (32.8) | 11 (11.5) | <0.001 |
>400 m n (%) | 43 (67.2) | 85 (88.5) | |
TUTG | |||
TUTG (mean ± SD) | 9.258 ± 3.08 | 8.08 ± 2.05 | 0.013 |
<10 s n (%) | 20 (62.5) | 107 (863.6) | 0.008 |
>10 s n (%) | 12 (37.5) | 21 (16.4) | |
STS5 | |||
STS5 (mean ± SD) | 17.78 ± 6.59 | 14.18 ± 4.94 | 0.006 |
≤12.5 s n (%) | 5 (7.7) | 60 (92.3) | <0.001 |
>12.5 s n (%) | 27 (28.4) | 68 (71.6) | |
STS10 | |||
STS10 (mean ± SD) | 34.03 ± 10.42 | 29.29 ± 8.35 | 0.026 |
≤27.5 s n (%) | 8 (10.5) | 68 (89.5) | 0.006 |
>27.5 s n (%) | 22 (27.5) | 58 (72.5) | |
STS30 | |||
STS30 (mean ± SD) | 8.78 ± 2.39 | 10.78 ± 3.04 | <0.001 |
≤11 rep n (%) | 29 (27.1) | 78 (72.9) | 0.001 |
>11 rep n (%) | 3 (5.7) | 50 (94.3) | |
STS60 | |||
STS60 (mean ± SD) | 15.87 ± 5.21 | 20.53 ± 6.35 | <0.001 |
≤19 rep n (%) | 25 (30.9) | 56 (69.1) | 0.001 |
>19 rep n (%) | 7 (8.9) | 72 (91.1) | |
Handgrip Strength | |||
HGS Right (mean ± SD) | 20.56 ± 7.72 | 28.12 ± 10.71 | <0.001 |
HGS Left (mean ± SD) | 19.24 ± 8.10 | 25.37 ± 10.54 | <0.001 |
Cut-Off | Sensitivity/Specificity | AUC | 95% CI | p-Value | |
---|---|---|---|---|---|
SPPB (pnts) | 7.5 | 74%/66% | 0.745 | 0.678–0.812 | <0.001 |
6MWT (m) | 367.5 | 74%/50% | 0.696 | 0.611–0.781 | 0.001 |
TUTG (s) | 7.7 | 65%/51% | 0.639 | 0.524–0.754 | 0.015 |
STS5 (s) | 13.5 | 81%/56% | 0.721 | 0.630–0.812 | <0.001 |
STS10 (s) | 28.5 | 76%/57% | 0.664 | 0.558–0.769 | <0.001 |
STS30 (rep) | 10 | 65%/62% | 0.699 | 0.605–0.792 | 0.001 |
STS60 (rep) | 19 | 61.7%/71.9% | 0.722 | 0.628–0.817 | <0.001 |
HGS Right (kg) | 26 | 56%/78% | 0.704 | 0.630–0.777 | <0.001 |
HGS Left (kg) | 22 | 59%/66% | 0.672 | 0.593–0.751 | <0.001 |
Model 1 | Model 2 | |||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
SPPB (points) | 0.764 (0.683–0.855) | <0.001 | 0.778 (0.695–0.872) | <0.001 |
Albumin (g/dL) | 0.456 (0.210–0.992) | 0.048 | - | - |
CRP (mg/dL) | 1.246 (1.014–1.531) | 0.036 | 1.333 (1.104–1.610) | 0.003 |
%IBW | - | - | 0.935 (0.900–0.971) | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nogueira-Pérez, Á.; Ruiz-López-Alvarado, P.; Barril-Cuadrado, G. Can Functional Motor Capacity Influence Mortality in Advanced Chronic Kidney Disease Patients? Nutrients 2024, 16, 2689. https://doi.org/10.3390/nu16162689
Nogueira-Pérez Á, Ruiz-López-Alvarado P, Barril-Cuadrado G. Can Functional Motor Capacity Influence Mortality in Advanced Chronic Kidney Disease Patients? Nutrients. 2024; 16(16):2689. https://doi.org/10.3390/nu16162689
Chicago/Turabian StyleNogueira-Pérez, Ángel, Paloma Ruiz-López-Alvarado, and Guillermina Barril-Cuadrado. 2024. "Can Functional Motor Capacity Influence Mortality in Advanced Chronic Kidney Disease Patients?" Nutrients 16, no. 16: 2689. https://doi.org/10.3390/nu16162689
APA StyleNogueira-Pérez, Á., Ruiz-López-Alvarado, P., & Barril-Cuadrado, G. (2024). Can Functional Motor Capacity Influence Mortality in Advanced Chronic Kidney Disease Patients? Nutrients, 16(16), 2689. https://doi.org/10.3390/nu16162689