From Garden to Pillow: Understanding the Relationship between Plant-Based Nutrition and Quality of Sleep
Abstract
:1. Introduction
2. Methods
3. The Relationship between Plant-Based Diets and Sleep Quality and Overall Health
4. Key Nutrients Associated with Sleep Quality
4.1. Tryptophan
4.2. Magnesium
4.3. Vitamin B6
4.4. Isoflavones
5. Nutritional Pathways Influencing Sleep Regulation
5.1. Tryptophan as a Mediator in Sleep Regulation
5.2. Hormonal Factors
5.3. Gut Microbiota
5.4. Anti-Inflammatory Mechanisms
5.5. Other
6. Human Studies on Sleep and Plant-Based Diets
Reference | Study Design | Participants | Sleep Quality Measurement | Diet-Related Variables | Main Outcomes |
---|---|---|---|---|---|
[130] | Cross-sectional study | 390 overweight and obese women aged 18–48 | The Pittsburgh Sleep Quality Index | FFQ was obtained, and plant-based dietary scores were calculated. | Unhealthful plant-based index was found to be associated with lower sleep quality. They failed to find an association between overall plant-based dietary scores and sleep quality. |
[33] | Intervention study | Vegetarian group (n = 30) was fed a vegetarian diet and non-vegetarian group (n = 30) was fed a non-vegetarian diet for three months. | The Pittsburgh Sleep Quality Index | FFQ form containing fruit, vegetable, dairy product, fish, cereal, pulse, egg, meat, fat, sweet, beverage, and nut food groups. | The vegetarian group had significantly better sleep scale scores. |
[104] | Cross-sectional study | 2424 participants, 45 years and older | The Pittsburgh Sleep Quality Index | Semi-quantitative FFQ was obtained, and plant-based dietary scores were calculated. | A positive association between healthful plant-based index and overall plant-based index and sleep quality was found. A negative association between sleep quality and unhealthful plant-based index. |
[131] | Cross-sectional study | 1643 male and female adolescents aged between 11 and14 years | Pediatric Daytime Sleepiness Scale and self-reported sleep time | KIDMED and FFQ for Italians | Adolescents who had an early bedtime were found to eat more fruits and vegetables. Consumption of fruits and vegetables positively correlated with overall and weekday sleep duration. |
[116] | Pilot intervention study | 14 patients who have obstructive sleep apnea with a mean age of 59.1, BMI > 22 | Epworth sleepiness scale | Participants had a whole-food, plant-based diet for 21 days. | A 21-day WFPB diet intervention decreased sleepiness during the day. |
[132] | Cross-sectional study | 230 diabetic women | The Pittsburgh Sleep Quality Index | FFQ was obtained, and plant-based dietary scores were calculated. | It was determined that individuals with high UPDIs had the worst sleep quality, and individuals with high HPDIs had the best sleep quality. |
[133] | Pilot study | The 62 individuals who participated in the study were categorized as vegan, vegetarian, pescatarian, and omnivores according to the MEDAS result. | The Pittsburgh Sleep Quality Index | Mediterranean Diet Adherence Screener (MEDAS) questionnaire | Diet was not found to be effective for sleep quality. |
[134] | Cross-sectional observational study | 245 community physicians | Sleep-Related Impairment—short form | FFQ was obtained. | Each 1 SD increase in the plant-based diet score was associated with a 0.71-point decrease in the SRI. |
[95] | Cross-sectional study | 432 women aged 20–76 | The Pittsburgh Sleep Quality Index | Alternate Mediterranean (aMed) diet score | A positive predictive association was found between adherence to the Mediterranean diet and sleep quality. |
7. Impact of Dietary Patterns and/or Meal Timing on Nutritional Pathways Influencing Sleep Regulation
8. Strengths and Limitations
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Freeman, A.M.; Morris, P.B.; Barnard, N.; Esselstyn, C.B.; Ros, E.; Agatston, A.; Devries, S.; O’Keefe, J.; Miller, M.; Ornish, D.; et al. Trending Cardiovascular Nutrition Controversies. J. Am. Coll. Cardiol. 2017, 69, 1172–1187. [Google Scholar] [CrossRef] [PubMed]
- Shikany, J.M.; Safford, M.M.; Newby, P.K.; Durant, R.W.; Brown, T.M.; Judd, S.E. Southern Dietary Pattern is Associated with Hazard of Acute Coronary Heart Disease in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) Study. Circulation 2015, 132, 804–814. [Google Scholar] [CrossRef] [PubMed]
- Storz, M.A. What makes a plant-based diet? a review of current concepts and proposal for a standardized plant-based dietary intervention checklist. Eur. J. Clin. Nutr. 2022, 76, 789–800. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, D.D.; Satija, A.; Ivey, K.L.; Li, J.; Wilkinson, J.E.; Li, R.; Baden, M.; Chan, A.T.; Huttenhower, C.; et al. Plant-Based Diet Index and Metabolic Risk in Men: Exploring the Role of the Gut Microbiome. J. Nutr. 2021, 151, 2780–2789. [Google Scholar] [CrossRef]
