Seed Disinfection Treatments Minimized Microbial Load and Enhanced Nutritional Properties of Fenugreek Sprouts Which Alleviated Diabetes-Negative Disorders in Diabetic Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sprout Experiment
2.1.1. Seed Treatments
2.1.2. Microbial Load Determination
2.1.3. Biochemical Analysis of Fenugreek
2.2. Animal Experiment
2.2.1. Diabetes Model
2.2.2. Fenugreek Treatments
2.2.3. Blood and Kidney Markers Analysis
2.3. Statistical Analysis
3. Results
3.1. Germination and Sprouts Physical Traits
3.2. Biochemical Analysis
3.3. Microbial Load
3.4. Rats Body Weight
3.5. Blood and Kidney Markers Analysis
4. Discussion
4.1. Effect of Disinfecting Treatments on Germination and Seedling Traits
4.2. Effect of Disinfecting Treatments on Sprouts’ Biochemical Analysis
4.3. Effect of Disinfecting Treatments on the Microbial Load
4.4. Effect of Feeding Treatments on the Body Weight and Markers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaviarasan, S.; Naik, G.H.; Gangabhagirathi, R.; Anuradha, C.V.; Priyadarsini, K.I. In vitro studies on antiradical and antiox-idant activities of fenugreek (Trigonella foenum graecum) seeds. Food Chem. 2007, 103, 31–37. [Google Scholar] [CrossRef]
- Belguith-Hadriche, O.; Bouaziz, M.; Jamoussi, K.; Simmonds, M.S.J.; El-Feki, A.; Makni-Ayedi, F. Comparative study on hy-pocholesterolemic and antioxidant activities of various extracts of fenugreek seeds. Food Chem. 2013, 138, 1448–1453. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, G.A. Fenugreek: The Genus Trigonella. Medicinal and Aromatic Plants—Industrial Profiles; Taylor & Francis: Abingdon, UK, 2002. [Google Scholar]
- Reddy, R.L.R.; Gowda, A.N.S.; Srinivasan, K. Antilithogenic and hypocholesterolemic effect of dietary fenugreek seeds (Trigonella Foenum-graecum) in experimental mice. Med. Plants Int. J. Phytomed. Related Ind. 2019, 11, 145–154. [Google Scholar] [CrossRef]
- Eidi, A.; Eidi, M.; Sokhteh, M. Effect of fenugreek (Trigonella foenum-graecum L.) seeds on serum parameters in normal and streptozotocin-induced diabetic rats. Nutr. Res. 2007, 27, 728–733. [Google Scholar] [CrossRef]
- Deng, R. A review of the hypoglycemic effects of five commonly used herbal food supplements. Recent Pat. Food Nutr. Agric. 2012, 4, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Raju, J.; Gupta, D.; Rao, A.R.; Yadava, P.K.; Baquer, N.Z. Trigonella foenum graecum (fenugreek) seed powder improves glucose homeostasis in alloxan diabetic rat tissues by reversing the altered glycolytic, gluconeogenic and lipogenic enzymes. Mol. Cell Biochem. 2001, 224, 45–51. [Google Scholar] [CrossRef] [PubMed]
- WHO. Diet, Nutrition, and the Prevention of Chronic Diseases. Report of a WHO Study Group; WHO Technical Report Series, No. 797; World Health Organization: Geneva, Switzerland, 2003; Volume 916, p. 1990. [Google Scholar]
- Milenkovic, D.; Morand, C.; Cassidy, A.; Konic-Ristic, A.; Tomas-Barberan, F.; Ordovas, J.M.; Kroon, P.; De Caterina, R.; Ro-driguez-Mateos, A. Interindividual variability in biomarkers of cardiometabolic health after consumption of major plant-food bio-active compounds and the determinants involved. Adv. Nutr. 2017, 8, 558–570. [Google Scholar] [CrossRef]
- Naidu, M.M.; Shyamala, B.N.; Naik, J.P.; Sulochanamma, G.; Srinivas, P. Chemical composition and antioxidant activity of the husk and endosperm of fenugreek seeds. LWT-Food Sci. Technol. 2011, 44, 451–456. [Google Scholar] [CrossRef]
- FDA. FY 2014–2016 Microbiological Sampling Assignment, Summary Report: Sprouts. 2017. Available online: https://www.fda.gov/downloads/Food/ComplianceEnforcement/Sampling/UCM566981.pdf (accessed on 8 July 2024).
