Protein Hydrolysates and Bioactive Peptides as Mediators of Blood Glucose—A Systematic Review and Meta-Analysis of Acute and Long-Term Studies
Abstract
:1. Introduction
2. Methods
2.1. Data Source and Search Strategy
2.2. Study Selection
2.3. Data Extraction
2.4. Assessment for Risk of Bias
2.5. Data Analysis
2.6. Grading the Evidence
3. Results
3.1. Parameters of Acute Postprandial RCTs
3.2. Parameters of Long-Term RCTs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- King, H.; Aubert, R.E.; Herman, W.H. Global burden of diabetes, 1995–2025: Prevalence, numerical estimates, and projections. Diabetes Care 1998, 21, 1414–1431. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-E.; Min, S.H.; Lee, D.-H.; Oh, T.J.; Kim, K.M.; Moon, J.H.; Choi, S.H.; Park, K.S.; Jang, H.C.; Lim, S. Comprehensive assessment of lipoprotein subfraction profiles according to glucose metabolism status, and association with insulin resistance in subjects with early-stage impaired glucose metabolism. Int. J. Cardiol. 2016, 225, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Drucker, D.J.; Nauck, M.A. The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006, 368, 1696–1705. [Google Scholar] [CrossRef]
- Kang, M.-G.; Yi, S.-H.; Lee, J.-S. Production and characterization of a new α-glucosidase inhibitory peptide from Aspergillus oryzae N159-1. Mycobiology 2013, 41, 149–154. [Google Scholar] [CrossRef]
- Qaseem, A.; Barry, M.J.; Humphrey, L.L.; Forciea, M.A.; Clinical Guidelines Committee of the American College of Physicians; Fitterman, N.; Horwitch, C.; Kansagara, D.; McLean, R.M.; Wilt, T.J. Oral pharmacologic treatment of type 2 diabetes mellitus: A clinical practice guideline update from the american college of physicians. Ann. Intern. Med. 2017, 166, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Abuissa, H.; Jones, P.G.; Marso, S.P.; O’Keefe, J.H. Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for prevention of type 2 diabetes: A meta-analysis of randomized clinical trials. J. Am. Coll. Cardiol. 2005, 46, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Nongonierma, A.B.; FitzGerald, R.J. Dipeptidyl peptidase IV inhibitory properties of a whey protein hydrolysate: Influence of fractionation, stability to simulated gastrointestinal digestion and food–drug interaction. Int. Dairy J. 2013, 32, 33–39. [Google Scholar] [CrossRef]
- Han, R.; Hernández Álvarez, A.J.; Maycock, J.; Murray, B.S.; Boesch, C. Comparison of alcalase- and pepsin-treated oilseed protein hydrolysates—Experimental validation of predicted antioxidant, antihypertensive and antidiabetic properties. Curr. Res. Food Sci. 2021, 4, 141–149. [Google Scholar] [CrossRef]
- Möller, N.P.; Scholz-Ahrens, K.E.; Roos, N.; Schrezenmeir, J. Bioactive peptides and proteins from foods: Indication for health effects. Eur. J. Nutr. 2008, 47, 171–182. [Google Scholar] [CrossRef]
- Korhonen, H.; Pihlanto, A. Bioactive peptides: Production and functionality. Int. Dairy J. 2006, 16, 945–960. [Google Scholar] [CrossRef]
- Han, R.; Hernández Álvarez, A.J.; Maycock, J.; Murray, B.S.; Boesch, C. Differential effects of oilseed protein hydrolysates in attenuating inflammation in murine macrophages. Food Biosci. 2022, 49, 101860. [Google Scholar] [CrossRef]