- Guasch-Ferré, M.; Willett, W.C. The Mediterranean diet and health: A comprehensive overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C.; Sacks, F.; Trichopoulou, A.; Drescher, G.; Ferro-Luzzi, A.; Helsing, E.; Trichopoulos, D. Mediterranean diet pyramid: A cultural model for healthy eating. Am. J. Clin. Nutr. 1995, 61, 1402s–1406s. [Google Scholar] [CrossRef] [PubMed]
- Clem, J.; Barthel, B. A Look at Plant-Based Diets. Mo. Med. 2021, 118, 233–238. [Google Scholar] [PubMed]
- Sharma, N.; Yeasmen, N.; Dube, L.; Orsat, V. Rise of Plant-Based Beverages: A Consumer-Driven Perspective. Food Rev. Int. 2024, 1–27. [Google Scholar] [CrossRef]
- Rock, C.L.; Thomson, C.; Gansler, T.; Gapstur, S.M.; McCullough, M.L.; Patel, A.V.; Andrews, K.S.; Bandera, E.V.; Spees, C.K.; Robien, K. American Cancer Society guideline for diet and physical activity for cancer prevention. CA Cancer J. Clin. 2020, 70, 245–271. [Google Scholar] [CrossRef] [PubMed]
- Pekcan, A.G. Sürdürülebilir beslenme ve beslenme örüntüsü: Bitkisel kaynaklı beslenme. Beslenme Diyet Derg. 2019, 47, 1–10. [Google Scholar]
- Lin, P.-H.; Aronson, W.; Freedland, S.J. Nutrition, dietary interventions and prostate cancer: The latest evidence. BMC Med. 2015, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Niclis, C.; Román, M.D.; Osella, A.R.; Eynard, A.R.; Díaz, M.D.P. Traditional dietary pattern increases risk of prostate cancer in Argentina: Results of a multilevel modeling and bias analysis from a case-control study. J. Cancer Epidemiol. 2015, 2015, 179562. [Google Scholar] [CrossRef] [PubMed]
- Scoditti, E.; Tumolo, M.R.; Garbarino, S. Mediterranean diet on sleep: A health alliance. Nutrients 2022, 14, 2998. [Google Scholar] [CrossRef] [PubMed]
- Ramar, K.; Malhotra, R.K.; Carden, K.A.; Martin, J.L.; Abbasi-Feinberg, F.; Aurora, R.N.; Kapur, V.K.; Olson, E.J.; Rosen, C.L.; Rowley, J.A. Sleep is essential to health: An American Academy of Sleep Medicine position statement. J. Clin. Sleep Med. 2021, 17, 2115–2119. [Google Scholar] [CrossRef] [PubMed]
- Ohayon, M.; Wickwire, E.M.; Hirshkowitz, M.; Albert, S.M.; Avidan, A.; Daly, F.J.; Dauvilliers, Y.; Ferri, R.; Fung, C.; Gozal, D. National Sleep Foundation’s sleep quality recommendations: First report. Sleep Health 2017, 3, 6–19. [Google Scholar] [CrossRef] [PubMed]
- Watson, N.F.; Badr, M.S.; Belenky, G.; Bliwise, D.L.; Buxton, O.M.; Buysse, D.; Dinges, D.F.; Gangwisch, J.; Grandner, M.A.; Kushida, C.; et al. Recommended Amount of Sleep for a Healthy Adult: A Joint Consensus Statement of the American Academy of Sleep Medicine and Sleep Research Society. Sleep 2015, 38, 843–844. [Google Scholar] [CrossRef] [PubMed]
- Kudrnáčová, M.; Kudrnáč, A. Better sleep, better life? testing the role of sleep on quality of life. PLoS ONE 2023, 18, e0282085. [Google Scholar] [CrossRef]
- Kohyama, J. Which Is More Important for Health: Sleep Quantity or Sleep Quality? Children 2021, 8, 542. [Google Scholar] [CrossRef] [PubMed]
- Kline, C. Sleep Quality. In Encyclopedia of Behavioral Medicine; Gellman, M.D., Turner, J.R., Eds.; Springer: New York, NY, USA, 2013; pp. 1811–1813. [Google Scholar]
- Hall, W.L. The emerging importance of tackling sleep-diet interactions in lifestyle interventions for weight management. Br. J. Nutr. 2022, 128, 561–568. [Google Scholar] [CrossRef]
- Adjaye-Gbewonyo, D.; Ng, A.E.; Black, L.I. Sleep Difficulties in Adults: United States, 2020; NCHS Data Brief; United States National Center for Health Statistics: Hyattsville, MD, USA, 2022. [Google Scholar]
- McArdle, N.; Ward, S.V.; Bucks, R.S.; Maddison, K.; Smith, A.; Huang, R.-C.; Pennell, C.E.; Hillman, D.R.; Eastwood, P.R. The prevalence of common sleep disorders in young adults: A descriptive population-based study. Sleep 2020, 43, zsaa072. [Google Scholar] [CrossRef]
- Gordon, N.P.; Yao, J.H.; Brickner, L.A.; Lo, J.C. Prevalence of sleep-related problems and risks in a community-dwelling older adult population: A cross-sectional survey-based study. BMC Public Health 2022, 22, 2045. [Google Scholar] [CrossRef] [PubMed]
- Peuhkuri, K.; Sihvola, N.; Korpela, R. Diet promotes sleep duration and quality. Nutr. Res. 2012, 32, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Grosso, G.; Castellano, S.; Galvano, F.; Caraci, F.; Ferri, R. Association between diet and sleep quality: A systematic review. Sleep Med. Rev. 2021, 57, 101430. [Google Scholar] [CrossRef]
- Zuraikat, F.M.; Makarem, N.; Liao, M.; St-Onge, M.P.; Aggarwal, B. Measures of poor sleep quality are associated with higher energy intake and poor diet quality in a diverse sample of women from the go red for women strategically focused research network. J. Am. Heart Assoc. 2020, 9, e014587. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Jiang, Y.; Sun, Z.; Wu, Y.; Yao, C.; Yang, L.; Tang, M.; Wang, W.; Lei, N.; He, G. Healthier Dietary Patterns Are Associated with Better Sleep Quality among Shanghai Suburban Adults: A Cross-Sectional Study. Nutrients 2024, 16, 1165. [Google Scholar] [CrossRef]