- Limón, R.I.; Peñas, E.; Martínez-Villaluenga, C.; Frias, J. Role of elicitation on the health-promoting properties of kidney bean sprouts. LWT-Food Sci. Technol. 2014, 56, 328–334. [Google Scholar] [CrossRef]
- Taormina, P.J.; Beuchat, L.R.; Slutsker, L. Infections associated with eating seed sprouts: An international concern. Emerg. Infect. Dis. 1999, 5, 626–634. [Google Scholar] [CrossRef]
- Ota, A.; Ulrih, N.P. An overview of herbal products and secondary metabolites used for management of type two diabetes. Front. Pharmacol. 2017, 8, 436. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, H.; Pandey, M.; Hua, C.K.; Mun, C.S.; Jing, J.K.; Kong, L.; Kesharwani, P. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. J. Tradit. Med. Complement. Ther. 2018, 8, 361–376. [Google Scholar] [CrossRef] [PubMed]
- Diabetes UK. Diabetes: Facts and Stats; Diabetes UK: London, UK, 2014; Volume 3, pp. 1–21. [Google Scholar]
- Alshallash, K.S.; Mohamed, M.F.; Dahab, A.A.; Abd El-Salam, H.S.; El-Serafy, R.S. Biostimulation of Plectranthus amboinicus (Lour.) spreng. with different yeast strains: Morphological performance, productivity, phenotypic plasticity, and antioxidant activity. Horticulturae 2022, 8, 887. [Google Scholar] [CrossRef]
- Bahgat, A.-R.; Dahab, A.A.; Elhakem, A.; Gururani, M.A.; El-Serafy, R.S. Integrated action of rhizobacteria with Aloe vera and moringa leaf extracts improves defense mechanisms in Hibiscus sabdariffa L. cultivated in saline soil. Plants 2023, 12, 3684. [Google Scholar] [CrossRef] [PubMed]
- Youssef, S.M.; El-Serafy, R.S.; Ghanem, K.Z.; Elhakem, A.; Abdel Aal, A.A. Foliar spray or soil drench: Microalgae application impacts on soil microbiology, morpho-physiological and biochemical responses, oil and fatty acid profiles of chia plants under alkaline stress. Biology 2022, 11, 1844. [Google Scholar] [CrossRef] [PubMed]
- Gururani, M.A.; Atteya, A.K.; Elhakem, A.; El-Sheshtawy, A.N.A.; El-Serafy, R.S. Essential oils prolonged the cut carnation longevity by limiting the xylem blockage and enhancing the physiological and biochemical levels. PLoS ONE 2023, 3, e0281717. [Google Scholar] [CrossRef] [PubMed]
- El-Serafy, R.S.; El-Sheshtawy, A.A.; Abd El-Razek, U.A.; Abd El-Hakim, A.F.; Hasham, M.M.A.; Sami, R.; Khojah, E.; Al-Mushhin, A.A.M. Growth, yield, quality, and phytochemical behavior of three cultivars of quinoa in response to moringa and Azollaextracts under organic farming conditions. Agronomy 2021, 11, 2186. [Google Scholar] [CrossRef]
- Atteya, A.K.G.; El-Serafy, R.S.; El-Zabalawy, K.M.; Elhakem, A.; Genaidy, E.A.E. Exogenously supplemented proline and phenylalanine improve growth, productivity, and oil composition of salted moringa by up-regulating osmoprotectants and stimulating antioxidant machinery. Plants 2022, 11, 1553. [Google Scholar] [CrossRef] [PubMed]
- El-Serafy, R.S.; El-Sheshtawy, A.A.; Dahab, A.A.; Al-Ashkar, I. Can yeast extract and chitosan-oligosaccharide improve fruit yield and modify the pharmaceutical active ingredients of organic fennel? Ind. Crops Prod. 2021, 173, 114130. [Google Scholar] [CrossRef]
- El-Serafy, R.S.; Dahab, A.A.; Ghanem, K.Z.; Elhakem, A.; Bahgat, A.R.; Venkatesh, J.; El-Sheshtawy, A.A.; Badawy, A. As a natural antioxidant: Sesbania grandiflora Leaf extract enhanced growth and yield performance, active ingredients and tolerance of Hibiscus sabdariffa L. under salt-affected soil. J. Soil Sci. Plant Nutr. 2024, 24, 3406–3420. [Google Scholar] [CrossRef]
- Atteya, A.K.G.; El-Serafy, R.S.; El-Zabalawy, K.M.; Elhakem, A.; Genaidy, E.A.E. Brassinolide maximized the fruit and oil yield, induced the secondary metabolites, and stimulated linoleic acid synthesis of Opuntia ficus-indica oil. Horticulturae 2022, 8, 452. [Google Scholar] [CrossRef]