- Mohanty, D.P.; Mohapatra, S.; Misra, S.; Sahu, P.S. Milk derived bioactive peptides and their impact on human health—A review. Saudi J. Biol. Sci. 2016, 23, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Yin, Y.; Zhao, W.; Liu, J.; Chen, F. Anti-diabetic activity peptides from albumin against α-glucosidase and α-amylase. Food Chem. 2012, 135, 2078–2085. [Google Scholar] [CrossRef] [PubMed]
- Mojica, L.; De Mejia, E.G.; Menjivar, M.; Granados-Silvestre, M.Á. Antidiabetic effect of black bean peptides through reduction of glucose absorption and modulation of SGLT1, GLUT2 and DPP-IV in in vitro and in vivo Models. FASEB J. 2016, 30, 125.6. [Google Scholar] [CrossRef]
- Sartorius, T.; Weidner, A.; Dharsono, T.; Boulier, A.; Wilhelm, M.; Schön, C. Postprandial effects of a proprietary milk protein hydrolysate containing bioactive peptides in prediabetic subjects. Nutrients 2019, 11, 1700. [Google Scholar] [CrossRef] [PubMed]
- Dale, H.F.; Jensen, C.; Hausken, T.; Lied, E.; Hatlebakk, J.G.; Brønstad, I.; Hoff, D.A.L.; Lied, G.A. Effect of a cod protein hydrolysate on postprandial glucose metabolism in healthy subjects: A double-blind cross-over trial. J. Nutr. Sci. 2018, 7, e33. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Savović, J.; Page, M.J.; Elbers, R.G.; Sterne, J.A.C. Assessing risk of bias in a randomized trial. In Cochrane Handbook for Systematic Reviews of Interventions; Cochrane: London, UK, 2019; pp. 205–228. [Google Scholar]
- Deeks, J.J.; Higgins, J.P.T.; Altman, D.G.; Cochrane Stastical Methods Group. Analysing data and undertaking meta-analyses. In Cochrane Handbook for Systematic Reviews of Interventions; Cochrane: London, UK, 2019; pp. 241–284. [Google Scholar]
- Agergaard, J.; Hansen, E.T.; van Hall, G.; Holm, L. Postprandial amino acid availability after intake of intact or hydrolyzed meat protein in a mixed meal in healthy elderly subjects: A randomized, single blind crossover trial. Amino Acids 2021, 53, 951–959. [Google Scholar] [CrossRef]
- Akhavan, T.; Luhovyy, B.L.; Brown, P.H.; Cho, C.E.; Anderson, G.H. Effect of premeal consumption of whey protein and its hydrolysate on food intake and postmeal glycemia and insulin responses in young adults. Am. J. Clin. Nutr. 2010, 91, 966–975. [Google Scholar] [CrossRef]
- Ballard, K.D.; Kupchak, B.R.; Volk, B.M.; Mah, E.; Shkreta, A.; Liptak, C.; Ptolemy, A.S.; Kellogg, M.S.; Bruno, R.S.; Seip, R.L.; et al. Acute effects of ingestion of a novel whey-derived extract on vascular endothelial function in overweight, middle-aged men and women. Br. J. Nutr. 2013, 109, 882–893. [Google Scholar] [CrossRef] [PubMed]
- Bendtsen, L.Q.; Lorenzen, J.K.; Gomes, S.; Liaset, B.; Holst, J.J.; Ritz, C.; Reitelseder, S.; Sjödin, A.; Astrup, A. Effects of hydrolysed casein, intact casein and intact whey protein on energy expenditure and appetite regulation: A randomised, controlled, cross-over study. Br. J. Nutr. 2014, 112, 1412–1422. [Google Scholar] [CrossRef]