- Farrell, E.T.; Wirth, M.D.; McLain, A.C.; Hurley, T.G.; Shook, R.P.; Hand, G.A.; Hébert, J.R.; Blair, S.N. Associations between the Dietary Inflammatory Index and Sleep Metrics in the Energy Balance Study (EBS). Nutrients 2023, 15, 419. [Google Scholar] [CrossRef] [PubMed]
- Pattnaik, H.; Mir, M.; Boike, S.; Kashyap, R.; Khan, S.A.; Surani, S. Nutritional Elements in Sleep. Cureus 2022, 14, e32803. [Google Scholar] [CrossRef] [PubMed]
- Wilson, K.; St-Onge, M.P.; Tasali, E. Diet Composition and Objectively Assessed Sleep Quality: A Narrative Review. J. Acad. Nutr. Diet. 2022, 122, 1182–1195. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Ferri, R.; Lanza, G.; Caraci, F.; Vistorte, A.O.R.; Yélamos Torres, V.; Grosso, G.; Castellano, S. Mediterranean Diet and Sleep Features: A Systematic Review of Current Evidence. Nutrients 2024, 16, 282. [Google Scholar] [CrossRef]
- St-Onge, M.-P.; Mikic, A.; Pietrolungo, C.E. Effects of diet on sleep quality. Adv. Nutr. 2016, 7, 938–949. [Google Scholar] [CrossRef] [PubMed]
- Pattar, S.; Shetty, P.; Shetty, G.B. Impact of vegetarian versus non-vegetarian diet on health outcomes in male individuals: A comparative study. Adv. Integr. Med. 2023, 10, 1–7. [Google Scholar] [CrossRef]
- Nadal-Nicolás, Y.; Miralles-Amorós, L.; Martínez-Olcina, M.; Sánchez-Ortega, M.; Mora, J.; Martínez-Rodríguez, A. Vegetarian and Vegan Diet in Fibromyalgia: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 4955. [Google Scholar] [CrossRef] [PubMed]
- Polianovskaia, A.; Jonelis, M.; Cheung, J. The impact of plant-rich diets on sleep: A mini-review. Front. Nutr. 2024, 11, 1239580. [Google Scholar] [CrossRef] [PubMed]
- Trautwein, E.A.; McKay, S. The Role of Specific Components of a Plant-Based Diet in Management of Dyslipidemia and the Impact on Cardiovascular Risk. Nutrients 2020, 12, 2671. [Google Scholar] [CrossRef] [PubMed]
- Quek, J.; Lim, G.; Lim, W.H.; Ng, C.H.; So, W.Z.; Toh, J.; Pan, X.H.; Chin, Y.H.; Muthiah, M.D.; Chan, S.P.; et al. The Association of Plant-Based Diet with Cardiovascular Disease and Mortality: A Meta-Analysis and Systematic Review of Prospect Cohort Studies. Front. Cardiovasc. Med. 2021, 8, 756810. [Google Scholar] [CrossRef] [PubMed]
- Miller, V.; Mente, A.; Dehghan, M.; Rangarajan, S.; Zhang, X.; Swaminathan, S.; Dagenais, G.; Gupta, R.; Mohan, V.; Lear, S.; et al. Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): A prospective cohort study. Lancet 2017, 390, 2037–2049. [Google Scholar] [CrossRef] [PubMed]
- Massar, R.E.; McMacken, M.; Kwok, L.; Joshi, S.; Shah, S.; Boas, R.; Ortiz, R.; Correa, L.; Polito-Moller, K.; Albert, S.L. Patient-Reported Outcomes from a Pilot Plant-Based Lifestyle Medicine Program in a Safety-Net Setting. Nutrients 2023, 15, 2857. [Google Scholar] [CrossRef] [PubMed]
- Park, S. A Causal and Inverse Relationship between Plant-Based Diet Intake and in a Two-Sample Mendelian Randomization Study. Foods 2023, 12, 545. [Google Scholar] [CrossRef] [PubMed]
- Myhrstad, M.C.W.; Tunsjø, H.; Charnock, C.; Telle-Hansen, V.H. Dietary Fiber, Gut Microbiota, and Metabolic Regulation—Current Status in Human Randomized Trials. Nutrients 2020, 12, 859. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Chang, H.W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, S.R.K.; Kok, C.W.; Kunasegaran, T.; Ramadas, A. Effect of Plant-Based Diets on Gut Microbiota: A Systematic Review of Interventional Studies. Nutrients 2023, 15, 1510. [Google Scholar] [CrossRef] [PubMed]
- Poutanen, K.S.; Kårlund, A.O.; Gómez-Gallego, C.; Johansson, D.P.; Scheers, N.M.; Marklinder, I.M.; Eriksen, A.K.; Silventoinen, P.C.; Nordlund, E.; Sozer, N.; et al. Grains—A major source of sustainable protein for health. Nutr. Rev. 2022, 80, 1648–1663. [Google Scholar] [CrossRef] [PubMed]
- Langyan, S.; Yadava, P.; Khan, F.N.; Dar, Z.A.; Singh, R.; Kumar, A. Sustaining Protein Nutrition Through Plant-Based Foods. Front. Nutr. 2021, 8, 772573. [Google Scholar] [CrossRef] [PubMed]
- Sahin, K.; Er, B.; Kilic, E.; Morde, A.; Orhan, C.; Padigaru, M. Effect of a Novel Valerian Extract on Sleep Duration, Latency, Pro-sleep Neurotransmitters and Neuronal Receptors in a Pentobarbital-Induced Sleep Model in Mice. Curr. Dev. Nutr. 2022, 6 (Suppl. S1), 807. [Google Scholar] [CrossRef]
- Mullins, A.P.; Arjmandi, B.H. Health Benefits of Plant-Based Nutrition: Focus on Beans in Cardiometabolic Diseases. Nutrients 2021, 13, 519. [Google Scholar] [CrossRef] [PubMed]
- Plamada, D.; Teleky, B.-E.; Nemes, S.A.; Mitrea, L.; Szabo, K.; Călinoiu, L.-F.; Pascuta, M.S.; Varvara, R.-A.; Ciont, C.; Martău, G.A.; et al. Plant-Based Dairy Alternatives—A Future Direction to the Milky Way. Foods 2023, 12, 1883. [Google Scholar] [CrossRef] [PubMed]
- Mariotti, F. 35—Plant Protein, Animal Protein, and Protein Quality. In Vegetarian and Plant-Based Diets in Health and Disease Prevention; Mariotti, F., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 621–642. [Google Scholar]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: Systematic review and dose-response meta-analysis of prospective studies. BMJ 2016, 353, i2716. [Google Scholar] [CrossRef] [PubMed]
