Effects of Mung Bean Water Supplementation on Modulating Lipid and Glucose Metabolism in a Diabetic Rat Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Mung Bean Water (MBW)
2.2. Animals and Experimental Diets
2.3. Determination of Plasma Lipids, Glucose, Insulin, Frutosamine, Leptin, Lactate, and Transaminase
2.4. Determination of Hepatic and Fecal Lipids
2.5. Determination of TBARSs and Hepatic GSH, GSSG, Hexokinase, G-6-Pase, and G-6-P DeHase Activities
2.6. Statistical Analysis
3. Results
3.1. Impact of MBW Supplementation on Plasma Glucose Levels and Body/Organ Weights in Normal and Diabetic Rats
3.2. Hypoglycemic and Hypolipidemic Effects of MBW Supplementation
3.3. Influences of MBW Supplementation on Modulating Lipid Metabolism and Glucose Metabolism-Related Enzymes
3.4. Antioxidative Activity of MBW
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jagannathan, R.; Neves, J.S.; Dorcely, B.; Chung, S.T.; Tamura, K.; Rhee, M.; Bergman, M. The oral glucose tolerance test: 100 years later. Diabetes Metab. Syndr. Obes. 2020, 13, 3787–3805. [Google Scholar] [CrossRef]
- Lenzen, S. The mechanisms of alloxan-and streptozotocin-induced diabetes. Diabetologia 2008, 51, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Masiello, P. Animal models of type 2 diabetes with reduced pancreatic β-cell mass. Int. J. Biochem. Cell Biol. 2006, 38, 873–893. [Google Scholar] [CrossRef]
- Eleazu, C.O.; Eleazu, K.C.; Chukwuma, S.; Essien, U.N. Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. J. Diabetes Metab. Disord. 2013, 12, 60. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, K.; Xu, B. Polyphenol-rich lentils and their health promoting effects. Int. J. Mol. Sci. 2017, 18, 2390. [Google Scholar] [CrossRef]
- Hou, D.; Zhao, Q.; Yousaf, L.; Xue, Y.; Shen, Q. Whole mung bean (Vigna radiata L.) supplementation prevents high-fat diet-induced obesity and disorders in a lipid profile and modulates gut microbiota in mice. Eur. J. Nutr. 2020, 59, 3617–3634. [Google Scholar] [CrossRef]
- Hou, D.; Yousaf, L.; Xue, Y.; Hu, J.; Wu, J.; Hu, X.; Feng, N.; Shen, Q. Mung bean (Vigna radiata L.): Bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients 2019, 11, 1238. [Google Scholar] [CrossRef]
- Diao, J.; Miao, X.; Chen, H. Anti-inflammatory effects of mung bean protein hydrolysate on the lipopolysaccharide-induced RAW264. 7 macrophages. Food Sci. Biotechnol. 2022, 31, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Chen, F.; Wang, M.; Wang, J.; Ren, G. Antidiabetic activity of Mung bean extracts in diabetic KK-Ay mice. J. Agric. Food Chem. 2008, 56, 8869–8873. [Google Scholar] [CrossRef]
