Hypertension-Related Status and Influencing Factors among Chinese Children and Adolescents Aged 6~17 Years: Data from China Nutrition and Health Surveillance (2015–2017)
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Information Collection
2.3. Anthropometric and Blood Pressure Measurement
2.4. Outcomes Definitions
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Study Participants
3.2. Weighted Blood Pressure Level
3.3. Weighted Prevalence of HTN and Pre-HTN
3.4. Multivariable Risk Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yusuf, S.; Joseph, P.; Rangarajan, S.; Islam, S.; Mente, A.; Hystad, P.; Brauer, M.; Kutty, V.R.; Gupta, R.; Wielgosz, A.; et al. Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): A prospective cohort study. Lancet 2020, 395, 795–808. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Perel, P.; Mensah, G.A.; Ezzati, M. Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension. Nat. Rev. Cardiol. 2021, 18, 785–802. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (2023). Global Report on Hypertension: The Race against a Silent Killer. Available online: https://www.who.int/publications/i/item/9789240081062 (accessed on 1 June 2024).
- Wang, Z.; Chen, Z.; Zhang, L.; Wang, X.; Hao, G.; Zhang, Z.; Shao, L.; Tian, Y.; Dong, Y.; Zheng, C.; et al. Status of Hypertension in China: Results From the China Hypertension Survey, 2012–2015. Circulation 2018, 137, 2344–2356. [Google Scholar] [CrossRef]
- 2018 Chinese Guidelines for Prevention and Treatment of Hypertension-A report of the Revision Committee of Chinese Guidelines for Prevention and Treatment of Hypertension. J. Geriatr. Cardiol. 2019, 16, 182–241. [CrossRef]
- Chen, X.; Wang, Y. Tracking of blood pressure from childhood to adulthood: A systematic review and meta-regression analysis. Circulation 2008, 117, 3171–3180. [Google Scholar] [CrossRef] [PubMed]
- Urbina, E.M.; Khoury, P.R.; Bazzano, L.; Burns, T.L.; Daniels, S.; Dwyer, T.; Hu, T.; Jacobs, D.R., Jr.; Juonala, M.; Prineas, R.; et al. Relation of Blood Pressure in Childhood to Self-Reported Hypertension in Adulthood. Hypertension 2019, 73, 1224–1230. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Ma, J.; Wang, H.J.; Wang, Z.Q. The association of overweight and obesity with blood pressure among Chinese children and adolescents. Biomed. Environ. Sci. 2013, 26, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Zhang, Y.; Yu, J.; Zha, M.; Zhu, Y.; Rahimi, K.; Rudan, I. Global Prevalence of Hypertension in Children: A Systematic Review and Meta-analysis. JAMA Pediatr. 2019, 173, 1154–1163. [Google Scholar] [CrossRef]
- Dong, J.; Dong, H.; Yan, Y.; Cheng, H.; Zhao, X.; Mi, J.; on behalf of the China Child, A.C.H.c.m. Prevalence of hypertension and hypertension phenotypes after three visits in Chinese urban children. J. Hypertens. 2022, 40, 1270–1277. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.L.; Gunn, P.W.; Kaelber, D.C. Underdiagnosis of hypertension in children and adolescents. J. Am. Med. Assoc. 2007, 298, 874–879. [Google Scholar] [CrossRef]
- Daniels, S.R. Understanding the Global Prevalence of Hypertension in Children and Adolescents. JAMA Pediatr. 2019, 173, 1133–1134. [Google Scholar] [CrossRef] [PubMed]
- Kaelber, D.C.; Liu, W.; Ross, M.; Localio, A.R.; Leon, J.B.; Pace, W.D.; Wasserman, R.C.; Fiks, A.G. Diagnosis and Medication Treatment of Pediatric Hypertension: A Retrospective Cohort Study. Pediatrics 2016, 138, e20162195. [Google Scholar] [CrossRef] [PubMed]
- Falkner, B.; Gidding, S.S.; Baker-Smith, C.M.; Brady, T.M.; Flynn, J.T.; Malle, L.M.; South, A.M.; Tran, A.H.; Urbina, E.M.; FAHA on behalf of the American Heart Association Council on Hypertension; et al. Pediatric Primary Hypertension: An Underrecognized Condition: A Scientific Statement from the American Heart Association. Hypertension 2023, 80, e101–e111. [Google Scholar] [CrossRef]
- Kalantari, S.; Khalili, D.; Asgari, S.; Fahimfar, N.; Hadaegh, F.; Tohidi, M.; Azizi, F. Predictors of early adulthood hypertension during adolescence: A population-based cohort study. BMC Public Health 2017, 17, 915. [Google Scholar] [CrossRef]
- Yu, D.; Zhao, L.; Zhang, J.; Yang, Z.; Yang, L.; Huang, J.; Fang, H.; Guo, Q.; Xu, X.; Ju, L.; et al. China Nutrition and Health Surveys (1982-2017). China CDC Wkly. 2021, 3, 193–195. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, Y.; Ju, L.; Piao, W.; Wei, X.; Zhao, L.; Yu, D. Association of the Protective Dietary Pattern for Blood Pressure with Elevated Blood Pressure and Hypertension among Chinese Children and Adolescents Aged 6-17 Years Old: Data from China Nutrition and Health Surveillance (2015–2017). Nutrients 2023, 15, 4927. [Google Scholar] [CrossRef]
- Fan, H.; Yan, Y.; Mi, J. Updating blood pressure references for Chinese children aged 3–17 years. Chin. J. Hypertens. 2017, 25, 428–435. [Google Scholar] [CrossRef]
- WS/T 586-2018; Screening for Overweight and Obesity Among School-Age Children and Adolescents. National Health and Family Planning Commission of People’s Republic of China: Beijing, China, 2018.