- Naghshi, S.; Sadeghi, O.; Willett, W.C.; Esmaillzadeh, A. Dietary intake of total, animal, and plant proteins and risk of all cause, cardiovascular, and cancer mortality: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2020, 370, m2412. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Li, Y.; Tobias, D.K.; Pan, A.; Hu, F.B. Dietary Protein Intake and Risk of Type 2 Diabetes in US Men and Women. Am. J. Epidemiol. 2016, 183, 715–728. [Google Scholar] [CrossRef] [PubMed]
- Esquivel, M.K. Nutrition Benefits and Considerations for Whole Foods Plant-Based Eating Patterns. Am. J. Lifestyle Med. 2022, 16, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Plotnikoff, G.A.; Dobberstein, L.; Raatz, S. Nutritional Assessment of the Symptomatic Patient on a Plant-Based Diet: Seven Key Questions. Nutrients 2023, 15, 1387. [Google Scholar] [CrossRef] [PubMed]
- Das, G.; Sharma, A.; Sarkar, P.K. Conventional and emerging processing techniques for the post-harvest reduction of antinutrients in edible legumes. Appl. Food Res. 2022, 2, 100112. [Google Scholar] [CrossRef]
- Jakše, B.; Jakše, B.; Godnov, U.; Pinter, S. Nutritional, Cardiovascular Health and Lifestyle Status of ‘Health Conscious’ Adult Vegans and Non-Vegans from Slovenia: A Cross-Sectional Self-Reported Survey. Int. J. Environ. Res. Public Health 2021, 18, 5968. [Google Scholar] [CrossRef] [PubMed]
- Yousef, P.; Rosen, J.; Shapiro, C. Chapter 1—Tryptophan and its role in sleep and mood. In Studies in Natural Products Chemistry; Atta-Ur, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; Volume 80, pp. 1–14. [Google Scholar]
- Piekarska, M.; Pszczółka, M.; Parol, D.; Szewczyk, P.; Śliż, D.; Mamcarz, A. Sleeping Disorders in Healthy Individuals with Different Dietary Patterns and BMI, Questionnaire Assessment. Int. J. Environ. Res. Public Health 2021, 18, 12285. [Google Scholar] [CrossRef] [PubMed]
- Peuhkuri, K.; Sihvola, N.; Korpela, R. Dietary factors and fluctuating levels of melatonin. Food Nutr. Res. 2012, 56, 17252. [Google Scholar] [CrossRef] [PubMed]
- Nayak, B.; Singh, R.; Buttar, H. Role of Tryptophan in Health and Disease: Systematic Review of the Anti-Oxidant, Anti-Inflammation, and Nutritional Aspects of Tryptophan and Its Metabolites. World Heart J. 2019, 11, 161–178. [Google Scholar]
- Sutanto, C.N.; Loh, W.W.; Kim, J.E. The impact of tryptophan supplementation on sleep quality: A systematic review, meta-analysis, and meta-regression. Nutr. Rev. 2022, 80, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Alafif, N. Association between consumption of tryptophan with sleep quality in King Saud University students. J. King Saud Univ.-Sci. 2024, 36, 103046. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, A.; Rubio-Arias, J.Á.; Ramos-Campo, D.J.; Reche-García, C.; Leyva-Vela, B.; Nadal-Nicolás, Y. Psychological and Sleep Effects of Tryptophan and Magnesium-Enriched Mediterranean Diet in Women with Fibromyalgia. Int. J. Environ. Res. Public Health 2020, 17, 2227. [Google Scholar] [CrossRef] [PubMed]
- Bueno, A.P.R.; Savi, F.M.; Alves, I.A.; Bandeira, V.A.C. Regulatory aspects and evidences of melatonin use for sleep disorders and insomnia: An integrative review. Arq. Neuro-Psiquiatr. 2021, 79, 732–742. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.-X.; Hardeland, R.; Manchester, L.C.; Korkmaz, A.; Ma, S.; Rosales-Corral, S.; Reiter, R.J. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J. Exp. Bot. 2011, 63, 577–597. [Google Scholar] [CrossRef] [PubMed]
- Brzezinski, A.; Vangel, M.G.; Wurtman, R.J.; Norrie, G.; Zhdanova, I.; Ben-Shushan, A.; Ford, I. Effects of exogenous melatonin on sleep: A meta-analysis. Sleep Med. Rev. 2005, 9, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J.; Tan, D.X.; Manchester, L.C.; Simopoulos, A.P.; Maldonado, M.D.; Flores, L.J.; Terron, M.P. Melatonin in edible plants (phytomelatonin): Identification, concentrations, bioavailability and proposed functions. World Rev. Nutr. Diet. 2007, 97, 211–230. [Google Scholar] [CrossRef]
- Catalá, A. The function of very long chain polyunsaturated fatty acids in the pineal gland. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2010, 1801, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Fatemeh, G.; Sajjad, M.; Niloufar, R.; Neda, S.; Leila, S.; Khadijeh, M. Effect of melatonin supplementation on sleep quality: A systematic review and meta-analysis of randomized controlled trials. J. Neurol. 2022, 269, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Carriedo-Diez, B.; Tosoratto-Venturi, J.L.; Cantón-Manzano, C.; Wanden-Berghe, C.; Sanz-Valero, J. The Effects of the Exogenous Melatonin on Shift Work Sleep Disorder in Health Personnel: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 10199. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, H.A.; de Castro, C.T.; da Silva, D.C.G.; Pereira, M. Melatonin for sleep disorders in people with autism: Systematic review and meta-analysis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2023, 123, 110695. [Google Scholar] [CrossRef] [PubMed]