- Kohno, M.; Sugano, H.; Shigihara, Y.; Shiraishi, Y.; Motoyama, T. Improvement of glucose and lipid metabolism via mung bean protein consumption: Clinical trials of GLUCODIA™ isolated mung bean protein in the USA and Canada. J. Nutr. Sci. 2018, 7, e2. [Google Scholar] [CrossRef]
- Kang, I.; Choi, S.; Ha, T.J.; Choi, M.; Wi, H.-R.; Lee, B.W.; Lee, M. Effects of mung bean (Vigna radiata L.) ethanol extracts decrease proinflammatory cytokine-induced lipogenesis in the KK-Ay diabese mouse model. J. Med. Food 2015, 18, 841–849. [Google Scholar] [CrossRef]
- Mohd Ali, N.; Mohd Yusof, H.; Long, K.; Yeap, S.K.; Ho, W.Y.; Beh, B.K.; Koh, S.P.; Abdullah, M.P.; Alitheen, N.B. Antioxidant and hepatoprotective effect of aqueous extract of germinated and fermented mung bean on ethanol—mediated liver damage. BioMed Res. Int. 2013, 2013, 693613. [Google Scholar] [CrossRef]
- Liu, T.; Yu, X.H.; Gao, E.Z.; Liu, X.N.; Sun, L.J.; Li, H.L.; Wang, P.; Zhao, Y.L.; Yu, Z.G. Hepatoprotective effect of active constituents isolated from mung beans (Phaseolus radiatus L.) in an alcohol-induced liver injury mouse model. J. Food Biochem. 2014, 38, 453–459. [Google Scholar] [CrossRef]
- Yang, Q.-Q.; Ge, Y.-Y.; Gunaratne, A.; Kong, K.-W.; Li, H.-B.; Gul, K.; Kumara, K.; Arachchi, L.V.; Zhu, F.; Corke, H. Phenolic profiles, antioxidant activities, and antiproliferative activities of different mung bean (Vigna radiata) varieties from Sri Lanka. Food Biosci. 2020, 37, 100705. [Google Scholar] [CrossRef]
- Sehrawat, N.; Yadav, M.; Kumar, S.; Upadhyay, S.K.; Singh, M.; Sharma, A.K. Review on health promoting biological activities of mungbean: A potent functional food of medicinal importance. Plant Arch. 2020, 20, 2969–2975. [Google Scholar]
- Listyawati, S.; Herawati, E.; Widiyani, T. The Influence of Mung Bean And Ginger Extracts Combination on Blood Glucose Levels of Type-2 Diabetes Mellitus Rats Model. In Proceedings of the 3rd International Conference on Biology, Science and Education (IcoBioSE 2021); Atlantis Press: Amsterdam, The Netherlands, 2023; pp. 475–480. [Google Scholar]
- Li, L.; Tian, Y.; Zhang, S.; Feng, Y.; Wang, H.; Cheng, X.; Ma, Y.; Zhang, R.; Wang, C. Regulatory effect of mung bean peptide on prediabetic mice induced by high-fat diet. Front. Nutr. 2022, 9, 913016. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Tian, Y.; Feng, Y.; Zhang, S.; Jiang, Y.; Zhang, Y.; Zhan, Y.; Wang, C. Improvement in mung bean peptide on high-fat diet-induced insulin resistance mice using untargeted serum metabolomics. Front. Nutr. 2022, 9, 893270. [Google Scholar] [CrossRef] [PubMed]