- Dou, Y.; Jiang, Y.; Yan, Y.; Chen, H.; Zhang, Y.; Chen, X.; Wang, Y.; Cheng, H.; Zhao, X.; Hou, D.; et al. Waist-to-height ratio as a screening tool for cardiometabolic risk in children and adolescents: A nationwide cross-sectional study in China. BMJ Open 2020, 10, e037040. [Google Scholar] [CrossRef] [PubMed]
- Bouthoorn, S.H.; Van Lenthe, F.J.; De Jonge, L.L.; Hofman, A.; Van Osch-Gevers, L.; Jaddoe, V.W.; Raat, H. Maternal educational level and blood pressure, aortic stiffness, cardiovascular structure and functioning in childhood: The generation R study. Am. J. Hypertens. 2014, 27, 89–98. [Google Scholar] [CrossRef]
- Composing and Editorial Board of Physical Activity Guidelines for Chinese. Physical Activity Guidelines for Chinese (2021). Zhonghua Liu Xing Bing Xue Za Zhi 2022, 43, 5–6. [Google Scholar] [CrossRef]
- Giussani, M.; Antolini, L.; Brambilla, P.; Pagani, M.; Zuccotti, G.; Valsecchi, M.G.; Lucini, D.; Genovesi, S. Cardiovascular risk assessment in children: Role of physical activity, family history and parental smoking on BMI and blood pressure. J. Hypertens. 2013, 31, 983–992. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Xu, X.; Gao, X.; Fang, H.; Ju, L.; Guo, H.; Guo, Q.; Yu, W.; Jia, F.; Zhao, L.; et al. Status of blood pressure and prevalence of hypertension among 6-17 years old children and adolescents in 2010-2012 in China. Wei Sheng Yan Jiu 2018, 47, 1–6. [Google Scholar] [PubMed]
- Cao, Q.; Li, D.; Yu, W.; Guo, Q.; Zhao, L.; Yu, D.; Wang, Y. Consistency between the electronic and mercury sphygmomanometer in children and adolescents on blood pressure measuring. Wei Sheng Yan Jiu 2016, 45, 758–765. [Google Scholar] [PubMed]
- Park, S.H.; Park, Y.S. Can an automatic oscillometric device replace a mercury sphygmomanometer on blood pressure measurement? a systematic review and meta-analysis. Blood Press. Monit. 2019, 24, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Ullah, R.; Wang, J.B.; Fu, J.F. Trends of obesity and overweight among children and adolescents in China. World J. Pediatr. 2023, 19, 1115–1126. [Google Scholar] [CrossRef] [PubMed]
- Shankar, R.R.; Eckert, G.J.; Saha, C.; Tu, W.; Pratt, J.H. The change in blood pressure during pubertal growth. J. Clin. Endocrinol. Metab. 2005, 90, 163–167. [Google Scholar] [CrossRef]
- Zou, Z.Y.; Ma, J.; Wang, H.J.; Fu, L.G.; Dong, B.; Yang, Y.D. Association between early age at menarche and blood pressure in Chinese girls aged 7 to 17 years. Zhonghua Yu Fang Yi Xue Za Zhi 2013, 47, 726–730. [Google Scholar] [PubMed]
- Dubey, R.K.; Oparil, S.; Imthurn, B.; Jackson, E.K. Sex hormones and hypertension. Cardiovasc. Res. 2002, 53, 688–708. [Google Scholar] [CrossRef]
- Li, Y.; Dong, Y.; Zou, Z.; Gao, D.; Wang, X.; Yang, Z.; Dong, B.; Ma, J. Association between pubertal development and elevated blood pressure in children. J. Clin. Hypertens. 2021, 23, 1498–1505. [Google Scholar] [CrossRef]
- Luijken, J.; van der Schouw, Y.T.; Mensink, D.; Onland-Moret, N.C. Association between age at menarche and cardiovascular disease: A systematic review on risk and potential mechanisms. Maturitas 2017, 104, 96–116. [Google Scholar] [CrossRef]