- Calbet, J.A.; MacLean, D.A. Plasma glucagon and insulin responses depend on the rate of appearance of amino acids after ingestion of different protein solutions in humans. J. Nutr. 2002, 132, 2174–2182. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Smith, H.A.; Hengist, A.; Chrzanowski-Smith, O.J.; Mikkelsen, U.R.; Carroll, H.A.; Betts, J.A.; Thompson, D.; Saunders, J.; Gonzalez, J.T. Co-ingestion of whey protein hydrolysate with milk minerals rich in calcium potently stimulates glucagon-like peptide-1 secretion: An RCT in healthy adults. Eur. J. Nutr. 2020, 59, 2449–2462. [Google Scholar] [CrossRef] [PubMed]
- Claessens, M.; Calame, W.; Siemensma, A.D.; van Baak, M.A.; Saris, W.H.M. The effect of different protein hydrolysate/carbohydrate mixtures on postprandial glucagon and insulin responses in healthy subjects. Eur. J. Clin. Nutr. 2009, 63, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Claessens, M.; Calame, W.; Siemensma, A.D.; Saris, W.H.; van Baak, M.A. The thermogenic and metabolic effects of protein hydrolysate with or without a carbohydrate load in healthy male subjects. Metab. Clin. Exp. 2007, 56, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Claessens, M.; Saris, W.H.M.; van Baak, M.A. Glucagon and insulin responses after ingestion of different amounts of intact and hydrolysed proteins. Br. J. Nutr. 2008, 100, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Curran, A.M.; Horner, K.; O’Sullivan, V.; Nongonierma, A.B.; Le Maux, S.; Murphy, E.; Kelly, P.; FitzGerald, R.J.; Brennan, L. Variable glycemic responses to intact and hydrolyzed milk proteins in overweight and obese adults reveal the need for Precision nutrition. J. Nutr. 2019, 149, 88–97. [Google Scholar] [CrossRef]
- Deglaire, A.; Fromentin, C.; Fouillet, H.; Airinei, G.; Gaudichon, C.; Boutry, C.; Benamouzig, R.; Moughan, P.J.; Tomé, D.; Bos, C. Hydrolyzed dietary casein as compared with the intact protein reduces postprandial peripheral, but not whole-body, uptake of nitrogen in humans. Am. J. Clin. Nutr. 2009, 90, 1011–1022. [Google Scholar] [CrossRef]
- Drummond, E.; Flynn, S.; Whelan, H.; Nongonierma, A.B.; Holton, T.A.; Robinson, A.; Egan, T.; Cagney, G.; Shields, D.C.; Gibney, E.R. Casein hydrolysate with glycemic control properties: Evidence from cells, animal models, and humans. J. Agric. Food Chem. 2018, 66, 4352–4363. [Google Scholar] [CrossRef]
- Holmer-Jensen, J.; Hartvigsen, M.L.; Mortensen, L.S.; Astrup, A.; de Vrese, M.; Holst, J.J.; Thomsen, C.; Hermansen, K. Acute differential effects of milk-derived dietary proteins on postprandial lipaemia in obese non-diabetic subjects. Eur. J. Clin. Nutr. 2012, 66, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Horner, K.; Drummond, E.; O’Sullivan, V.; Sc Sri Harsha, P.; Brennan, L. Effects of a casein hydrolysate versus intact casein on gastric emptying and amino acid responses. Eur. J. Nutr. 2019, 58, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Koopman, R.; Crombach, N.; Gijsen, A.P.; Walrand, S.; Fauquant, J.; Kies, A.K.; Lemosquet, S.; Saris, W.H.M.; Boirie, Y.; van Loon, L.J.C. Ingestion of a protein hydrolysate is accompanied by an accelerated in vivo digestion and