- Saeting, O.; Chandarajoti, K.; Phongphisutthinan, A.; Hongsprabhas, P.; Sae-Tan, S. Water extract of mungbean (Vigna radiata L.) inhibits protein tyrosine phosphatase-1B in insulin-resistant HepG2 cells. Molecules 2021, 26, 1452. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Jiang, X.; Qian, L.; Zhang, A.; Zuo, F.; Zhang, D. Polyphenol extracts from germinated mung beans can improve type 2 diabetes in mice by regulating intestinal microflora and inhibiting inflammation. Front. Nutr. 2022, 9, 846409. [Google Scholar] [CrossRef]
- Slinkard, K.; Singleton, V.L. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar] [CrossRef]
- Chemists, A. Association of Official Analytical Chemists (AOAC) Official Methods of Analysis; AOAC: Washington, DC, USA, 2004. [Google Scholar]
- Allison, D.B.; Paultre, F.; Maggio, C.; Mezzitis, N.; Pi-Sunyer, F.X. The use of areas under curves in diabetes research. Diabetes Care 1995, 18, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Takehisa, F.; Suzuki, Y. Effect of guar gum and cholestyramine on plasma lipoprotein cholesterol in rats. J. Jpn. Soc. Nutr. Food Sci. 1990, 43, 269–274. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Griffith, O.W.; Meister, A. Origin and turnover of mitochondrial glutathione. Proc. Natl. Acad. Sci. USA 1985, 82, 4668–4672. [Google Scholar] [CrossRef] [PubMed]
- Erickson, R.H.; Zakim, D.; Vessey, D.A. Preparation and properties of a phospholipid-free form of microsomal UDP-glucuronyltransferase. Biochemistry 1978, 17, 3706–3711. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Pari, L.; Satheesh, M.A. Effect of pterostilbene on hepatic key enzymes of glucose metabolism in streptozotocin-and nicotinamide-induced diabetic rats. Life Sci. 2006, 79, 641–645. [Google Scholar] [CrossRef] [PubMed]
- Masiello, P.; Broca, C.; Gross, R.; Roye, M.; Manteghetti, M.; Hillaire-Buys, D.; Novelli, M.; Ribes, G. Experimental NIDDM: Development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes 1998, 47, 224–229. [Google Scholar] [CrossRef]
- Al-Khnifsawi, M.; Al-Rasadi, K.; Santos, R.D.; Foy, K.A. From the President of the International Atherosclerosis Society: The Iraqi Lipid Clinics Network. J. Clin. Lipidol. 2021, 15, 538–539. [Google Scholar] [CrossRef]
- Massillon, D.; Barzilai, N.; Chen, W.; Hu, M.; Rossetti, L. Glucose Regulates in Vivo Glucose-6-phosphatase Gene Expression in the Liver of Diabetic Rats (∗). J. Biol. Chem. 1996, 271, 9871–9874. [Google Scholar] [CrossRef]
- Sies, H. Glutathione and its role in cellular functions. Free Radic. Biol. Med. 1999, 27, 916–921. [Google Scholar] [CrossRef] [PubMed]