- Kotchen, J.M.; McKean, H.E.; Neill, M.; Kotchen, T.A. Blood pressure trends associated with changes in height and weight from early adolescence to young adulthood. J. Clin. Epidemiol. 1989, 42, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Hojhabrimanesh, A.; Akhlaghi, M.; Rahmani, E.; Amanat, S.; Atefi, M.; Najafi, M.; Hashemzadeh, M.; Salehi, S.; Faghih, S. A Western dietary pattern is associated with higher blood pressure in Iranian adolescents. Eur. J. Nutr. 2017, 56, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Gregoski, M.J.; Barnes, V.A.; Tingen, M.S.; Harshfield, G.A.; Treiber, F.A. Breathing awareness meditation and LifeSkills Training programs influence upon ambulatory blood pressure and sodium excretion among African American adolescents. J. Adolesc. Health 2011, 48, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Stein, D.J.; Scott, K.; Haro Abad, J.M.; Aguilar-Gaxiola, S.; Alonso, J.; Angermeyer, M.; Demytteneare, K.; de Girolamo, G.; Iwata, N.; Posada-Villa, J.; et al. Early childhood adversity and later hypertension: Data from the World Mental Health Survey. Ann. Clin. Psychiatry 2010, 22, 19–28. [Google Scholar] [PubMed]
- Pan, X.F.; Wang, L.; Pan, A. Epidemiology and determinants of obesity in China. Lancet Diabetes Endocrinol. 2021, 9, 373–392. [Google Scholar] [CrossRef] [PubMed]
- Lurbe, E.; Agabiti-Rosei, E.; Cruickshank, J.K.; Dominiczak, A.; Erdine, S.; Hirth, A.; Invitti, C.; Litwin, M.; Mancia, G.; Pall, D.; et al. 2016 European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J. Hypertens. 2016, 34, 1887–1920. [Google Scholar] [CrossRef]
- Rutigliano, I.; De Filippo, G.; Pastore, L.; Messina, G.; Agostoni, C.; Campanozzi, A. Obesity-Related Hypertension in Pediatrics, the Impact of American Academy of Pediatrics Guidelines. Nutrients 2021, 13, 2586. [Google Scholar] [CrossRef] [PubMed]
- Kotsis, V.; Stabouli, S.; Papakatsika, S.; Rizos, Z.; Parati, G. Mechanisms of obesity-induced hypertension. Hypertens. Res. 2010, 33, 386–393. [Google Scholar] [CrossRef]
- Noubiap, J.J.; Essouma, M.; Bigna, J.J.; Jingi, A.M.; Aminde, L.N.; Nansseu, J.R. Prevalence of elevated blood pressure in children and adolescents in Africa: A systematic review and meta-analysis. Lancet Public Health 2017, 2, e375–e386. [Google Scholar] [CrossRef]
- Boyd, G.S.; Koenigsberg, J.; Falkner, B.; Gidding, S.; Hassink, S. Effect of obesity and high blood pressure on plasma lipid levels in children and adolescents. Pediatrics 2005, 116, 442–446. [Google Scholar] [CrossRef]
- Li, J.; Shi, L.; Li, S.; Xu, L.; Qin, W.; Wang, H. Urban-rural disparities in hypertension prevalence, detection, and medication use among Chinese Adults from 1993 to 2011. Int. J. Equity Health 2017, 16, 50. [Google Scholar] [CrossRef]
- Grandner, M.A.; Drummond, S.P. Who are the long sleepers? Towards an understanding of the mortality relationship. Sleep Med. Rev. 2007, 11, 341–360. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Gui, W.; Huang, H.; Liu, Y.; Ding, H.; Fan, W.; Huang, S.; Yang, W.; Wang, X.; Chen, G. Association of long-term sleep habits and hypertension: A cross-sectional study in Chinese adults. J. Hum. Hypertens. 2020, 34, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.K.; Rodd, C.J.; Metzger, D.L.; Sharma, A.K. Prevalence of high blood pressure among Canadian Children: 2017 American Academy of Pediatrics guidelines with the Canadian Health Measures Survey. Paediatr. Child. Health 2021, 26, e158–e165. [Google Scholar] [CrossRef]