- Salanitro, M.; Wrigley, T.; Ghabra, H.; de Haan, E.; Hill, C.M.; Solmi, M.; Cortese, S. Efficacy on sleep parameters and tolerability of melatonin in individuals with sleep or mental disorders: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2022, 139, 104723. [Google Scholar] [CrossRef] [PubMed]
- Gandolfi, J.V.; Di Bernardo, A.P.A.; Chanes, D.A.V.; Martin, D.F.; Joles, V.B.; Amendola, C.P.; Sanches, L.C.; Ciorlia, G.L.; Lobo, S.M. The Effects of Melatonin Supplementation on Sleep Quality and Assessment of the Serum Melatonin in ICU Patients: A Randomized Controlled Trial. Crit. Care Med. 2020, 48, e1286–e1293. [Google Scholar] [CrossRef] [PubMed]
- Jafari-Koulaee, A.; Bagheri-Nesami, M. The effect of melatonin on sleep quality and insomnia in patients with cancer: A systematic review study. Sleep Med. 2021, 82, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, C.K.; Hermann, R.; Juul, S.; Faltermeier, P.; Horowitz, M.; Moncrieff, J.; Gluud, C.; Jakobsen, J.C. Melatonin for sleep disorders in children with neurodevelopmental disorders: Protocol for a systematic review with meta-analysis and Trial Sequential Analysis of randomised clinical trials. BMJ Open 2022, 12, e065520. [Google Scholar] [CrossRef] [PubMed]
- Tsukinaga, A.; Mihara, T.; Takeshima, T.; Tomita, M.; Goto, T.; Yamanaka, T. Effect of melatonin and melatonin agonists on postoperative sleep quality in adult patients: A protocol for systematic review and meta-analysis with trial sequential analysis. BMJ Open 2021, 11, e047858. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, B.; Kimiagar, M.; Sadeghniiat, K.; Shirazi, M.M.; Hedayati, M.; Rashidkhani, B. The effect of magnesium supplementation on primary insomnia in elderly: A double-blind placebo-controlled clinical trial. J. Res. Med. Sci. 2012, 17, 1161–1169. [Google Scholar] [PubMed]
- Zhang, Y.; Chen, C.; Lu, L.; Knutson, K.L.; Carnethon, M.R.; Fly, A.D.; Luo, J.; Haas, D.M.; Shikany, J.M.; Kahe, K. Association of magnesium intake with sleep duration and sleep quality: Findings from the CARDIA study. Sleep 2021, 45, zsab276. [Google Scholar] [CrossRef] [PubMed]
- Held, K.; Antonijevic, I.A.; Künzel, H.; Uhr, M.; Wetter, T.C.; Golly, I.C.; Steiger, A.; Murck, H. Oral Mg2+ supplementation reverses age-related neuroendocrine and sleep EEG changes in humans. Pharmacopsychiatry 2002, 35, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Arab, A.; Rafie, N.; Amani, R.; Shirani, F. The Role of Magnesium in Sleep Health: A Systematic Review of Available Literature. Biol. Trace Elem. Res. 2023, 201, 121–128. [Google Scholar] [CrossRef]
- Billyard, A.J.; Eggett, D.L.; Franz, K.B. Dietary magnesium deficiency decreases plasma melatonin in rats. Magnes. Res. 2006, 19, 157–161. [Google Scholar] [PubMed]
- Minoretti, P.; Santiago Sáez, A.; García Martín, Á.; Liaño Riera, M.; Gómez Serrano, M.; Emanuele, E. Serum Calcium and Magnesium Levels, Not 25-Hydroxyvitamin D, Are Associated with Sleep Quality in Airline Pilots. Cureus 2023, 15, e50940. [Google Scholar] [CrossRef] [PubMed]
- Saba, S.; Faizi, F.; Sepandi, M.; Nehrir, B. Effect of short-term magnesium supplementation on anxiety, depression and sleep quality in patients after open-heart surgery. Magnes. Res. 2022, 35, 62–70. [Google Scholar] [CrossRef]
- Gholizadeh-Moghaddam, M.; Ghasemi-Tehrani, H.; Askari, G.; Jaripur, M.; Clark, C.C.T.; Rouhani, M.H. Effect of magnesium supplementation in improving hyperandrogenism, hirsutism, and sleep quality in women with polycystic ovary syndrome: A randomized, placebo-controlled clinical trial. Health Sci. Rep. 2022, 6, e1013. [Google Scholar] [CrossRef] [PubMed]
- Abiramasundari, R.; Shanthini, R.; Santhosini, V. Subjective Sleep Quality in Women with Premenstrual Syndrome and its Correlation with Serum Magnesium Level. Int. J. Physiol. 2020, 8, 122–125. [Google Scholar] [CrossRef]
- García-García, C.; Baik, I. Effects of poly-gamma-glutamic acid and vitamin B6 supplements on sleep status: A randomized intervention study. Nutr. Res. Pract. 2021, 15, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Scholey, A.; Benson, S.; Gibbs, A.; Perry, N.; Sarris, J.; Murray, G. Exploring the Effect of Lactium™ and Zizyphus Complex on Sleep Quality: A Double-Blind, Randomized Placebo-Controlled Trial. Nutrients 2017, 9, 154. [Google Scholar] [CrossRef] [PubMed]
- Kapsimalis, F.; Basta, M.; Varouchakis, G.; Gourgoulianis, K.; Vgontzas, A.; Kryger, M. Cytokines and pathological sleep. Sleep Med. 2008, 9, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Lintang Mega, P.; Mohammad, F.; Nur Hafidha, H. Vitamin B6 in anxiety: Sleep and immune function. BKM Public Health Community Med. 2023, 39, e9728. [Google Scholar] [CrossRef]
