Metabolic Profile of Calcium Oxalate Stone Patients with Enteric Hyperoxaluria and Impact of Dietary Intervention
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Study Design
2.3. [13C2]Oxalate Absorption Test
2.4. Ammonium Chloride-Loading Test
2.5. Calcium-Loading Test
2.6. Statistical Analysis
3. Results
3.1. Patients
3.2. Urine Composition
3.3. Nutrient Intake
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asplin, J.R.; Coe, F.L. Hyperoxaluria in kidney stone formers treated with modern bariatric surgery. J. Urol. 2007, 177, 565–569. [Google Scholar] [CrossRef]
- Siener, R.; Petzold, J.; Bitterlich, N.; Alteheld, B.; Metzner, C. Determinants of urolithiasis in patients with intestinal fat malabsorption. Urology 2013, 81, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Siener, R.; Ernsten, C.; Speller, J.; Scheurlen, C.; Sauerbruch, T.; Hesse, A. Intestinal oxalate absorption, enteric hyperoxaluria, and risk of urinary stone formation in patients with Crohn’s disease. Nutrients 2024, 16, 264. [Google Scholar] [CrossRef]
- Chadwick, V.S.; Modha, K.; Dowling, R.H. Mechanism for hyperoxaluria in patients with ileal dysfunction. N. Engl. J. Med. 1973, 289, 172–176. [Google Scholar] [CrossRef]
- Earnest, D.L.; Johnson, G.; Williams, H.E.; Admirand, W.H. Hyperoxaluria in patients with ileal resection: An abnormality in dietary oxalate absorption. Gastroenterology 1974, 66, 1114–1122. [Google Scholar] [CrossRef] [PubMed]
- Dobbins, J.W.; Binder, H.J. Effect of bile salts and fatty acids on the colonic absorption of oxalate. Gastroenterology 1976, 70, 1096–1100. [Google Scholar] [CrossRef] [PubMed]
- Dobbins, J.W.; Binder, H.J. Importance of the colon in enteric hyperoxaluria. N. Engl. J. Med. 1977, 296, 298–301. [Google Scholar] [CrossRef]
- Modigliani, R.; Labayle, D.; Aymes, C.; Denvil, R. Evidence for excessive absorption of oxalate by the colon in enteric hyperoxaluria. Scand. J. Gastroenterol. 1978, 13, 187–192. [Google Scholar] [CrossRef] [PubMed]
- D’Costa, M.R.; Kausz, A.T.; Carroll, K.J.; Ingimarsson, J.P.; Enders, F.T.; Mara, K.C.; Mehta, R.A.; Lieske, J.C. Subsequent urinary stone events are predicted by the magnitude of urinary oxalate excretion in enteric hyperoxaluria. Nephrol. Dial. Transplant. 2021, 36, 2208–2215. [Google Scholar] [CrossRef]
- Nasr, S.H.; D’Agati, V.D.; Said, S.M.; Stokes, M.B.; Largoza, M.V.; Radhakrishnan, J.; Markowitz, G.S. Oxalate nephropathy complicating Roux-en-Y gastric bypass: An underrecognized cause of irreversible renal failure. Clin. J. Am. Soc. Nephrol. 2008, 3, 1676–1683. [Google Scholar] [CrossRef]
- Troxell, M.L.; Houghton, D.C.; Hawkey, M.; Batiuk, T.D.; Bennett, W.M. Enteric oxalate nephropathy in the renal allograft: An underrecognized complication of bariatric surgery. Am. J. Transplant. 2013, 13, 501–509. [Google Scholar] [CrossRef]