- Menghetti, E.; Strisciuglio, P.; Spagnolo, A.; Carletti, M.; Paciotti, G.; Muzzi, G.; Beltemacchi, M.; Concolino, D.; Strambi, M.; Rosano, A. Hypertension and obesity in Italian school children: The role of diet, lifestyle and family history. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Kim, J.H. Secular trends in hypertension and elevated blood pressure among Korean children and adolescents in the Korea National Health and Nutrition Examination Survey 2007–2015. J. Clin. Hypertens. 2020, 22, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Hou, D.; Liu, J.; Yan, Y.; Mi, J. Performance of 4 definitions of childhood elevated blood pressure in predicting subclinical cardiovascular outcomes in adulthood. J. Clin. Hypertens. 2018, 20, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Robinson, R.F.; Batisky, D.L.; Hayes, J.R.; Nahata, M.C.; Mahan, J.D. Significance of heritability in primary and secondary pediatric hypertension. Am. J. Hypertens. 2005, 18, 917–921. [Google Scholar] [CrossRef]
- Gartlehner, G.; Vander Schaaf, E.B.; Orr, C.; Kennedy, S.M.; Clark, R.; Viswanathan, M. Screening for Hypertension in Children and Adolescents: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. J. Am. Med. Assoc. 2020, 324, 1884–1895. [Google Scholar] [CrossRef]
- Flynn, J.T.; Kaelber, D.C.; Baker-Smith, C.M.; Blowey, D.; Carroll, A.E.; Daniels, S.R.; de Ferranti, S.D.; Dionne, J.M.; Falkner, B.; Flinn, S.K.; et al. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics 2017, 140, e20171904. [Google Scholar] [CrossRef]
Characteristics, n (%) | Total | Gender | p Value | |
---|---|---|---|---|
Males | Females | |||
Overall | 67,947 (100.0) | 33,882 (49.9) | 34,065 (50.1) | |
Age group (years) | <0.0001 | |||
6~11 | 37,829 (48.5) | 18,833 (49.1) | 18,996 (47.9) | |
12~17 | 30,118 (51.5) | 15,049 (50.9) | 15,069 (52.1) | |
BMI | <0.0001 | |||
Normal weight | 54,263 (80.9) | 25,767 (77.1) | 28,496 (85.3) | |
Overweight | 7498 (11.0) | 4288 (12.8) | 3210 (9.1) | |
Obese | 6186 (8.0) | 3827 (10.1) | 2359 (5.7) | |
Central obesity | <0.0001 | |||
No | 51,927 (78.1) | 24,853 (75.1) | 27,074 (81.5) | |
Yes | 16,020 (21.9) | 9029 (24.9) | 6991 (18.5) | |
Living area | 0.4189 | |||
Urban | 32,594 (47.3) | 16,247 (47.2) | 16,347 (47.4) | |
Rural | 35,353 (52.7) | 17,635 (52.8) | 17,718 (52.6) | |
Geographical region | 0.5588 | |||
East | 23,235 (39.9) | 11,603 (39.9) | 11,632 (40.0) | |
Central | 21,397 (27.6) | 10,667 (27.7) | 10,730 (27.5) | |
West | 23,315 (32.4) | 11,612 (32.4) | 11,703 (32.5) | |
Maternal education level | 0.746 | |||
Primary school or below | 18,241 (27.4) | 9172 (27.3) | 9069 (27.6) | |
Junior middle school | 41,051 (60.6) | 20,417 (60.6) | 20,634 (60.5) | |
High school or higher | 8655 (12.0) | 4293 (12.1) | 4362 (11.9) | |