- Cui, Y.; Niu, K.; Huang, C.; Momma, H.; Guan, L.; Kobayashi, Y.; Guo, H.; Chujo, M.; Otomo, A.; Nagatomi, R. Relationship between daily isoflavone intake and sleep in Japanese adults: A cross-sectional study. Nutr. J. 2015, 14, 127. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Taylor, A.W.; Zhen, S.; Adams, R.; Appleton, S.; Shi, Z. Soy Isoflavone Intake and Sleep Parameters over 5 Years among Chinese Adults: Longitudinal Analysis from the Jiangsu Nutrition Study. J. Acad. Nutr. Diet. 2017, 117, 536–544.e2. [Google Scholar] [CrossRef] [PubMed]
- Hachul, H.; Brandão, L.C.; D’Almeida, V.; Bittencourt, L.R.; Baracat, E.C.; Tufik, S. Isoflavones decrease insomnia in postmenopause. Menopause 2011, 18, 178–184. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, M.P.; Crawford, A.; Aggarwal, B. Plant-based diets: Reducing cardiovascular risk by improving sleep quality? Curr. Sleep Med. Rep. 2018, 4, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, G.; Baroni, L. Soy, Soy Foods and Their Role in Vegetarian Diets. Nutrients 2018, 10, 43. [Google Scholar] [CrossRef] [PubMed]
- Zuraikat, F.M.; Makarem, N.; St-Onge, M.P.; Xi, H.; Akkapeddi, A.; Aggarwal, B. A Mediterranean Dietary Pattern Predicts Better Sleep Quality in US Women from the American Heart Association Go Red for Women Strategically Focused Research Network. Nutrients 2020, 12, 2830. [Google Scholar] [CrossRef] [PubMed]
- Vaseghi, S.; Arjmandi-Rad, S.; Nasehi, M.; Zarrindast, M.R. Cannabinoids and sleep-wake cycle: The potential role of serotonin. Behav. Brain Res. 2021, 412, 113440. [Google Scholar] [CrossRef] [PubMed]
- Derry, C.; Benjamin, C.; Bladin, P.; le Bars, D.; Tochon-Danguy, H.; Berkovic, S.F.; Zimmer, L.; Costes, N.; Mulligan, R.; Reutens, D. Increased serotonin receptor availability in human sleep: Evidence from an [18F]MPPF PET study in narcolepsy. Neuroimage 2006, 30, 341–348. [Google Scholar] [CrossRef]
- Adventure-Heart, D.J.; Madden, N.A.; Delfabbro, P. Effects of Vitamin B6 (Pyridoxine) and a B Complex Preparation on Dreaming and Sleep. Percept. Mot. Ski. 2018, 125, 451–462. [Google Scholar] [CrossRef]
- Alkhatatbeh, M.J.; Abdul-Razzak, K.K.; Khwaileh, H.N. Poor sleep quality among young adults: The role of anxiety, depression, musculoskeletal pain, and low dietary calcium intake. Perspect. Psychiatr. Care 2021, 57, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.S.; Yu, S.; Kim, C.; Lee, H.J.; Yoon, I.Y.; Kim, T. Lower Serum Calcium Levels Associated with Disrupted Sleep and Rest-Activity Rhythm in Shift Workers. Nutrients 2022, 14, 3021. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Razzak, K.K.; Mayyas, F.A.; Al-Farras, M.I. Vitamin D as potential antidepressant in outpatients with musculoskeletal pain. Int. J. Clin. Pharmacol. Ther. 2018, 56, 400–410. [Google Scholar] [CrossRef]
- Matsuda, R.; Kohno, T.; Kohsaka, S.; Fukuoka, R.; Maekawa, Y.; Sano, M.; Takatsuki, S.; Fukuda, K. The prevalence of poor sleep quality and its association with depression and anxiety scores in patients admitted for cardiovascular disease: A cross-sectional designed study. Int. J. Cardiol. 2017, 228, 977–982. [Google Scholar] [CrossRef]
- Nisar, M.; Mohammad, R.M.; Arshad, A.; Hashmi, I.; Yousuf, S.M.; Baig, S. Influence of Dietary Intake on Sleeping Patterns of Medical Students. Cureus 2019, 11, e4106. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Zhou, J.; Liu, C.; Wang, S.; Cong, Y.; Chen, L.; Zhang, L.; Tan, X.; Li, T.; Li, Y.; et al. Association of plant-based diet index with sleep quality in middle-aged and older adults: The Healthy Dance Study. Sleep Health 2023, 9, 698–703. [Google Scholar] [CrossRef] [PubMed]
- Claustrat, B.; Brun, J.; Chazot, G. The basic physiology and pathophysiology of melatonin. Sleep Med. Rev. 2005, 9, 11–24. [Google Scholar] [CrossRef]
- Jansen, E.C.; She, R.; Rukstalis, M.M.; Alexander, G.L. Sleep Duration and Quality in Relation to Fruit and Vegetable Intake of US Young Adults: A Secondary Analysis. Int. J. Behav. Med. 2021, 28, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Garrido, M.; Paredes, S.D.; Cubero, J.; Lozano, M.; Toribio-Delgado, A.F.; Muñoz, J.L.; Reiter, R.J.; Barriga, C.; Rodríguez, A.B. Jerte Valley cherry-enriched diets improve nocturnal rest and increase 6-sulfatoxymelatonin and total antioxidant capacity in the urine of middle-aged and elderly humans. J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65, 909–914. [Google Scholar] [CrossRef]
- Ribas-Latre, A.; Del Bas, J.M.; Baselga-Escudero, L.; Casanova, E.; Arola-Arnal, A.; Salvadó, M.J.; Arola, L.; Bladé, C. Dietary proanthocyanidins modulate melatonin levels in plasma and the expression pattern of clock genes in the hypothalamus of rats. Mol. Nutr. Food Res. 2015, 59, 865–878. [Google Scholar] [CrossRef] [PubMed]
- Setchell, K.D.; Cassidy, A. Dietary isoflavones: Biological effects and relevance to human health. J. Nutr. 1999, 129, 758s–767s. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.S. Current Perspectives on the Beneficial Effects of Soybean Isoflavones and Their Metabolites for Humans. Antioxidants 2021, 10, 1064. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Feng, Y.; Feng, J.; Chen, X. The effect of soy intervention on insulin-like growth factor 1 levels: A meta-analysis of clinical trials. Phytother. Res. 2020, 34, 1570–1577. [Google Scholar] [CrossRef] [PubMed]