- El-Serafy, R.S.; El-Sheshtawy, A.A. Effect of nitrogen fixing bacteria and moringa leaf extract on fruit yield, estragole content and total phenols of organic fennel. Sci. Hortic. 2020, 265, 109209. [Google Scholar] [CrossRef]
- Bi, X.; Lim, J.; Henry, C.J. Spices in the management of diabetes mellitus. Food Chem. 2017, 217, 281–293. [Google Scholar] [CrossRef]
- Adam, S.H.; Giribabu, N.; Kassim, N.; Kumar, K.E.; Brahmayya, M.; Arya, A.; Salleh, N. Protective effect of aqueous seed extract of Vitis Vinifera against oxidative stress, inflammation and apoptosis in the pancreas of adult male rats with diabetes mellitus. Biomed. Pharmacother. 2016, 81, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Governa, P.; Baini, G.; Borgonetti, V.; Cettolin, G.; Giachetti, D.; Magnano, A.R.; Miraldi, E.; Biagi, M. Phytotherapy in the management of diabetes: A Review. Molecules 2018, 23, 105. [Google Scholar] [CrossRef] [PubMed]
- Akbas, M.Y.; Olmez, H. Inactivation of Escherichia coli and Listeria monocytogenes on iceberg lettuce by dip wash treatments with organic acids. Lett. Appl. Microbiol. 2007, 44, 619–624. [Google Scholar] [CrossRef]
- Kumari, N.; Verma, S.; Sharma, V. Manipulating tomato plant electric signaling system by microwave radiation to enhance crop productivity and nutritional value. Comput. Electron Agric. 2018, 154, 330–340. [Google Scholar] [CrossRef]
- Senavirathna, M.D.H.J.; Asaeda, T. Radio-frequency electromagnetic radiation alters the electric potential of Myriophyllum aquaticum. Biol. Plant. 2014, 58, 355–362. [Google Scholar] [CrossRef]
- Pour, A.P.; Farahbakhsh, H.; Saffari, M.; Keramat, B. Effects of seed priming on germination and seedling growth under salinity stress in fenugreek. Int. J. Agric. Crop Sci. 2012, 4, 779–786. [Google Scholar]
- Randhir, R.; Shetty, K. Microwave-induced stimulation of L-DOPA, phenolics and antioxidant activity in fava bean (Vicia faba) for Parkinson’s diet. Process Biochem. 2004, 39, 1775–1784. [Google Scholar] [CrossRef]
- Khan, F.; Negi, K.; Kumar, T. Effect of sprouted fenugreek seeds on various diseases: A review. J. Diabetes Metab. Disord. Control 2018, 5, 119–125. [Google Scholar] [CrossRef]
- Vats, V.; Yadav, S.P.; Grover, J.K. Effect of Trigonella foenum graecum on glycogen content of tissues and the key enzymes of carbohydrate metabolism. J. Ethnopharmacol. 2003, 85, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Ejechi, B.; Souzey, J.; Akpomedaye, D. Microbial stability of mango juice preserved by combined application of mild heat and extracts of two tropical spices. J. Food Protect. 1998, 61, 725–727. [Google Scholar] [CrossRef] [PubMed]
- Yemm, E.W.; Cocking, E.C. The determination of amino acids with ninhydrin. Analyst 1955, 80, 209–213. [Google Scholar] [CrossRef]
- Kawamura, S. Quantitative paper chromatography of sugars of the cotyledon, hull, and hypocotyl of soybeans of selected varieties. Tech. Bull. Fac. Agric. Kagawa Univ. 1967, 18, 117–131. [Google Scholar]
- Krivorotova, T.; Sereikaite, J. Determination of fructan exohydrolase activity in the crude extracts of plants. Electron. J. Biotechnol. 2014, 17, 329–333. [Google Scholar] [CrossRef]
- Chen, Y.W.; Wu, S.W.; Ho, K.K.; Lin, S.B.; Huang, C.Y.; Chen, C.N. Characterisation of Taiwanese propolis collected from different locations and seasons. J. Sci. Food Agric. 2008, 88, 412–419. [Google Scholar] [CrossRef]
- Boateng, J.; Verghese, M.; Walker, L.T.; Ogutu, S. Effect of processing on antioxidant contents in selected dry beans (Phaseolus spp. L). LWT-Food Sci. Technol. 2008, 41, 1541–1547. [Google Scholar] [CrossRef]