absorption rate when compared with its intact protein. Am. J. Clin. Nutr. 2009, 90, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Manders, R.J.; Wagenmakers, A.J.; Koopman, R.; Zorenc, A.H.; Menheere, P.P.; Schaper, N.C.; Saris, W.H.; van Loon, L.J. Co-ingestion of a protein hydrolysate and amino acid mixture with carbohydrate improves plasma glucose disposal in patients with type 2 diabetes. Am. J. Clin. Nutr. 2005, 82, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Manders, R.J.; Koopman, R.; Sluijsmans, W.E.; van den Berg, R.; Verbeek, K.; Saris, W.H.; Wagenmakers, A.J.; van Loon, L.J. Co-ingestion of a protein hydrolysate with or without additional leucine effectively reduces postprandial blood glucose excursions in Type 2 diabetic men. J. Nutr. 2006, 136, 1294–1299. [Google Scholar] [CrossRef]
- Nakayama, K.; Sanbongi, C.; Ikegami, S. Effects of whey protein hydrolysate ingestion on postprandial aminoacidemia compared with a free amino acid mixture in young men. Nutrients 2018, 10, 507. [Google Scholar] [CrossRef]
- Power, O.; Hallihan, A.; Jakeman, P. Human insulinotropic response to oral ingestion of native and hydrolysed whey protein. Amino Acids 2009, 37, 333–339. [Google Scholar] [CrossRef]
- van Loon, L.J.; Saris, W.H.; Verhagen, H.; Wagenmakers, A.J. Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate. Am. J. Clin. Nutr. 2000, 72, 96–105. [Google Scholar] [CrossRef]
- Ballard, K.D.; Bruno, R.S.; Seip, R.L.; Quann, E.E.; Volk, B.M.; Freidenreich, D.J.; Kawiecki, D.M.; Kupchak, B.R.; Chung, M.Y.; Kraemer, W.J.; et al. Acute ingestion of a novel whey-derived peptide improves vascular endothelial responses in healthy individuals: A randomized, placebo controlled trial. Nutr. J. 2009, 8, 34. [Google Scholar] [CrossRef]
- Hovland, I.H.; Leikanger, I.S.; Stokkeland, O.; Waage, K.H.; Mjøs, S.A.; Brokstad, K.A.; McCann, A.; Ueland, P.M.; Slizyte, R.; Carvajal, A.; et al. Effects of low doses of fish and milk proteins on glucose regulation and markers of insulin sensitivity in overweight adults: A randomised, double blind study. Eur. J. Nutr. 2020, 59, 1013–1029. [Google Scholar] [CrossRef]
- Rakvaag, E.; Fuglsang-Nielsen, R.; Bach Knudsen, K.E.; Landberg, R.; Johannesson Hjelholt, A.; Søndergaard, E.; Hermansen, K.; Gregersen, S. Whey protein combined with low dietary fiber improves lipid profile in subjects with abdominal obesity: A randomized, controlled trial. Nutrients 2019, 11, 2091. [Google Scholar] [CrossRef] [PubMed]
- Geerts, B.F.; Dongen, M.G.J.v.; Flameling, B.; Moerland, M.M.; Kam, M.L.d.; Cohen, A.F.; Romijn, J.A.; Gerhardt, C.C.; Kloek, J.; Burggraaf, J. Hydrolyzed casein decreases postprandial glucose concentrations in T2DM patients irrespective of leucine content. J. Diet. Suppl. 2011, 8, 280–292. [Google Scholar] [CrossRef]
- Goudarzi, M.; Madadlou, A. Influence of whey protein and its hydrolysate on prehypertension and postprandial hyperglycaemia in adult men. Int. Dairy J. 2013, 33, 62–66. [Google Scholar] [CrossRef]