- Nazzal, L.; Puri, S.; Goldfarb, D.S. Enteric hyperoxaluria: An important cause of end-stage kidney disease. Nephrol. Dial. Transplant. 2016, 31, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Witting, C.; Langman, C.B.; Assimos, D.; Baum, M.A.; Kausz, A.; Milliner, D.; Tasian, G.; Worcester, E.; Allain, M.; West, M.; et al. Pathophysiology and treatment of enteric hyperoxaluria. Clin. J. Am. Soc. Nephrol. 2021, 16, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Nasr, S.H.; Valeri, A.M.; Said, S.M.; Sethi, S.; Nath, K.A.; Lieske, J.C.; Bu, L. Clinicopathologic characteristics, etiologies, and outcome of secondary oxalate nephropathy. Mayo Clin. Proc. 2024, 99, 593–606. [Google Scholar] [CrossRef]
- Rudman, D.; Dedonis, J.L.; Fountain, M.T.; Chandler, J.B.; Gerron, G.G.; Fleming, G.A.; Kutner, M.H. Hypocitraturia in patients with gastrointestinal malabsorption. N. Engl. J. Med. 1980, 303, 657–661. [Google Scholar] [CrossRef] [PubMed]
- Caudarella, R.; Rizzoli, E.; Pironi, L.; Malavolta, N.; Martelli, G.; Poggioli, G.; Gozzetti, G.; Miglioli, M. Renal stone formation in patients with inflammatory bowel disease. Scanning Microsc. 1993, 7, 371–380. [Google Scholar] [PubMed]
- Hamm, L.L. Renal handling of citrate. Kidney Int. 1990, 38, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Pak, C.Y.C. Citrate and renal calculi: New insights and future directions. Am. J. Kidney Dis. 1991, 17, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Simpson, D.P. Citrate excretion: A window on renal metabolism. Am. J. Physiol. 1983, 244, 223–234. [Google Scholar] [CrossRef]
- Dobbins, J.W. Nephrolithiasis and intestinal disease. J. Clin. Gastroenterol. 1985, 7, 21–24. [Google Scholar] [CrossRef]
- Asplin, J.R. The management of patients with enteric hyperoxaluria. Urolithiasis 2016, 44, 33–43. [Google Scholar] [CrossRef]
- Hamm, L.L.; Hering-Smith, K.S. Pathophysiology of hypocitraturic nephrolithiasis. Endocrinol. Metab. Clin. N. Am. 2002, 31, 885–893. [Google Scholar] [CrossRef]
- Hesse, A.; Tiselius, H.-G.; Siener, R.; Hoppe, B. Urinary Stones: Diagnosis, Treatment, and Prevention of Recurrence, 3rd ed.; Karger: Basel, Switzerland, 2009; ISBN 978-3-8055-9149-2. [Google Scholar]
- Skolarikos, A.; Jung, H.; Neisius, A.; Petřík, A.; Somani, B.; Tailly, T.; Gambaro, G.; Davis, N.F.; Geraghty, R.; Lombardo, R.; et al. EAU Guidelines on Urolithiasis; EAU Guidelines Office: Arnhem, The Netherlands, 2024; Available online: http://uroweb.org/guidelines/compilations-of-all-guidelines (accessed on 12 May 2024).
- Noori, N.; Honarkar, E.; Goldfarb, D.S.; Kalantar-Zadeh, K.; Taheri, M.; Shakhssalim, N.; Parvin, M.; Basiri, A. Urinary lithogenic risk profile in recurrent stone formers with hyperoxaluria: A randomized controlled trial comparing DASH (dietary approaches to stop hypertension)-style and low-oxalate diets. Am. J. Kidney Dis. 2014, 63, 456–463. [Google Scholar] [CrossRef]
- Hönow, R.; Simon, A.; Hesse, A. Interference-free sample preparation for the determination of plasma oxalate analyzed by HPLC-ER: Preliminary results from calcium oxalate stone-formers and non-stone-formers. Clin. Chim. Acta 2002, 318, 19–24. [Google Scholar] [CrossRef]
- Siener, R.; Hönow, R.; Voss, S.; Seidler, A.; Hesse, A. Oxalate content of cereals and cereal products. J. Agric. Food Chem. 2006, 54, 3008–3011. [Google Scholar] [CrossRef]