- Esterbauer, H.; Cheeseman, K. Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 1990, 186, 407–421. [Google Scholar] [PubMed]
- Prati, D.; Taioli, E.; Zanella, A.; Torre, E.D.; Butelli, S.; Del Vecchio, E.; Vianello, L.; Zanuso, F.; Mozzi, F.; Milani, S. Updated definitions of healthy ranges for serum alanine aminotransferase levels. Ann. Intern. Med. 2002, 137, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Grover, J.; Yadav, S.; Vats, V. Medicinal plants of India with anti-diabetic potential. J. Ethnopharmacol. 2002, 81, 81–100. [Google Scholar] [CrossRef] [PubMed]
- Adams, L.A.; Angulo, P.; Lindor, K.D. Nonalcoholic fatty liver disease. Can. Med. Assoc. J. 2005, 172, 899–905. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-G.; Shibamoto, T. Antioxidant properties of aroma compounds isolated from soybeans and mung beans. J. Agric. Food Chem. 2000, 48, 4290–4293. [Google Scholar] [CrossRef] [PubMed]
- Kamalakkannan, N.; Prince, P.S.M. Rutin improves the antioxidant status in streptozotocin-induced diabetic rat tissues. Mol. Cell. Biochem. 2006, 293, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-S. Effects of soy protein and genistein on blood glucose, antioxidant enzyme activities, and lipid profile in streptozotocin-induced diabetic rats. Life Sci. 2006, 79, 1578–1584. [Google Scholar] [CrossRef]
- Manco, M.; Calvani, M.; Mingrone, G. Effects of dietary fatty acids on insulin sensitivity and secretion. Diabetes Obes. Metab. 2004, 6, 402–413. [Google Scholar] [CrossRef]
- Park, S.A.; Choi, M.-S.; Cho, S.-Y.; Seo, J.-S.; Jung, U.J.; Kim, M.-J.; Sung, M.-K.; Park, Y.B.; Lee, M.-K. Genistein and daidzein modulate hepatic glucose and lipid regulating enzyme activities in C57BL/KsJ-db/db mice. Life Sci. 2006, 79, 1207–1213. [Google Scholar] [CrossRef]
- Prince, P.S.M.; Kamalakkannan, N. Rutin improves glucose homeostasis in streptozotocin diabetic tissues by altering glycolytic and gluconeogenic enzymes. J. Biochem. Mol. Toxicol. 2006, 20, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Coskun, O.; Kanter, M.; Korkmaz, A.; Oter, S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Pharmacol. Res. 2005, 51, 117–123. [Google Scholar] [CrossRef] [PubMed]
Ingredient 1 | DM | Normal | Two Way ANOVA 1 | ||||
---|---|---|---|---|---|---|---|
Water | MBW | Water | MBW | DM | MBW | DM × MBW | |
Before treatment | |||||||
0 min | 110.29 ± 12.34 | 107.24 ± 14.17 | 103.45 ± 20.28 | 107.43 ± 18.50 | N.S. 2 | N.S. | N.S. |
30 min | 188.22 ± 39.44 | 191.48 ± 35.95 | 156.44 ± 28.02 | 175.21 ± 18.53 | 0.025 | N.S. | N.S. |
60 min | 179.56 ± 33.00 | 212.65 ± 45.07 | 143.86 ± 21.10 | 141.19 ± 22.17 | 0.000 | N.S. | N.S. |