- Hoefle, A.S.; Bangert, A.M.; Rist, M.J.; Gedrich, K.; Lee, Y.M.; Skurk, T.; Danier, J.; Schwarzenbolz, U.; Daniel, H. Postprandial metabolic responses to ingestion of bovine glycomacropeptide compared to a whey protein isolate in prediabetic volunteers. Eur. J. Nutr. 2019, 58, 2067–2077. [Google Scholar] [CrossRef] [PubMed]
- Jonker, J.T.; Wijngaarden, M.A.; Kloek, J.; Groeneveld, Y.; Gerhardt, C.; Brand, R.; Kies, A.K.; Romijn, J.A.; Smit, J.W.A. Effects of low doses of casein hydrolysate on post-challenge glucose and insulin levels. Eur. J. Intern. Med. 2011, 22, 245–248. [Google Scholar] [CrossRef]
- King, D.G.; Walker, M.; Campbell, M.D.; Breen, L.; Stevenson, E.J.; West, D.J. A small dose of whey protein co-ingested with mixed-macronutrient breakfast and lunch meals improves postprandial glycemia and suppresses appetite in men with type 2 diabetes: A randomized controlled trial. Am. J. Clin. Nutr. 2018, 107, 550–557. [Google Scholar] [CrossRef]
- Manders, R.J.F.; Praet, S.F.E.; Vikström, M.H.; Saris, W.H.M.; Van Loon, L.J.C. Protein hydrolysate co-ingestion does not modulate 24 h glycemic control in long-standing type 2 diabetes patients. Eur. J. Clin. Nutr. 2009, 63, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Manders, R.J.F.; Hansen, D.; Zorenc, A.H.G.; Dendale, P.; Kloek, J.; Saris, W.H.M.; van Loon, L.J.C. Protein co-ingestion strongly increases postprandial insulin secretion in type 2 diabetes patients. J. Med. Food 2014, 17, 758–763. [Google Scholar] [CrossRef]
- Mortensen, L.S.; Holmer-Jensen, J.; Hartvigsen, M.L.; Jensen, V.K.; Astrup, A.; de Vrese, M.; Holst, J.J.; Thomsen, C.; Hermansen, K. Effects of different fractions of whey protein on postprandial lipid and hormone responses in type 2 diabetes. Eur. J. Clin. Nutr. 2012, 66, 799–805. [Google Scholar] [CrossRef]
- Plat, J.; Severins, N.; Mensink, R.P. Improvement of pulse wave velocity and metabolic cardiovascular risk parameters through egg protein hydrolysate intake: A randomized trial in overweight or obese subjects with impaired glucose tolerance or type 2 diabetes. J. Funct. Foods 2019, 52, 418–423. [Google Scholar] [CrossRef]
- Devasia, S.; Kumar, S.; Stephena, P.S.; Inoue, N.; Sugihara, F.; Koizumi, S.; Matsushita, A.; Vt, S. A double blind, randomised, four arm clinical study to evaluate the safety, efficacy and tolerability of collagen peptide as a nutraceutical therapy in the management of type II diabetes mellitus. J. Diabetes Metab. 2019, 11, 839. [Google Scholar]
- Jensen, C.; Fjeldheim Dale, H.; Hausken, T.; Hatlebakk, J.G.; Brønstad, I.; Lied, G.A.; Hoff, D.A.L. Supplementation with low doses of a cod protein hydrolysate on glucose regulation and lipid metabolism in adults with metabolic syndrome: A randomized, double-blind study. Nutrients 2020, 12, 1991. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.-F.; Li, G.-Z.; Peng, H.-B.; Zhang, F.; Chen, Y.; Li, Y. Treatment with marine collagen peptides modulates glucose and lipid metabolism in chinese patients with type 2 diabetes mellitus. Appl. Physiol. Nutr. Metab. 2010, 35, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Jahandideh, F.; Wu, J. A review on mechanisms of action of bioactive peptides against glucose intolerance and insulin resistance. Food Sci. Hum. Wellness 2022, 11, 1441–1454. [Google Scholar] [CrossRef]