- Siener, R. Nutrition and kidney stone disease. Nutrients 2021, 13, 1917. [Google Scholar] [CrossRef] [PubMed]
- Siener, R.; Löhr, P.; Hesse, A. Urinary risk profile, impact of diet, and risk of calcium oxalate urolithiasis in idiopathic uric acid stone disease. Nutrients 2023, 15, 572. [Google Scholar] [CrossRef] [PubMed]
- Siener, R.; Pitzer, M.S.; Speller, J.; Hesse, A. Risk profile of patients with brushite stone disease and the impact of diet. Nutrients 2023, 15, 4092. [Google Scholar] [CrossRef] [PubMed]
- Tiselius, H.-G. Medical evaluation of nephrolithiasis. Endocrinol. Metab. Clin. N. Am. 2002, 31, 1031–1050. [Google Scholar] [CrossRef]
- Werness, P.G.; Brown, C.M.; Smith, L.H.; Finlayson, B. EQUIL2: A BASIC computer program for the calculation of urinary saturation. J. Urol. 1985, 134, 1242–1244. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Siener, R.; Hoppe, B.; Löhr, P.; Müller, S.C.; Latz, S. Metabolic profile and impact of diet in patients with primary hyperoxaluria. Int. Urol. Nephrol. 2018, 50, 1583–1589. [Google Scholar] [CrossRef]
- Von Unruh, G.E.; Langer, M.A.; Paar, D.W.; Hesse, A. Mass spectrometric-selected ion monitoring assay for an oxalate absorption test applying [13C2]oxalate. J. Chromatogr. B Biomed. Sci. Appl. 1998, 716, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Von Unruh, G.E.; Voss, S.; Sauerbruch, T.; Hesse, A. Reference range for gastrointestinal oxalate absorption measured with a standardized [13C2]oxalate absorption test. J. Urol. 2003, 169, 687–690. [Google Scholar] [CrossRef] [PubMed]
- Voss, S.; Hesse, A.; Zimmermann, D.J.; Sauerbruch, T.; von Unruh, G.E. Intestinal oxalate absorption is higher in idiopathic calcium oxalate stone formers than in healthy controls: Measurements with the [13C2]oxalate absorption test. J. Urol. 2006, 175, 1711–1715. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.r-project.org/ (accessed on 17 June 2024).
- Lieske, J.C.; Lingeman, J.E.; Ferraro, P.M.; Wyatt, C.M.; Tosone, C.; Kausz, A.T.; Knauf, F. Randomized placebo-controlled trial of reloxaliase in enteric hyperoxaluria. NEJM Evid. 2022, 1, EVIDoa2100053. [Google Scholar] [CrossRef]
- Gregory, J.G.; Park, K.Y.; Schoenberg, H.W. Oxalate stone disease after intestinal resection. J. Urol. 1977, 117, 631–634. [Google Scholar] [CrossRef] [PubMed]
- Pang, R.; Linnes, M.P.; O’Connor, H.M.; Li, X.; Bergstralh, E.; Lieske, J.C. A controlled metabolic diet reduces calcium oxalate supersaturation but not oxalate excretion after bariatric surgery. Urology 2012, 80, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Andersson, H.; Jagenburg, R. Fat-reduced diet in the treatment of hyperoxaluria in patients with ileopathy. Gut 1974, 15, 360–366. [Google Scholar] [CrossRef]
- Siener, R.; Schade, N.; Nicolay, C.; von Unruh, G.E.; Hesse, A. The efficacy of dietary intervention on urinary risk factors for stone formation in recurrent calcium oxalate stone patients. J. Urol. 2005, 173, 1601–1605. [Google Scholar] [CrossRef]