Household income per capita (CNY) | <0.0001 | |||
<10,000 | 9859 (13.4) | 4767 (13.1) | 5092 (13.8) | |
10,000~ | 10,729 (14.3) | 5516 (14.7) | 5213 (13.9) | |
25,000~ | 4265 (5.8) | 2274 (6.4) | 1991 (5.1) | |
Not given | 43,094 (66.5) | 21,325 (65.8) | 21,769 (67.2) | |
Physical activity level | <0.0001 | |||
Adequate | 43,769 (66.2) | 23,128 (70.1) | 20,641 (61.8) | |
Inadequate | 24,178 (33.8) | 10,754 (29.9) | 13,424 (38.2) | |
Video time (h) | <0.0001 | |||
≤2 | 20,847 (31.2) | 9564 (27.1) | 11,283 (30.8) | |
>2 | 47,100 (73.6) | 24,318 (72.9) | 22,782 (69.2) | |
Sleep duration (h) | 0.0003 | |||
<7 | 2154 (4.9) | 947 (4.3) | 1207 (5.7) | |
7~ | 21,316 (37.4) | 10,480 (37.0) | 10,836 (37.9) | |
≥9 | 44,477 (57.7) | 22,455 (58.7) | 22,022 (56.5) | |
Family history of HTN | <0.0001 | |||
No | 45,410 (66.8) | 23,016 (68.1) | 22,394 (65.3) | |
Yes | 22,537 (33.2) | 10,886 (31.9) | 11,671 (34.7) | |
Second-hand smoking exposure | 0.0010 | |||
No | 38,955 (56.8) | 18,851 (55.4) | 20,104 (58.4) | |
Yes | 28,992 (43.2) | 15,031 (44.6) | 13.961 (41.6) | |
DASH score | <0.0001 | |||
Q1 | 18,131 (28.9) | 9642 (31.0) | 8489 (26.6) | |
Q2 | 13,124 (19.4) | 6628 (19.3) | 6496 (19.5) | |
Q3 | 18,900 (27.0) | 9231 (26.5) | 9669 (27.7) | |
Q4 | 17,792 (24.6) | 8381 (23.2) | 9411 (26.2) |
Characteristics | N | Blood Pressure (mmHg) | HTN Classification (%) | |||
---|---|---|---|---|---|---|
SBP | DBP | Normal | Pre-HTN | HTN | ||
Overall | 67,947 | 111.8 (111.2–112.5) | 66.5 (66.0–67.0) | 58.0 (55.5–60.5) | 17.1 (16.1–18.0) | 24.9 (22.7–27.2) |
Gender | ||||||
Males | 33,882 | 113.5 (112.7–114.2) | 66.4 (65.8–66.9) | 55.3 (52.6–57.9) | 19.7 (18.3–21) | 25.0 (22.8–27.3) |
Females | 34,065 | 110.0 (109.4–110.6) | 66.7 (66.1–67.2) | 61.1 (58.4–63.7) | 14.1 (13.3–15) | 24.8 (22.3–27.2) |
p value | <0.0001 | 0.0026 | <0.0001 | 0.1628 | ||
BMI | ||||||
Normal | 54,263 | 110.4 (109.8–111.0) | 66.1 (65.5–66.6) | 62.4 (59.7–65.1) | 16.3 (15.3–17.4) | 21.3 (18.9–23.6) |
Overweight | 7498 | 116.2 (115.5–117.0) | 67.8 (67.3–68.3) | 44.7 (41.7–47.7) | 22.1 (20.5–23.8) | 33.2 (30.2–36.2) |
Obese | 6186 | 120.2 (119.1–121.3) | 69.2 (68.5–69.9) | 32.1 (29.3–34.9) | 17.5 (15.9–19.1) | 50.4 (47.1–53.8) |
p value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
Central obesity | ||||||
No | 51,927 | 110.6 (110.0–111.2) | 66.1 (65.6–66.7) | 61.7 (58.9–64.4) | 16.7 (15.5–17.8) | 21.7 (19.2–24.2) |
Yes | 16,020 | 116.2 (115.3–117.1) | 67.9 (67.4–68.4) | 45.0 (42.6–47.4) | 18.6 (17.5–19.6) | 36.4 (34.0–38.8) |
p value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
Living area | ||||||
Urban | 32,594 | 112.5 (111.5–113.5) | 66.2 (65.5–66.9) | 59.9 (56.7–63.1) | 17.1 (15.6–18.5) | 23.0 (20.4–25.6) |
Rural | 35,353 | 111.3 (110.5–112.1) | 66.8 (66.1–67.5) | 56.3 (52.7–59.9) | 17.1 (15.8–18.3) | 26.6 (23.2–30.1) |
p value | 0.0653 | 0.2612 | 0.0822 | 0.4759 | ||
Geographical region | ||||||
East | 23,235 | 112.7 (111.5–113.9) | 66.7 (65.7–67.6) | 57.6 (53.1–62.1) | 16.9 (15.1–18.7) | 25.5 (21.9–29.1) |
Central | 21,397 | 112.7 (111.7–113.7) | 67.1 (66.3–67.9) | 54.4 (50.8–58.0) | 18.6 (17.4–19.9) | 27.0 (23.5–30.4) |