- Jahandideh, F.; Bourque, S.L.; Wu, J. A comprehensive review on the glucoregulatory properties of food-derived bioactive peptides. Food Chem. X 2022, 13, 100222. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.; Song, Y.; Gu, X. α-glucosidase inhibitory in vitro and antidiabetic activity in vivo of Osmanthus fragrans. J. Med. Plants Res. 2012, 6, 2850–2856. [Google Scholar]
- Berry, S.E.; Valdes, A.M.; Drew, D.A.; Asnicar, F.; Mazidi, M.; Wolf, J.; Capdevila, J.; Hadjigeorgiou, G.; Davies, R.; Al Khatib, H. Human postprandial responses to food and potential for precision nutrition. Nat. Med. 2020, 26, 964–973. [Google Scholar] [CrossRef]
- Hollander, P.A.; Kushner, P. Type 2 diabetes comorbidities and treatment challenges: Rationale for DPP-4 inhibitors. Postgrad. Med. 2010, 122, 71–80. [Google Scholar] [CrossRef]
- Stokes, T.; Hector, A.J.; Morton, R.W.; McGlory, C.; Phillips, S.M. Recent perspectives regarding the role of dietary protein for the promotion of muscle hypertrophy with resistance exercise training. Nutrients 2018, 10, 180. [Google Scholar] [CrossRef]
- Konrad, B.; Marek, S.; Marta, P.; Aleksandra, Z.; Józefa, C. The evaluation of dipeptidyl peptidase (DPP)-IV, α-glucosidase and angiotensin converting enzyme (ACE) inhibitory activities of whey proteins hydrolyzed with serine protease isolated from Asian pumpkin (Cucurbita ficifolia). Int. J. Pept. Res. Ther. 2014, 20, 483–491. [Google Scholar] [CrossRef]
- Gunnerud, U.J.; Heinzle, C.; Holst, J.J.; Östman, E.M.; Björck, I.M.E. Effects of pre-meal drinks with protein and amino acids on glycemic and metabolic responses at a subsequent composite meal. PLoS ONE 2012, 7, e44731. [Google Scholar] [CrossRef] [PubMed]
- Östman, E.M.; Liljeberg Elmståhl, H.G.M.; Björck, I.M.E. Inconsistency between glycemic and insulinemic responses to regular and fermented milk products. Am. J. Clin. Nutr. 2001, 74, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Sawada, Y.; Sakamoto, Y.; Toh, M.; Ohara, N.; Hatanaka, Y.; Naka, A.; Kishimoto, Y.; Kondo, K.; Iida, K. Milk-derived peptide val-pro-pro (vpp) inhibits obesity-induced adipose inflammation via an angiotensin-converting enzyme (ace) dependent cascade. Mol. Nutr. Food Res. 2015, 59, 2502–2510. [Google Scholar] [CrossRef] [PubMed]
- Hatanaka, T.; Kawakami, K.; Uraji, M. Inhibitory effect of collagen-derived tripeptides on dipeptidylpeptidase-IV activity. J. Enzym. Inhib. Med. Chem. 2014, 29, 823–828. [Google Scholar] [CrossRef]
- Jensen, C.; Dale, H.F.; Hausken, T.; Lied, E.; Hatlebakk, J.G.; Brønstad, I.; Lied, G.A.; Hoff, D.A.L. Supplementation with cod protein hydrolysate in older adults: A dose range cross-over study. J. Nutr. Sci. 2019, 8, e40. [Google Scholar] [CrossRef]
Study | Country | Sample Size (F, M) | Age (y) a | BMI (kg/m2) a | Design | Duration | Control | Protein Hydrolysates | Dose (g) |
---|---|---|---|---|---|---|---|---|---|
Acute RCTs | |||||||||
Agergaard et al., 2021 [21] | Denmark | 12 (6, 6) | 69.0 ± 1 | 24.6 ± 1 | C, SB | 1 V | Steak protein | Meat | 40 |