- Bianco, J.; Chu, F.; Bergsland, K.; Coe, F.; Worcester, E.; Prochaska, M. What treatments reduce kidney stone risk in patients with bowel disease? Urolithiasis 2022, 50, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Voss, S.; Zimmermann, D.J.; Hesse, A.; von Unruh, G.E. The effect of oral administration of calcium and magnesium on intestinal oxalate absorption in humans. Isot. Environ. Health Stud. 2004, 40, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Von Unruh, G.E.; Voss, S.; Sauerbruch, T.; Hesse, A. Dependence of oxalate absorption on the daily calcium intake. J. Am. Soc. Nephrol. 2004, 15, 1567–1573. [Google Scholar] [CrossRef]
- Bohn, T.; Davidsson, L.; Walczyk, T.; Hurrell, R.F. Fractional magnesium absorption is significantly lower in human subjects from a meal served with an oxalate-rich vegetable, spinach, as compared with a meal served with kale, a vegetable with a low oxalate content. Br. J. Nutr. 2004, 91, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Borghi, L.; Meschi, T.; Amato, F.; Briganti, A.; Novarini, A.; Giannini, A. Urinary volume, water and recurrences in idiopathic calcium nephrolithiasis: A 5-year randomized prospective study. J. Urol. 1996, 155, 839–843. [Google Scholar] [CrossRef]
- Bujanda, L. The effects of alcohol consumption upon the gastrointestinal tract. Am. J. Gastroenterol. 2000, 95, 3374–3382. [Google Scholar] [CrossRef] [PubMed]
- Maalouf, N.M.; Tondapu, P.; Guth, E.S.; Livingston, E.H.; Sakhaee, K. Hypocitraturia and hyperoxaluria after Roux-en-Y gastric bypass surgery. J. Urol. 2010, 183, 1026–1030. [Google Scholar] [CrossRef] [PubMed]
- Hamm, L.L.; Nakhoul, N.; Hering-Smith, K.S. Acid-base homeostasis. Clin. J. Am. Soc. Nephrol. 2015, 10, 2232–2242. [Google Scholar] [CrossRef]
- Trinchieri, A.; Lizzano, R.; Castelnuovo, C.; Zanetti, G.; Pisani, E. Urinary patterns of patients with renal stones associated with chronic inflammatory bowel disease. Arch. Ital. Urol. Androl. 2002, 74, 61–64. [Google Scholar]
- Reddy, S.; Bolen, E.; Abdelmalek, M.; Lieske, J.C.; Ryan, M.; Keddis, M.T. Clinical outcomes and histological patterns in oxalate nephropathy due to enteric and nonenteric risk factors. Am. J. Nephrol. 2021, 52, 961–968. [Google Scholar] [CrossRef] [PubMed]
- Waikar, S.S.; Srivastava, A.; Palsson, R.; Shafi, T.; Hsu, C.-Y.; Sharma, K.; Lash, J.P.; Chen, J.; He, J.; Lieske, J.; et al. Association of urinary oxalate excretion with the risk of chronic kidney disease progression. JAMA Intern. Med. 2019, 179, 542–551. [Google Scholar] [CrossRef]
- Puurunen, M.; Kurtz, C.; Wheeler, A.; Mulder, K.; Wood, K.; Swenson, A.; Curhan, G. Twenty-four-hour urine oxalate and risk of chronic kidney disease. Nephrol. Dial. Transplant. 2024, 39, 788–794. [Google Scholar] [CrossRef]
- Marangella, M.; Vitale, C.; Manganaro, M.; Cosseddu, D.; Martini, C.; Petrarulo, M.; Linari, F. Renal handling of citrate in chronic renal insufficiency. Nephron 1991, 57, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Siener, R.; Rüdy, J.; Herwig, H.; Schmitz, M.T.; Schaefer, R.M.; Lossin, P.; Hesse, A. Mixed stones: Urinary stone composition, frequency and distribution by gender and age. Urolithiasis 2024, 52, 24. [Google Scholar] [CrossRef] [PubMed]
Mean ± SD n (%) | |