120 min | 133.58 ± 11.47 | 155.81 ± 32.73 | 128.88 ± 11.38 | 132.52 ± 19.97 | 0.045 | 0.025 | N.S. |
180 min | 124.76 ± 23.90 | 129.63 ± 29.45 | 129.01 ± 21.45 | 103.68 ± 12.72 | N.S. | N.S. | 0.046 |
After treatment for 8 weeks | |||||||
0 min | 140.94 ± 25.37 | 126.29 ± 26.25 | 126.57 ± 22.16 | 109.62 ± 11.69 * | 0.035 | 0.033 | N.S. |
30 min | 277.34 ± 84.08 | 254.31 ± 32.05 | 180.57 ± 36.92 | 179.30 ± 24.89 | 0.000 | N.S. | N.S. |
60 min | 210.25 ± 45.24 | 203.41 ± 36.35 | 177.20 ± 31.39 | 156.07 ± 8.10 * | 0.001 | N.S. | N.S. |
120 min | 180.19 ± 36.99 | 184.72 ± 28.68 | 173.12 ± 25.06 | 133.49 ± 10.70 * | 0.003 | 0.066 | 0.022 |
180 min | 179.46 ± 23.43 | 196.27 ± 36.40 | 163.46 ± 24.04 | 138.49 ± 26.25 * | 0.000 | N.S. | N.S. |
AUC | 1521.35 ± 324.36 | 1438.72 ± 192.85 | 1208.45 ± 127.16 | 1156.07 ± 85.96 | 0.000 | N.S. | N.S. |
ΔAUC | 499.53 ± 298.45 | 531.86 ± 248.72 | 283.01 ± 99.94 | 348.38 ± 115.66 | N.S. | N.S. | N.S. |
Ingredient 1 | DM | Normal | Two Way ANOVA 1 | ||||
---|---|---|---|---|---|---|---|
Water | MBW | Water | MBW | DM | MBW | DM × MBW | |
Drinking volume (mL) | 38.5 ± 8.31 | 49.2 ± 15.6 * | 41.5 ± 13.8 | 48.1 ± 10.5 | N.S. 2 | 0.043 | N.S. |
Urine volume (mL) | 19.8 ± 3.98 | 23.3 ± 8.43 | 23.7 ± 11.7 | 27.8 ± 5.52 | N.S. | N.S. | N.S. |
Feed intake (g) | 25.5 ± 3.87 | 25.6 ± 2.35 | 27.4 ± 4.96 | 25.2 ± 4.59 | N.S. | N.S. | N.S. |
Feces (g) | 2.10 ± 0.21 | 2.02 ± 0.19 | 1.99 ± 0.17 | 2.04 ± 0.28 | N.S. | N.S. | N.S. |
Initial body weight (g) | 460.7 ± 35.4 | 435.9 ± 27.3 | 474.8 ± 24.2 | 474.8 ± 31.8 | N.S. | N.S. | N.S. |
Final body weight (g) | 644.4 ± 56.1 | 639.7 ± 72.6 | 671.7 ± 42.6 | 650.7 ± 50.3 | N.S. | N.S. | N.S. |
Liver weight (g) | 37.1 ± 6.57 | 36.7 ± 5.41 | 32.7 ± 4.26 | 31.8 ± 4.59 | 0.009 | N.S. | N.S. |
Liver weight (g)/100 g body weight | 5.89 ± 0.80 | 5.83 ± 0.63 | 5.01 ± 0.43 | 5.04 ± 0.54 | 0.000 | N.S. | N.S. |
Kidney weight (g) | 3.53 ± 0.59 | 3.49 ± 0.28 | 3.54 ± 0.29 | 3.18 ± 0.36 * | N.S. | N.S. | N.S. |
Kidney weight (g)/100 g body weight | 0.56 ± 0.07 | 0.54 ± 0.04 | 0.54 ± 0.04 | 0.52 ± 0.05 | N.S. | N.S. | N.S. |
Adipose tissue weight (g) | 13.0 ± 2.62 | 12.8 ± 5.11 | 14.4 ± 4.23 | 13.3 ± 2.84 | N.S. | N.S. | N.S. |
Adipose tissue weight (g)/100g body weight | 2.06 ± 0.26 | 2.14 ± 0.48 | 2.19 ± 0.58 | 2.11 ± 0.37 | N.S. | N.S. | N.S. |
DM | Normal | Two Way ANOVA 1 | |||||
---|---|---|---|---|---|---|---|
Water | MBW | Water | MBW | DM | MBW | DM × MBW | |
Glucose (mg/dL) | 159.7± 32.3 | 121.7 ± 29.1 * | 129.6 ± 17.9 | 126.4 ± 12.4 | 0.04 | 0.017 | N.S. |
Insulin (μg/L) | 1.13 ± 0.91 | 1.31 ± 0.75 | 1.41 ± 0.64 | 1.93 ± 0.98 | N.S. 2 | N.S. | N.S. |