Akhavan et al., 2010 [22] | Canada | 22 (10, 12) | 25.1 ± 2 | 23.4 ± 3 | C, DB | 1 V | Placebo (CHO) | Whey | 10 |
Ballard et al., 2013 [23] | USA | 21 (10, 11) | 55.0 ± 6 | 27.8 ± 2 | C, DB | 1 V | Placebo (CHO) | Whey | 5 |
Bendtsen et al., 2014 [24] | Denmark | 24 (5, 19) | 29.0 ± 6 | 30.1 ± 2 | C, DB | 1 V | Casein isolate | Casein | 30 |
Calbet et al., 2002 [25] | Denmark | 6 (3/3) | 22.7 ± 2 | 23.3 ± 6 | C, DB | 1 V | Protein isolate | Pea and whey | 18 |
Chen et al., 2020 [26] | UK | 20 (6/14) | 26.0 ± 7 | 23.7 ± 2 | C, DB | 1 V | Milk | Whey | 50 |
Claassens et al., 2009 [27] | The Netherlands | 8 (0, 8) | 32.0 ± 13 | 23.7 ± 1 | L, SB | 1 V | Placebo (CHO) | Pea, rice, soy, gluten, whey, and egg | 15 |
Claessens et al., 2007 [28] | The Netherlands | 8 (0, 8) | 28.5 ± 10 | 23.3 ± 2 | C, SB | 1 V | Placebo (CHO) | Whey | 23 |
Claessens et al., 2008 [29] | The Netherlands | 12 (0, 12) | 23.8 ± 3 | 23.0 ± 2 | L, SB | 1 V | Whey and soy isolate | Whey and soy | 31 (22, 28 & 43) |
Curran et al., 2019 [30] | Ireland | 20 (9, 11) | 50.0 ± 8 | 30.2 ± 3 | C, DB | 1 V | Casein isolate | Casein | 12 |
Dale et al., 2018 [17] | Norway | 41 (26, 15) | 53.0 ± 1 | 25.0 ± 1 | C, DB | 1 V | Casein isolate | Marine | 1.6 |
Deglaire et al., 2009 [31] | France | 21 (12, 9) | 30.0 ± 9 | 22.9 ± 4 | P, DB | 1 V | Casein isolate | Casein | NR |
Drummond et al., 2018 [32] | Ireland | 62 (NR) | 53.6 ± 7 | 31.3 ± 5 | C, DB | 1 V | Casein isolate | Casein | 12 |
Holmer-Jensen et al., 2012 [33] | Denmark | 11 (6, 5) | 60.4 ± 10 | 35.3 ± 4 | C, SB | 1 V | Whey isolate | Whey | 45 |
Horner et al., 2019 [34] | Ireland | 9 (3, 6) | 59.5 ± 7 | 28.4 ± 3 | C, DB | 1 V | Casein isolate | Casein | 12 |
Koopman et al., 2009 [35] | The Netherlands | 10 (0, 10) | 64.0 ± 3 | 24.7 ± 2 | C, DB | 1 V | Casein isolate | Casein | 35 |
Manders et al., 2005 * [36] | The Netherlands | 9 (0, 9) | 58.2 ±1 | 27.5 ± 1 | C, DB | 1 V | Placebo (CHO) | Casein | 30 |
Manders et al., 2006 * [37] | The Netherlands | 10 (0, 10) | 60.2 ± 1 | 27.2 ± 1 | C, DB | 1 V | Placebo (CHO) | Casein | 25 |
Nakayama et al., 2018 [38] | Japan | 11 (0, 11) | 24.5 ±1 | 20.5 ± 1 | C, DB | 1 V | EAA mixture | Whey | 5 (3.3, 5 & 7.5) |
Power et al., 2009 [39] | Ireland | 16 (0, 16) | 22.4 ± 1 | 23.2 ± 1 | C, DB | 1 V | Whey isolate | Whey | 45 |
Van-Loon et al., 2000 [40] | The Netherlands | 8 (0, 8) | 21.0 ± 1 | 21.4 ± 2 | C, DB | 1 V | Placebo and casein isolate | Pea, whey, and wheat | 30 |
Long-term RCTs | |||||||||
Ballard et al., 2009 [41] | USA | 20 (10, 10) | 25± 5 | 24.3 ± 2 | C, DB | Daily-2 w | Placebo (CHO) | Whey | 5 |
Hovland et al., 2020 [42] | Germany | 49 (32, 27) | 40.9 ± 2 | 33.2 ± 3 | P, DB | Daily-8 w | Casein/whey mixture | Herring and salmon | 2.5 |
Rakvaag et al., 2019 * [43] | Denmark | 66 (34, 31) | 58–67 | 29.4–30.3 | P, DB | Daily-12 w | Starch | Whey | 60 |
Study | Country | Sample Size (F, M) | Age (y) a | BMI (kg/m2) a | Design | Duration | Control | Protein Hydrolysates | Dose (g) |
---|---|---|---|---|---|---|---|---|---|
Acute RCTs | |||||||||
Geerts et al., 2011 [44] | The Netherlands | 36 (9, 27) | 61.5 ± 5 | 28.1 ± 4 | PC, DB | 1 V | Placebo (CHO) | Casein | 15 |