---|---|
Number of patients | 37 |
Gender (women/men) | 10/27 (27.0/73.0) |
Age (years) | 48.6 ± 11.4 |
BMI (kg/m2) a | 24.2 ± 4.2 |
BMI < 18.5 kg/m2 | 1/36 (2.8) |
BMI 18.5–24.9 kg/m2 | 19/36 (52.8) |
BMI 25.0–29.9 kg/m2 | 13/36 (36.1) |
BMI ≥ 30 kg/m2 | 3/36 (8.3) |
Enteric condition | |
Crohn’s disease with bowel resection | 26/37 (70.3) |
Length of small bowel resection (cm) b | 104 ± 47 |
Small bowel resection | 8/37 (21.6) |
Ileus | 2/8 (25.0) |
Mesenteric vein thrombosis | 2/8 (25.0) |
Volvulus | 1/8 (12.5) |
Ileal neuroendocrine tumor | 1/8 (12.5) |
Benign small intestine tumor | 1/8 (12.5) |
Inflammatory cecal tumor | 1/8 (12.5) |
Chronic pancreatitis | 2/37 (5.4) |
Bypass surgery | 1/37 (2.7) |
Chronic diarrhea | 24/37 (64.9) |
Hypertension | 8/37 (21.6) |
Type 2 diabetes | 2/37 (5.4) |
[13C2] oxalate absorption (%) c | 18.8 ± 11.7 |
[13C2] oxalate absorption ≥ 10.0% c | 24/31 (77.4) |
Distal renal tubular acidosis d | 0/30 (0.0) |
Hypercalciuria | 5/37 (13.5) |
Absorptive hypercalciuria | 1/5 (20.0) |
Renal hypercalciuria | 0/5 (0.0) |
Idiopathic hypercalciuria | 4/5 (80.0) |
eGFR (mL/min/1.73 m2) | 74.7 ± 25.1 |
eGFR ≥ 90 mL/min/1.73 m2 | 10/37 (27.0) |
eGFR 60.0–89.9 mL/min/1.73 m2 | 16/37 (43.2) |
eGFR 45.0–59.9 mL/min/1.73 m2 | 6/37 (16.2) |
eGFR 30.0–44.9 mL/min/1.73 m2 | 3/37 (8.1) |
eGFR 15.0–29.9 mL/min/1.73 m2 | 2/37 (5.4) |
Family history of stones e | 15/34 (44.1) |
Age at first stone event (years) | 35.4 ± 11.8 |
Duration of stone disease (years) | 13.2 ± 11.4 |
Stone passages in the past year f | 11.4 ± 13.9 |
Total number of stones passages g | 43.9 ± 62.0 |
Laterality | |
Bilateral | 26/37 (70.3) |
Right | 5/37 (13.5) |
Left | 6/37 (16.2) |
Anatomical anomalies | 10/37 (27.0) |
Nephrectomy | 1/37 (2.7) |
Nephrectomy and kidney cysts | 1/37 (2.7) |
Kidney cysts | 5/37 (13.5) |
Stenosis | 3/37 (8.1) |
Type of stone removal | |
Spontaneous passage | 28/37 (75.7) |
Extracorporeal shock wave lithotripsy | 25/37 (67.6) |
Ureteroscopy | 21/37 (56.8) |
Percutaneous nephrolithotomy | 10/37 (27.0) |
Open surgery | 4/37 (10.8) |
Self-Selected Diet n = 37 Mean ± SD | Balanced Diet n = 37 Mean ± SD | p Value | |
---|---|---|---|
Volume (L/24 h) | 1.866 ± 0.796 | 2.254 ± 0.636 | 0.032 |
Density (g/cm3) | 1.010 ± 0.004 | 1.006 ± 0.003 | <0.001 |
Urinary pH | 5.70 ± 0.46 | 5.87 ± 0.50 | 0.036 |
Sodium (mmol/24 h) | 159 ± 68 | 116 ± 52 | 0.004 |
Potassium (mmol/24 h) | 46 ± 20 | 48 ± 20 | 0.571 |
Calcium (mmol/24 h) | 2.92 ± 1.70 | 2.67 ± 1.40 | 0.172 |
Magnesium (mmol/24 h) | 2.14 ± 1.39 | 2.68 ± 1.50 | <0.001 |
Ammonium (mmol/24 h) a | 42.7 ± 21.0 | 35.5 ± 14.9 | 0.070 |
Chloride (mmol/24 h) | 185 ± 80 | 126 ± 51 | <0.001 |
Phosphate (mmol/24 h) | 27.4 ± 7.3 | 25.0 ± 5.1 | 0.077 |
Sulfate (mmol/24 h) | 16.4 ± 5.8 | 13.8 ± 4.4 | 0.018 |
Creatinine (mmol/24 h) | 13.26 ± 3.07 | 12.74 ± 3.22 | 0.063 |
Uric acid (mmol/24 h) | 2.87 ± 0.94 | 2.65 ± 0.83 | 0.083 |
Oxalate (mmol/24 h) | 0.841 ± 0.392 | 0.662 ± 0.294 | <0.001 |
Citrate (mmol/24 h) | 0.949 ± 1.489 | 1.432 ± 1.421 | 0.011 |
RS Uric acid | 2.368 ± 2.162 | 1.291 ± 1.126 | <0.001 |