- Kimura, S.; Toyoura, M.; Toyota, Y.; Takaoka, Y. Serum concentrations of insulin-like growth factor-1 as a biomarker of improved circadian rhythm sleep-wake disorder in school-aged children. J. Clin. Sleep Med. 2020, 16, 2073–2078. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Z.; Lu, T.; Chen, W.; Yan, W.; Yuan, K.; Shi, L.; Liu, X.; Zhou, X.; Shi, J.; et al. The microbiota-gut-brain axis in sleep disorders. Sleep Med. Rev. 2022, 65, 101691. [Google Scholar] [CrossRef] [PubMed]
- Ali, T.; Choe, J.; Awab, A.; Wagener, T.L.; Orr, W.C. Sleep, immunity and inflammation in gastrointestinal disorders. World J. Gastroenterol. 2013, 19, 9231–9239. [Google Scholar] [CrossRef] [PubMed]
- Beam, A.; Clinger, E.; Hao, L. Effect of Diet and Dietary Components on the Composition of the Gut Microbiota. Nutrients 2021, 13, 2795. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Lawson, M.; Cheung, J. Whole-food plant-based diet reduces daytime sleepiness in patients with OSA. Sleep Med. 2023, 107, 327–329. [Google Scholar] [CrossRef]
- Smith, R.P.; Easson, C.; Lyle, S.M.; Kapoor, R.; Donnelly, C.P.; Davidson, E.J.; Parikh, E.; Lopez, J.V.; Tartar, J.L. Gut microbiome diversity is associated with sleep physiology in humans. PLoS ONE 2019, 14, e0222394. [Google Scholar] [CrossRef] [PubMed]
- Opp, M.R. Cytokines and sleep. Sleep Med. Rev. 2005, 9, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Krueger, J.M.; Majde, J.A.; Rector, D.M. Cytokines in immune function and sleep regulation. Handb. Clin. Neurol. 2011, 98, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Redwine, L.; Hauger, R.L.; Gillin, J.C.; Irwin, M. Effects of sleep and sleep deprivation on interleukin-6, growth hormone, cortisol, and melatonin levels in humans. J. Clin. Endocrinol. Metab. 2000, 85, 3597–3603. [Google Scholar] [CrossRef] [PubMed]
- Dzierzewski, J.M.; Donovan, E.K.; Kay, D.B.; Sannes, T.S.; Bradbrook, K.E. Sleep Inconsistency and Markers of Inflammation. Front. Neurol. 2020, 11, 1042. [Google Scholar] [CrossRef]
- Ballestar-Tarín, M.L.; Ibáñez-Del Valle, V.; Mafla-España, M.A.; Cauli, O.; Navarro-Martínez, R. Increased Salivary IL-1 Beta Level Is Associated with Poor Sleep Quality in University Students. Diseases 2023, 11, 136. [Google Scholar] [CrossRef] [PubMed]
- Bain, A.R.; Weil, B.R.; Diehl, K.J.; Greiner, J.J.; Stauffer, B.L.; DeSouza, C.A. Insufficient sleep is associated with impaired nitric oxide-mediated endothelium-dependent vasodilation. Atherosclerosis 2017, 265, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Chen, J.; Wirth, M.D.; Shivappa, N.; Hebert, J.R. Lower Dietary Inflammatory Index Scores Are Associated with Lower Glycemic Index Scores among College Students. Nutrients 2018, 10, 182. [Google Scholar] [CrossRef] [PubMed]
- Adeva, M.M.; Souto, G. Diet-induced metabolic acidosis. Clin. Nutr. 2011, 30, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Ballantyne, C.M. Metabolic Inflammation and Insulin Resistance in Obesity. Circ. Res. 2020, 126, 1549–1564. [Google Scholar] [CrossRef] [PubMed]
- Mosavat, M.; Smyth, A.; Arabiat, D.; Whitehead, L. Vitamin D and sleep duration: Is there a bidirectional relationship? Horm. Mol. Biol. Clin. Investig. 2020, 41, 20200025. [Google Scholar] [CrossRef] [PubMed]
- Harding, E.C.; Franks, N.P.; Wisden, W. Sleep and thermoregulation. Curr. Opin. Physiol. 2020, 15, 7–13. [Google Scholar] [CrossRef]
- O’Neill, B.; Croft, R.; Mann, C.; Dang, O.; Leung, S.; Galloway, M.; Phan, K.; Nathan, P. High-dose glycine impairs the prepulse inhibition measure of sensorimotor gating in humans. J. Psychopharmacol. 2011, 25, 1632–1638. [Google Scholar] [CrossRef] [PubMed]
- Pourreza, S.; Khademi, Z.; Mirzababaei, A.; Yekaninejad, M.S.; Sadeghniiat-Haghighi, K.; Naghshi, S.; Mirzaei, K. Association of plant-based diet index with inflammatory markers and sleep quality in overweight and obese female adults: A cross-sectional study. Int. J. Clin. Pract. 2021, 75, e14429. [Google Scholar] [CrossRef]
- Ferranti, R.; Marventano, S.; Castellano, S.; Giogianni, G.; Nolfo, F.; Rametta, S.; Matalone, M.; Mistretta, A. Sleep quality and duration is related with diet and obesity in young adolescent living in Sicily, Southern Italy. Sleep Sci. 2016, 9, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Daneshzad, E.; Keshavarz, S.A.; Qorbani, M.; Larijani, B.; Bellissimo, N.; Azadbakht, L. Association of dietary acid load and plant-based diet index with sleep, stress, anxiety and depression in diabetic women. Br. J. Nutr. 2020, 123, 901–912. [Google Scholar] [CrossRef] [PubMed]
- Sengul, P. Comparison of vegan and non-vegan diets on memory and sleep quality. Clin. Nutr. Open Sci. 2022, 43, 78–84. [Google Scholar] [CrossRef]