West | 23,315 | 110.1 (109.0–111.1) | 65.8 (65.0–66.6) | 61.6 (57.1–66.0) | 16.0 (14.3–17.7) | 22.5 (18.0–26.9) |
p value | 0.0004 | 0.0856 | 0.0342 | 0.2913 | ||
Maternal education level | ||||||
Primary school or below | 18,241 | 112.0 (111.3–112.8) | 66.9 (66.4–67.5) | 58.5 (55.6–61.4) | 17.1 (16.0–18.2) | 24.4 (21.6–27.2) |
Junior middle school | 41,051 | 111.7 (111.0–112.4) | 66.4 (65.9–67.0) | 57.7 (55.0–60.5) | 16.9 (15.8–18.0) | 25.3 (22.9–27.8) |
High school or higher | 8655 | 112.0 (110.9–113.1) | 66.1 (65.3–66.8) | 58.3 (54.8–61.7) | 17.8 (15.3–20.3) | 24.0 (20.9–27.0) |
p value | 0.4504 | 0.0473 | 0.8529 | 0.5696 | ||
Household income per capita | ||||||
<10,000 | 9859 | 110.9 (109.9–111.9) | 66.4 (65.7–67.2) | 55.5 (51.8–59.2) | 16.4 (14.6–18.3) | 28.1 (24.5–31.6) |
10,000~ | 10,729 | 111.8 (111.0–112.5) | 66.2 (65.6–66.9) | 57.4 (53.7–61.2) | 15.9 (14.5–17.3) | 26.7 (23.4–29.9) |
>25,000 | 4265 | 112.9 (111.8–114.0) | 66.2 (65.3–67.0) | 55.9 (52.3–59.4) | 20.3 (17.6–23.0) | 23.9 (21.1–26.6) |
Not given | 43,094 | 111.9 (111.2–112.7) | 66.6 (66.0–67.2) | 58.8 (56.1–61.6) | 17.2 (16.0–18.4) | 24.0 (21.5–26.5) |
p value | 0.0165 | 0.5653 | 0.1276 | 0.013 | ||
Physical activity level | ||||||
Adequate | 43,769 | 111.9 (111.2–112.6) | 66.2 (65.7–66.8) | 58.7 (56.2–61.3) | 17.2 (15.9–18.4) | 24.1 (22.0–26.2) |
Inadequate | 24,178 | 111.8 (111.0–112.6) | 67.1 (66.5–67.7) | 56.6 (53.2–59.9) | 16.9 (15.9–17.9) | 26.5 (23.2–29.9) |
p value | 0.7982 | 0.0015 | 0.7015 | 0.0807 | ||
Video time (h) | ||||||
≤2 | 20,847 | 110.9 (110.2–111.6) | 66.4 (65.9–66.9) | 57.8 (54.9–60.8) | 15.8 (14.5–17.2) | 26.3 (23.9–28.8) |
>2 | 47,100 | 112.2 (111.5–112.9) | 66.8 (66.0–67.1) | 58.1 (55.5–60.7) | 17.6 (16.5–18.6) | 24.3 (22.0–26.7) |
p value | <0.0001 | 0.2831 | 0.0195 | 0.0813 | ||
Sleep duration (h) | ||||||
<7 | 2154 | 116.7 (115.5–117.9) | 68.4 (67.3–69.4) | 56.5 (51.3–61.7) | 22.8 (19.1–26.5) | 20.6 (17.3–24.0) |
7~ | 21,316 | 114.7 (114.0–115.4) | 67.2 (66.7–67.8) | 59.8 (57.2–62.3) | 19.7 (18.2–21.1) | 20.5 (18.6–22.5) |
≥9 | 44,477 | 109.6 (108.8–110.3) | 65.9 (65.3–66.5) | 57.0 (54.0–60.0) | 14.9 (13.9–15.9) | 28.1 (25.2–31.0) |
p value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
Family history of HTN | ||||||
No | 45,410 | 111.5 (110.8–112.2) | 66.5 (66.0–67.0) | 58.2 (55.4–60.9) | 16.7 (15.7–17.7) | 25.1 (22.5–27.7) |
Yes | 22,537 | 112.5 (111.8–113.3) | 66.5 (66.0–67.1) | 57.7 (55.1–60.3) | 17.8 (16.5–19.0) | 24.5 (22.5–26.6) |
p value | 0.0001 | 0.9085 | 0.1207 | 0.5758 | ||
Second–hand smoking exposure | ||||||
No | 38,955 | 111.7 (111.0–112.3) | 66.7 (66.1–67.2) | 57.9 (55.2–60.5) | 17.0 (15.8–18.1) | 25.1 (22.7–27.6) |
Yes | 28,992 | 112.1 (111.4–112.8) | 66.3 (65.8–66.8) | 58.2 (55.5–60.9) | 17.2 (16.2–18.2) | 24.6 (22.3–26.9) |
p value | 0.0697 | 0.0524 | 0.8430 | 0.5695 | ||
DASH score | ||||||
Q1 | 18,131 | 111.6 (110.7–112.5) | 66.8 (66.1–67.4) | 58.1 (54.2–61.9) | 16.4 (15.1–17.8) | 25.5 (21.7–29.2) |
Q2 | 13,124 | 111.7 (111.0–112.5) | 66.4 (65.9–67.0) | 57.5 (55.0–60.0) | 17.7 (16.2–19.2) | 24.8 (22.7–26.9) |
Q3 | 18,900 | 111.8 (111.1–112.5) | 66.5 (65.8–67.1) | 58.9 (56.0–61.8) | 17.1 (15.9–18.4) | 23.9 (21.4–26.4) |