RS Calcium oxalate | 9.254 ± 3.819 | 5.907 ± 3.504 | <0.001 |
AP Uric acid index (10−9) | 1.702 ± 1.722 | 0.885 ± 0.844 | <0.001 |
AP Calcium oxalate index | 2.313 ± 1.055 | 1.229 ± 0.789 | <0.001 |
Reference Range | Self-Selected Diet n = 37 n (%) | Balanced Diet n = 37 n (%) | p Value | |
---|---|---|---|---|
Volume (L) | <2.000 | 23 (62.2) | 15 (40.5) | 0.096 |
≥2.000 | 14 (37.8) | 22 (59.5) | ||
Urine pH | <5.40 | 8 (21.6) | 7 (18.9) | 1.000 |
5.40–5.79 | 18 (48.6) | 9 (24.3) | 0.074 | |
≥5.80 | 11 (29.7) | 21 (56.8) | 0.019 | |
Calcium (mmol/24 h) | <5.0 | 32 (86.5) | 35 (94.6) | 0.375 |
5.0–7.9 | 5 (13.5) | 2 (5.4) | ||
≥8.0 | 0 (0.0) | 0 (0.0) | - | |
Magnesium (mmol/24 h) | <3.0 | 30 (81.1) | 26 (70.3) | 0.219 |
≥3.0 | 7 (18.9) | 11 (29.7) | ||
Uric acid (mmol/24 h) | <4.0 | 32 (86.5) | 34 (91.9) | 0.687 |
≥4.0 | 5 (13.5) | 3 (8.1) | ||
Oxalate (mmol/24 h) | <0.45 | 0 (0.0) | 10 (27.0) | 0.002 |
≥0.45 | 37 (100.0) | 27 (73.0) | ||
Citrate (mmol/24 h) | <1.7 | 31 (83.8) | 24 (64.9) | 0.016 |
≥1.7 | 6 (16.2) | 13 (35.1) |
Self-Selected Diet n = 31 a Mean ± SD | Balanced Diet n = 31 a Mean | p Value | |
---|---|---|---|
Energy (kcal/day) | 2671 ± 718 | 2355 | 0.025 |
Protein (g/day) | 99 ± 29 | 71 | <0.001 |
Methionine (mg/day) | 2089 ± 667 | 1415 | <0.001 |
Cysteine (mg/day) | 1306 ± 374 | 835 | <0.001 |
Fat (g/day) | 104 ± 38 | 81 | 0.004 |
SFA (g/day) | 46 ± 19 | 30 | <0.001 |
MUFA (g/day) | 37 ± 14 | 26 | <0.001 |
PUFA (g/day) | 13 ± 5 | 19 | <0.001 |
Cholesterol (mg/day) | 417 ± 167 | 195 | <0.001 |
Carbohydrates (g/day) | 304 ± 76 | 327 | 0.050 |
Fiber (g/day) | 24 ± 9 | 31 | <0.001 |
Purines (mg/day) | 492 ± 193 | 449 | 0.337 |
Sodium (mg/day) b | 3801 ± 1562 | 2300 | <0.001 |
Potassium (mg/day) | 3351 ± 944 | 3390 | 0.854 |
Calcium (mg/day) | 980 ± 350 | 977 | 0.664 |
Magnesium (mg/day) | 434 ± 123 | 341 | <0.001 |
Phosphorus (mg/day) | 1511 ± 446 | 1432 | 0.650 |
Total oxalate (mg/day) | 175 ± 68 | 121 | <0.001 |
Soluble oxalate (mg/day) | 74 ± 37 | 54 | 0.016 |
Alcohol (g/day) | 13.1 ± 18.2 | 0 | <0.001 |
Water (mL/day) | 3162 ± 839 | 3437 | 0.087 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siener, R.; Ernsten, C.; Welchowski, T.; Hesse, A. Metabolic Profile of Calcium Oxalate Stone Patients with Enteric Hyperoxaluria and Impact of Dietary Intervention. Nutrients 2024, 16, 2688. https://doi.org/10.3390/nu16162688
Siener R, Ernsten C, Welchowski T, Hesse A. Metabolic Profile of Calcium Oxalate Stone Patients with Enteric Hyperoxaluria and Impact of Dietary Intervention. Nutrients. 2024; 16(16):2688. https://doi.org/10.3390/nu16162688
Chicago/Turabian StyleSiener, Roswitha, Charlotte Ernsten, Thomas Welchowski, and Albrecht Hesse. 2024. "Metabolic Profile of Calcium Oxalate Stone Patients with Enteric Hyperoxaluria and Impact of Dietary Intervention" Nutrients 16, no. 16: 2688. https://doi.org/10.3390/nu16162688
APA StyleSiener, R., Ernsten, C., Welchowski, T., & Hesse, A. (2024). Metabolic Profile of Calcium Oxalate Stone Patients with Enteric Hyperoxaluria and Impact of Dietary Intervention. Nutrients, 16(16), 2688. https://doi.org/10.3390/nu16162688