- Makowski, M.S.; Shanafelt, T.D.; Hausel, A.; Bohman, B.D.; Roberts, R.; Trockel, M.T. Associations between Dietary Patterns and Sleep-Related Impairment in a Cohort of Community Physicians: A Cross-sectional Study. Am. J. Lifestyle Med. 2021, 15, 644–652. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Melo, N.C.; Cuevas-Sierra, A.; Souto, V.F.; Martínez, J.A. Biological Rhythms, Chrono-Nutrition, and Gut Microbiota: Epigenomics Insights for Precision Nutrition and Metabolic Health. Biomolecules 2024, 14, 559. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.A.; Betts, J.A. Nutrient timing and metabolic regulation. J Physiol 2022, 600, 1299–1312. [Google Scholar] [CrossRef] [PubMed]
- Wehrens, S.M.T.; Christou, S.; Isherwood, C.; Middleton, B.; Gibbs, M.A.; Archer, S.N.; Skene, D.J.; Johnston, J.D. Meal Timing Regulates the Human Circadian System. Curr. Biol. 2017, 27, 1768–1775.e3. [Google Scholar] [CrossRef] [PubMed]
- Faris, M.E.; Vitiello, M.V.; Abdelrahim, D.N.; Cheikh Ismail, L.; Jahrami, H.A.; Khaleel, S.; Khan, M.S.; Shakir, A.Z.; Yusuf, A.M.; Masaad, A.A.; et al. Eating habits are associated with subjective sleep quality outcomes among university students: Findings of a cross-sectional study. Sleep Breath. 2022, 26, 1365–1376. [Google Scholar] [CrossRef]
- Punjabi, N.M.; Samet, J.M. Sleeping, eating, and cancer risk. Int. J. Cancer 2018, 143, 2367–2368. [Google Scholar] [CrossRef] [PubMed]
- Harrex, H.A.L.; Skeaff, S.A.; Black, K.E.; Davison, B.K.; Haszard, J.J.; Meredith-Jones, K.; Quigg, R.; Saeedi, P.; Stoner, L.; Wong, J.E.; et al. Sleep timing is associated with diet and physical activity levels in 9–11-year-old children from Dunedin, New Zealand: The PEDALS study. J. Sleep Res. 2018, 27, e12634. [Google Scholar] [CrossRef] [PubMed]
- Winpenny, E.M.; Rowthorn, H.; Hollidge, S.; Westgate, K.; Goodyer, I.M.; Brage, S.; van Sluijs, E.M.F. Shorter sleep among adolescents is associated with lower fruit and vegetable consumption the following day. Int. J. Behav. Nutr. Phys. Act. 2023, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- Diethelm, K.; Remer, T.; Jilani, H.; Kunz, C.; Buyken, A.E. Associations between the macronutrient composition of the evening meal and average daily sleep duration in early childhood. Clin. Nutr. 2011, 30, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Theorell-Haglöw, J.; Lemming, E.W.; Michaëlsson, K.; Elmståhl, S.; Lind, L.; Lindberg, E. Sleep duration is associated with healthy diet scores and meal patterns: Results from the population-based EpiHealth study. J. Clin. Sleep Med. 2020, 16, 9–18. [Google Scholar] [CrossRef]
- Cao, Y.; Xu, X.; Shi, Z. Trajectories of Dietary Patterns, Sleep Duration, and Body Mass Index in China: A Population-Based Longitudinal Study from China Nutrition and Health Survey, 1991–2009. Nutrients 2020, 12, 2245. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.L.; Li, A.Q.; Senior, A.M.; Neely, G.G.; Simpson, S.J.; Wang, Q.P. Nutritional geometry framework of sleep. Life Sci. 2023, 316, 121381. [Google Scholar] [CrossRef] [PubMed]
- Barker, M.; St-Onge, M.; Seixas, A.; Killgore, W.D.; Wills, C.C.; Grandner, M.A. 0140 Dietary Macronutrients and Sleep Duration, Sleep Disturbance, and Daytime Fatigue. Sleep 2020, 43, A55–A56. [Google Scholar] [CrossRef]
- Rasaei, N.; Samadi, M.; Khadem, A.; Badrooj, N.; Hassan Zadeh, M.; Ghaffarian-Ensaf, R.; Gholami, F.; Mirzaei, K. The association between cholesterol/saturated fat index (CSI) and quality of sleep, and circadian rhythm among overweight and obese women: A cross-sectional study. J. Health Popul. Nutr. 2023, 42, 75. [Google Scholar] [CrossRef] [PubMed]
- Baidoo, V.Y.A.; Alexandria, S.J.; Zee, P.C.; Knutson, K.L. The association between timing of dietary macronutrient and sodium consumption and sleep duration and quality. SLEEP Adv. 2024, 5, zpae007. [Google Scholar] [CrossRef] [PubMed]
- Thomson, C.; Garcia, A.L.; Edwards, C.A. Interactions between dietary fibre and the gut microbiota. Proc. Nutr. Soc. 2021, 80, 398–408. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arslan, N.; Bozkır, E.; Koçak, T.; Akin, M.; Yilmaz, B. From Garden to Pillow: Understanding the Relationship between Plant-Based Nutrition and Quality of Sleep. Nutrients 2024, 16, 2683. https://doi.org/10.3390/nu16162683
Arslan N, Bozkır E, Koçak T, Akin M, Yilmaz B. From Garden to Pillow: Understanding the Relationship between Plant-Based Nutrition and Quality of Sleep. Nutrients. 2024; 16(16):2683. https://doi.org/10.3390/nu16162683
Chicago/Turabian StyleArslan, Neslihan, Eda Bozkır, Tevfik Koçak, Meleksen Akin, and Birsen Yilmaz. 2024. "From Garden to Pillow: Understanding the Relationship between Plant-Based Nutrition and Quality of Sleep" Nutrients 16, no. 16: 2683. https://doi.org/10.3390/nu16162683
APA StyleArslan, N., Bozkır, E., Koçak, T., Akin, M., & Yilmaz, B. (2024). From Garden to Pillow: Understanding the Relationship between Plant-Based Nutrition and Quality of Sleep. Nutrients, 16(16), 2683. https://doi.org/10.3390/nu16162683