Q4 | 17,792 | 112.2 (111.5–112.9) | 66.3 (65.8–66.9) | 57.4 (54.4–60.4) | 17.3 (16.1–18.5) | 25.4 (22.7–28.0) |
p value | 0.4316 | 0.4646 | 0.5330 | 0.6939 |
Province | N | HTN | p Value | Pre–HTN | p Value | ||||
---|---|---|---|---|---|---|---|---|---|
Total | Males | Females | Total | Males | Females | ||||
Beijing City | 1380 | 25.6 (19.8–31.3) | 27.3 (22.1–32.6) | 23.7 (14.7–32.6) | 0.4979 | 16.4 (14.9–17.9) | 19.1 (15.9–22.3) | 13.4 (11.3–15.6) | 0.0309 |
Tianjin City | 1363 | 31.6 (25.2–37.9) | 35.9 (32.4–39.5) | 26.9 (16.8–36.9) | 0.0032 | 18.7 (17.2–20.2) | 24.1 (21.7–26.5) | 12.9 (11.9–13.9) | <0.0001 |
Hebei | 3050 | 38.7 (25.4–51.9) | 35.8 (22.8–48.8) | 42.0 (26.4–57.5) | 0.262 | 19.5 (17.3–21.6) | 23.7 (20.0–27.5) | 14.5 (12.3–16.8) | 0.0234 |
Shanxi | 2404 | 22.5 (13.2–31.8) | 24.3 (12.8–35.9) | 20.4 (12.9–28.0) | 0.2446 | 15.3 (10.0–20.5) | 18.2 (10.6–25.8) | 11.9 (8.4–15.4) | 0.0018 |
Inner Mongolia Autonomous Region | 2142 | 22.8 (16.4–29.2) | 21.5 (15.9–27.2) | 24.3 (15.6–33.0) | 0.4232 | 15.5 (12.9–18.2) | 18.6 (15.3–21.8) | 12.0 (9.1–15.0) | <0.0001 |
Liaoning | 1059 | 20.5 (16.9–24.1) | 19.7 (15.5–23.9) | 21.4 (18.2–24.7) | 0.0021 | 20.5 (18.3–22.7) | 26.4 (22.6–30.1) | 14.1 (12.9–15.4) | <0.0001 |
Jilin | 1321 | 23.8 (17.4–30.2) | 27.3 (21.3–33.2) | 20.2 (13.5–27.0) | <0.0001 | 20.0 (16.3–23.7) | 25.4 (16.7–34.2) | 14.4 (13.1–15.6) | 0.0197 |
Heilongjiang | 2871 | 31.6 (21.9–41.2) | 31.3 (23.3–39.4) | 31.9 (20.3–43.4) | 0.799 | 18.5 (16.7–20.3) | 23.6 (21.7–25.6) | 12.8 (9.8–15.7) | <0.0001 |
Shanghai City | 1006 | 26.1 (22.0–30.2) | 28.1 (21.4–34.7) | 23.9 (19.9–27.9) | 0.3293 | 18.5 (14.1–22.9) | 21.6 (17.2–26.0) | 15.0 (10.2–19.9) | 0.0009 |
Jiangsu | 2985 | 33.2 (30.1–36.3) | 32.6 (28.8–36.3) | 34.0 (31.0–37.0) | 0.2477 | 18.5 (15.9–21.2) | 23.0 (19.9–26.0) | 13.4 (11.0–15.8) | <0.0001 |
Zhejiang | 2620 | 26.0 (21.7–30.3) | 26.4 (22.2–30.6) | 25.4 (20.6–30.3) | 0.5282 | 15.7 (13.0–18.4) | 17.4 (12.9–21.9) | 13.7 (12.9–14.4) | 0.0039 |
Anhui | 2875 | 26.7 (24.0–29.4) | 26.3 (21.9–30.7) | 27.1 (24.1–30.1) | 0.7971 | 23.5 (20.2–26.7) | 29.1 (23.1–35.1) | 17.2 (15.6–18.9) | <0.0001 |
Fujian | 1824 | 22.7 (17.8–27.6) | 23.8 (17.9–29.7) | 21.4 (15.7–27.1) | 0.5099 | 17.1 (15.0–19.1) | 21.5 (18.5–24.4) | 12.1 (9.6–14.5) | <0.0001 |
Jiangxi | 2655 | 26.8 (18.9–34.6) | 27.6 (20.4–34.9) | 25.8 (17.1–34.4) | 0.0748 | 19.4 (17.7–21.2) | 20.7 (17.9–23.4) | 18.0 (15.1–21.0) | 0.2035 |
Shandong | 3465 | 29.2 (17.0–41.5) | 27.6 (14.2–40.9) | 31.1 (19.8–42.4) | 0.1765 | 18.8 (17.2–20.5) | 21.0 (17.6–24.4) | 16.3 (15.1–17.6) | 0.1461 |
Henan | 3664 | 31.5 (24.0–38.9) | 30.0 (22.9–37.1) | 33.1 (25.0–41.2) | 0.0388 | 18.7 (17.1–20.3) | 23.0 (20.5–25.6) | 13.7 (12.1–15.3) | <0.0001 |
Hubei | 2573 | 28.0 (23.9–32.2) | 29.3 (26.4–32.2) | 26.6 (19.8–33.5) | 0.4322 | 16.7 (14.4–19.0) | 17.4 (13.7–21.1) | 15.9 (13.7–18.1) | 0.2569 |
Hunan | 3034 | 19.6 (11.5–27.7) | 19.6 (13.0–26.2) | 19.6 (9.4–29.7) | 0.9892 | 16.8 (13.5–20.1) | 15.6 (11.8–19.5) | 18.1 (11.4–24.8) | 0.5727 |
Guangdong | 3445 | 14.9 (13.0–16.9) | 17.4 (14.4–20.5) | 12.1 (9.3–14.9) | 0.0185 | 14.1 (8.6–19.6) | 15.8 (8.6–23.0) | 12.3 (8.0–16.7) | 0.1046 |