Frutosamine (μmol/L) | 464.4 ± 189.6 | 190.7 ± 84.3 * | 197.1 ± 51.6 | 172.3 ± 54.8 | 0.000 | 0.000 | 0.002 |
Leptin (pg/L) | 3.34 ± 0.94 | 2.62 ± 0.94 | 3.06 ± 1.22 | 2.74 ± 0.76 | N.S. | N.S. | N.S. |
Lactate (mg/dL) | 28.7 ± 8.5 | 31.5 ± 7.8 | 19.1 ± 4.7 | 26.0 ± 4.8 * | 0.001 | 0.030 | N.S. |
Free fatty acid (mEq/L) | 0.47 ± 0.05 | 0.41 ± 0.05 * | 0.43 ± 0.14 | 0.43 ± 0.14 | N.S. | N.S. | N.S. |
Triglyceride (mg/dL) | 107.6 ± 42.0 | 94.5 ± 27.7 | 95.9 ± 27.0 | 91.2 ± 59.5 | N.S. | N.S. | N.S. |
Total cholesterol (mg/dL) | 182.6 ± 54.9 | 134.0 ± 35.3 * | 147.2 ± 44.6 | 132.5 ± 15.6 | N.S. | 0.025 | N.S. |
HDL-C (mg/dL) | 25.9 ± 5.8 | 19.1 ± 5.7 * | 25.9 ± 10.7 | 26.5 ± 8.8 | N.S. | N.S. | N.S. |
VLDL-C + LDL-C (mg/dL) | 156.4 ± 54.3 | 108.9 ± 34.4 * | 125.9 ± 45.2 | 105.4 ± 18.9 | N.S. | 0.021 | N.S. |
Total cholesterol/HDL-C (mg/dL) | 7.32 ± 2.84 | 7.32 ± 2.85 | 5.89 ± 2.40 | 4.78 ± 1.25 | 0.031 | N.S. | N.S. |
HDL-C/VLDL-C + LDL-C | 0.28 ± 0.10 | 0.24 ± 0.14 | 0.30 ± 0.18 | 0.36 ± 0.14 | N.S. | N.S. | N.S. |
DM | Normal | Two Way ANOVA 1 | |||||
---|---|---|---|---|---|---|---|
Water | MBW | Water | MBW | DM | MBW | DM × MBW | |
Cholesterol (mg/g liver) | 114.4 ± 24.0 | 100.1 ± 16.3 | 72.4 ± 14.2 | 60.6 ± 14.7 | 0.000 | 0.043 | N.S. |
Cholesterol (g/liver) | 4.28 ± 1.30 | 3.75 ± 0.89 | 2.31 ± 0.53 | 1.97 ± 0.54 | 0.000 | N.S. | N.S. |
Triglyceride (mg/g liver) | 76.3 ± 16.3 | 72.2 ± 16.7 | 63.7 ± 13.4 | 44.8 ± 9.4 * | 0.000 | 0.021 | N.S. |
Triglyceride (g/liver) | 2.96 ± 0.96 | 2.62 ± 0.85 | 2.12 ± 0.67 | 1.43 ± 0.46 * | 0.000 | N.S. | N.S. |
Hexokinase (nmol/min/mg protein) | 42.9 ± 22.2 | 54.4 ± 14.6 | 54.1 ± 33.1 | 63.1 ± 33.0 | N.S. 2 | N.S. | N.S. |
(mmol/min/g liver) | 0.22 ± 0.06 | 0.31 ± 0.09 * | 0.28 ± 0.05 | 0.25 ± 0.08 | N.S. | N.S. | 0.028 |
(mmol/min/total liver) | 8.37 ± 2.86 | 11.2 ± 3.60 * | 8.86 ± 1.54 | 7.97 ± 2.33 | N.S. | N.S. | 0.049 |
G-6-Pase (nmol/min/mg protein) | 69.9 ± 27.5 | 66.1 ± 25.4 | 60.5 ± 20.2 | 60.9 ± 14.5 | N.S. | N.S. | N.S. |
(μmol/min/g liver) | 53.3 ± 21.0 | 50.4 ± 19.3 | 46.2 ± 15.4 | 46.4 ± 11.1 | N.S. | N.S. | N.S. |
(mmol/min/total liver) | 2.00 ± 0.89 | 1.87 ± 0.81 | 1.47 ± 0.56 | 1.57 ± 0.43 | N.S. | N.S. | N.S. |
Hexokinase/G-6-Pase 3 | 0.61 ± 025. | 0.63 ± 0.25 | 0.58 ± 0.17 | 0.60 ± 0.26 | N.S. | N.S. | N.S. |
G-6-P DeHase (nmol/min/mg protein) | 40.7 ± 17.6 | 23.3 ± 12.3 * | 29.8 ± 10.7 | 30.8 ± 8.0 | N.S. | N.S. | 0.046 |
(mmol/min/g liver) | 0.34 ± 0.13 | 0.21 ± 0.07 * | 0.27 ± 0.10 | 0.32 ± 0.10 | N.S. | N.S. | 0.018 |
(mmol/min/total liver) | 12.5 ± 4.87 | 7.72 ± 2.64 * | 9.03 ± 3.81 | 10.5 ± 4.29 | N.S. | N.S. | 0.031 |