Goudarzi et al., 2013 [45] | Iran | 10 (0, 10) | 32.4 ± 4 | 26.2 ± 1 | C, DB | 1 V | Placebo & whey isolate | Whey | 18 (8, 16 & 32) |
Hoefle et al., 2018 [46] | Germany | 15 (5, 10) | 62.0 ± 7 | 29.0 ± 6 | C, SB | 1 V | Placebo & whey isolate | Glycomacropeptides | 50 |
Jonker et al., 2011 [47] | The Netherlands | 13 (5, 8) | 58.0 ± 1 | 27.9 ± 1 | C, DB | 1 V | Placebo (CHO) | Casein | 12 |
King et al., 2018 [48] | UK | 11 (0, 11) | 54.9 ± 2 | 31.8 ± 3 | C, SB | 1 V | Placebo (CHO) | Whey | 15 |
Manders et al., 2005 * [36] | The Netherlands | 10 (0, 10) | 61.5 ± 2 | 27.2 ± 1 | C, DB | 1 V | Placebo (CHO) | Casein | 29 |
Manders et al., 2006 * [37] | The Netherlands | 10 (0, 10) | 59.7 ± 3 | 26.8 ± 1 | C, DB | 1 V | Placebo (CHO) | Casein | 25 |
Manders et al., 2009 [49] | The Netherlands | 13 (0, 13) | 62.0 ± 2 | 28.0 ± 1 | C, DB | 1 V | Placebo (CHO) | Casein | 26 |
Manders et al., 2014 [50] | The Netherlands | 60 (0, 60) | 60.0 ± 1 | 30.2 ± 1 | C, DB | 1 V | Placebo (CHO) | Casein | 28 |
Mortensen et al., 2012 [51] | Denmark | 12 (7, 5) | 65.8 ± 5 | 28.2 ± 5 | C, SB | 1 V | Whey isolate | Whey | 45 |
Plat et al., 2019 [52] | The Netherlands | 40 (30, 10) | 18–70 | 25–35 | C, DB | 1 V | Maize Starch | Egg | 5 |
Sartorius et al., 2019 [16] | Germany | 21 (13, 8) | 62.4 ± 3 | 28.1 ± 2 | C, DB | 1 V | Placebo (CHO) | Whey | 2 (1.6 & 2.4) |
Long-term RCTs | |||||||||
Devasia et al., 2019 * [53] | India | 60 (33, 27) | 21.0 ± 1 | 27.4 ± 1 | P, DB | Daily-12 w | Starch | Marine, collagen | 2.5 |
Jensen et al., 2020 [54] | Norway | 20 (21, 9) | 53.0 ± 6 | 32.5 ± 3 | P, DB | Daily-8 w | Placebo (CHO) | Cod | 4 |
Sartorius et al., 2019 [16] | Germany | 21 (13, 8) | 62.4 ± 3 | 28.1 ± 2 | SA | Daily-6 w | No control | Whey | 1.4 |
Zhu et al., 2010 [55] | China | 100 (49, 51) | 63.3 ± 1 | 24.2 ± 1 | P, DB | Daily-12 w | Carboxymethylcellulose | Marine, collagen | 16.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elbira, A.; Hafiz, M.; Hernández-Álvarez, A.J.; Zulyniak, M.A.; Boesch, C. Protein Hydrolysates and Bioactive Peptides as Mediators of Blood Glucose—A Systematic Review and Meta-Analysis of Acute and Long-Term Studies. Nutrients 2024, 16, 323. https://doi.org/10.3390/nu16020323
Elbira A, Hafiz M, Hernández-Álvarez AJ, Zulyniak MA, Boesch C. Protein Hydrolysates and Bioactive Peptides as Mediators of Blood Glucose—A Systematic Review and Meta-Analysis of Acute and Long-Term Studies. Nutrients. 2024; 16(2):323. https://doi.org/10.3390/nu16020323
Chicago/Turabian StyleElbira, Arig, Maryam Hafiz, Alan Javier Hernández-Álvarez, Michael A. Zulyniak, and Christine Boesch. 2024. "Protein Hydrolysates and Bioactive Peptides as Mediators of Blood Glucose—A Systematic Review and Meta-Analysis of Acute and Long-Term Studies" Nutrients 16, no. 2: 323. https://doi.org/10.3390/nu16020323
APA StyleElbira, A., Hafiz, M., Hernández-Álvarez, A. J., Zulyniak, M. A., & Boesch, C. (2024). Protein Hydrolysates and Bioactive Peptides as Mediators of Blood Glucose—A Systematic Review and Meta-Analysis of Acute and Long-Term Studies. Nutrients, 16(2), 323. https://doi.org/10.3390/nu16020323