Guangxi Zhuang Autonomous Region | 2385 | 26.4 (17.5–35.3) | 23.5 (16.5–30.6) | 29.7 (18.6–40.8) | <0.0001 | 19.4 (16.5–22.3) | 21.3 (17.9–24.7) | 17.2 (13.5–20.9) | 0.2328 |
Hainan | 1038 | 22.5 (13.7–31.3) | 25.5 (17.9–33.0) | 19.2 (8.5–29.9) | 0.1562 | 13.6 (11.7–15.4) | 15.0 (13.5–16.6) | 11.9 (7.7–16.1) | 0.1819 |
Chongqing City | 1628 | 37.2 (18.6–55.8) | 38.0 (19.7–56.2) | 36.4 (17.1–55.8) | 0.6183 | 15.4 (13.1–17.8) | 15.1 (12.3–17.8) | 15.8 (13.7–18.0) | 0.7818 |
Sichuan | 3593 | 18.6 (15.5–21.7) | 17.3 (12.3–22.4) | 19.9 (16.2–23.7) | 0.4588 | 18.1 (12.7–23.5) | 22.2 (14.3–30.2) | 13.5 (9.9–17.2) | 0.0069 |
Guizhou | 2410 | 24.8 (13.9–35.8) | 25.4 (15.8–35.1) | 24.1 (11.4–36.9) | 0.6128 | 17.2 (14.3–20.0) | 18.6 (15.7–21.5) | 15.5 (12.0–19.0) | 0.0269 |
Yunnan | 3336 | 17.2 (11.6–22.9) | 16.6 (11.7–21.5) | 18.0 (11.1–24.8) | 0.4336 | 13.7 (11.2–16.2) | 15.2 (11.6–18.7) | 12.1 (9.2–15.0) | 0.0973 |
Shaanxi | 1836 | 14.4 (11.2–17.6) | 12.9 (9.8–16.0) | 16.2 (11.8–20.6) | 0.0881 | 13.5 (12.0–15.1) | 17.0 (13.0–20.9) | 9.6 (7.9–11.3) | 0.0055 |
Gansu | 1594 | 24.6 (15.6–33.7) | 26.5 (15.7–37.4) | 22.4 (14.7–30.1) | 0.1816 | 16.8 (15–18.5) | 18.6 (16.0–21.3) | 14.6 (11.3–18.0) | 0.1822 |
Qinghai | 1567 | 14.9 (7.3–22.5) | 14.4 (7.3–21.5) | 15.4 (7.0–23.8) | 0.4674 | 14.0 (9.7–18.4) | 16.0 (10.3–21.7) | 11.7 (8.2–15.2) | 0.042 |
Ningxia Hui Autonomous Region | 1508 | 15.7 (9.4–21.9) | 14.8 (7.8–21.9) | 16.7 (9.5–23.8) | 0.6049 | 13.0 (8.7–17.4) | 14.0 (9.6–18.4) | 12.0 (7.6–16.3) | 0.1333 |
Xinjiang Uyghur Autonomous Region | 1265 | 13.5 (6.2–20.8) | 13.5 (6.2–20.9) | 13.4 (6.1–20.7) | 0.8144 | 9.1 (6.2–11.9) | 11.3 (7.7–14.8) | 6.7 (4.3–9.1) | 0.0002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Li, Y.; Yuan, H.; Tang, Z.; Chen, M.; Cai, S.; Piao, W.; Nan, J.; Li, F.; Yu, D.; et al. Hypertension-Related Status and Influencing Factors among Chinese Children and Adolescents Aged 6~17 Years: Data from China Nutrition and Health Surveillance (2015–2017). Nutrients 2024, 16, 2685. https://doi.org/10.3390/nu16162685
Yang Y, Li Y, Yuan H, Tang Z, Chen M, Cai S, Piao W, Nan J, Li F, Yu D, et al. Hypertension-Related Status and Influencing Factors among Chinese Children and Adolescents Aged 6~17 Years: Data from China Nutrition and Health Surveillance (2015–2017). Nutrients. 2024; 16(16):2685. https://doi.org/10.3390/nu16162685
Chicago/Turabian StyleYang, Yuxiang, Yuge Li, Hongtao Yuan, Zengxu Tang, Mulei Chen, Shuya Cai, Wei Piao, Jing Nan, Fusheng Li, Dongmei Yu, and et al. 2024. "Hypertension-Related Status and Influencing Factors among Chinese Children and Adolescents Aged 6~17 Years: Data from China Nutrition and Health Surveillance (2015–2017)" Nutrients 16, no. 16: 2685. https://doi.org/10.3390/nu16162685
APA StyleYang, Y., Li, Y., Yuan, H., Tang, Z., Chen, M., Cai, S., Piao, W., Nan, J., Li, F., Yu, D., & Gao, X. (2024). Hypertension-Related Status and Influencing Factors among Chinese Children and Adolescents Aged 6~17 Years: Data from China Nutrition and Health Surveillance (2015–2017). Nutrients, 16(16), 2685. https://doi.org/10.3390/nu16162685