DM | Normal | Two Way ANOVA 1 | |||||
---|---|---|---|---|---|---|---|
Water | MBW | Water | MBW | DM | MBW | DM × MBW | |
Cholesterol (mg/g) Cholesterol (mg/total feces) | 11.7 ± 2.06 24.5 ± 4.78 | 8.10 ± 3.33 * 18.1 ± 4.09 * | 10.7 ± 1.64 21.1 ± 3.79 | 10.2 ± 2.04 21.3 ± 7.17 | N.S. 2 N.S. | 0.019 N.S. | 0.089 N.S. |
Triglyceride (mg/g) Triglyceride (mg/total feces) | 3.16 ± 1.41 6.68 ± 3.10 | 3.34 ± 1.08 6.76 ± 2.58 | 3.12 ± 1.86 6.18 ± 4.19 | 3.48 ± 1.15 7.30 ± 3.36 | N.S. N.S. | N.S. N.S. | N.S. N.S. |
DM | Normal | Two Way ANOVA 1 | |||||
---|---|---|---|---|---|---|---|
Water | MBW | Water | MBW | DM | MBW | DM × MBW | |
GSH (μmol/g liver) | 28.3 ± 5.5 | 32.9 ± 13.2 | 39.7 ± 10.2 | 40.4 ± 11.4 | 0.010 | N.S. | N.S. |
GSSG (μmol/g liver) | 9.61 ± 2.64 | 10.6 ± 5.27 | 9.25 ± 2.67 | 9.37 ± 3.77 | N.S. 2 | N.S. | N.S. |
GSH Px (μmol NADPH decrease/min/mg protein) | 0.23 ± 0.03 | 0.20 ± 0.01 * | 0.22 ± 0.03 | 0.24 ± 0.03 | N.S. | N.S. | 0.014 |
(μmol NADPH decrease/min/g liver) | 5.63 ± 1.19 | 4.60 ± 0.52 * | 5.28 ± 1.23 | 5.93 ± 0.89 | N.S. | N.S. | 0.020 |
(mmol NADPH decrease/min/total liver) | 0.21 ± 0.05 | 0.17 ± 0.03 * | 0.17 ± 0.04 | 0.19 ± 0.03 | N.S. | N.S. | 0.038 |
Plasma TBARS (nmol/mL) | 2.53 ± 0.40 | 2.10 ± 0.30 * | 2.38 ± 0.39 | 1.99 ± 0.27 * | N.S. | N.S. | 0.001 |
Hepatic TBARS (nmol/g tissue) | 21.6 ± 9.3 | 11.5 ± 8.4 * | 18.4 ± 9.7 | 21.9 ± 12.5 | N.S. | N.S. | N.S. |
Nephrotic TBARS (nmol/g tissue) | 95.9 ± 30.3 | 97.6 ± 28.9 | 29.4 ± 9.5 | 34.9 ± 16.7 | 0.000 | N.S. | N.S. |
AST (U/L) | 65.1 ± 26.2 | 81.2 ± 29.1 | 67. 6 ± 28.9 | 90.1 ± 31.9 | N.S. | N.S. | N.S. |
ALT (U/L) | 34.5 ± 17.9 | 41.8 ± 15.7 | 32.9 ± 18.1 | 35.3 ± 7.0 | N.S. | N.S. | N.S. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-H.; Chen, J.-Y.; Chiang, M.-T. Effects of Mung Bean Water Supplementation on Modulating Lipid and Glucose Metabolism in a Diabetic Rat Model. Nutrients 2024, 16, 2684. https://doi.org/10.3390/nu16162684
Huang C-H, Chen J-Y, Chiang M-T. Effects of Mung Bean Water Supplementation on Modulating Lipid and Glucose Metabolism in a Diabetic Rat Model. Nutrients. 2024; 16(16):2684. https://doi.org/10.3390/nu16162684
Chicago/Turabian StyleHuang, Chung-Hsiung, Jia-Yin Chen, and Meng-Tsan Chiang. 2024. "Effects of Mung Bean Water Supplementation on Modulating Lipid and Glucose Metabolism in a Diabetic Rat Model" Nutrients 16, no. 16: 2684. https://doi.org/10.3390/nu16162684
APA StyleHuang, C.-H., Chen, J.-Y., & Chiang, M.-T. (2024). Effects of Mung Bean Water Supplementation on Modulating Lipid and Glucose Metabolism in a Diabetic Rat Model. Nutrients, 16(16), 2684. https://doi.org/10.3390/nu16162684