- Srinivasan, K.; Viswanad, B.; Asrat, L.; Kaul, C.L.; Ramarao, P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: A model for type 2 diabetes and pharmacological screening. Pharmacol. Res. 2005, 52, 313–320. [Google Scholar] [CrossRef]
- Furman, B.L. Streptozotocin-induced diabetic models in mice and rats. Curr. Protoc. 2021, 1, e78. [Google Scholar] [CrossRef]
- Varghese, R.; Majumdar, A. Current therapies in nephrotic syndrome: HDAC inhibitors, an emerging therapy for kidney dis-eases. Curr. Res. Biotechnol. 2021, 3, 182–194. [Google Scholar] [CrossRef]
- Sasaki, T. Effect of acetic acid concentration on the colour reaction in the O-toluidine boric acid method for blood glucose determination. Rinsho. Kagaku 1972, 1, 346–350. [Google Scholar]
- Richmond, W. Preparation and properties of a cholesterol oxidase from Nocardia sp. and its application to the enzymatic assay of total cholesterol in serum. Clin. Chem. 1973, 19, 1350–1356. [Google Scholar] [CrossRef]
- Trinder, P. Determination of glucose in blood using glucose oxidase with on alternative oxygen receptor. Ann. Clin. Biochem. 1969, 6, 24–27. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics; McGraw-Hill Book: New York, NY, USA, 1960. [Google Scholar]
- Hermansen, A.; Brodal, G.; Balvoll, G. Hot water treatments of carrot seeds: Effects on seed-borne fungi, germination, emergence and yield. Seed Sci. Technol. 1999, 27, 599–613. [Google Scholar]
- Begum, M.; Lokesh, S. Effect of hot water and ultra violet radiation on the incidence of seedborne fungi of okra. Arch. Phytopathol. Plant Prot. 2012, 45, 126–132. [Google Scholar] [CrossRef]
- Ragha, L.; Mishra, S.; Ramachandran, V.; Bhatia, M.S. Effects of low-power microwave fields on seed germination and growth rate. J. Electromagn. Anal. Appl. 2011, 3, 165–171. [Google Scholar] [CrossRef]
- Gaurilcikiene, I.; Ramanauskiene, J.; Dagys, M.; Simniskis, R.; Dabkevicius, Z.; Suproniene, S. The effect of strong microwave electric field radiation on: (2) wheat (Triticum aestivum L.) seed germination and sanitation. Zemdirb.-Agric. 2013, 100, 185–190. [Google Scholar] [CrossRef]
- Chen, Y.P.; Liu, Y.J.; Wang, X.L.; Ren, Z.Y.; Yue, M. Effect of microwave and He-Ne laser on enzyme activity and biophoton emission of Isatis indigotica Fort. J. Integr. Plant. Biol. 2005, 47, 849–855. [Google Scholar] [CrossRef]
- Ji, H.B.; Tang, W.; Zhou, X.L.; Wu, Y. Combined effects of blue and ultraviolet lights on the accumulation of flavonoids in tartary buckwheat sprouts. Pol. J. Food. Nutr. Sci. 2016, 66, 93–98. [Google Scholar] [CrossRef]
- Aladjadjiyan, A. Effect of microwave irradiation on seeds of lentils (Lens culinaris, Med.). Rom. J. Biophys. 2010, 20, 213–221. [Google Scholar]
- Radzevičius, A.; Sakalauskienė, S.; Dagys, M.; Simniškis, R.; Karklelienė, R.; Bobinas, Č.; Duchovskis, P. The effect of strong microwave electric field radiation on: (1) vegetable seed germination and seedling growth rate. Zemdirb.-Agric. 2013, 100, 179–184. [Google Scholar] [CrossRef]
- Hamada, E.A.M. Effects of microwave treatment on growth, photosynthetic pigments and some metabolites of wheat. Biol. Plant. 2007, 51, 343–345. [Google Scholar] [CrossRef]
- Chen, W.; Hang, F.; Zhao, J.X.; Tian, F.W.; Zhang, H. Alterations of membrane permeability in Escherichia coli and Staphy-lococcus aureus under microwave. Wei Sheng Wu Xue Bao = Acta Microbiol. Sin. 2007, 47, 697–701. [Google Scholar]
- Uppal, V.; Bains, K. Effect of germination periods and hydrothermal treatments on in vitro protein and starch digestibility of germinated legumes. J. Food Sci. Technol. 2012, 49, 184–191. [Google Scholar] [CrossRef]
- Nelson, S.O. Review and assessment of radio-frequency and microwave energy for stored-grain insect control. Trans. Am. Soc. Agric. Eng. 1996, 39, 1475–1484. [Google Scholar] [CrossRef]
- Hussain, P.R.; Suradkar, P.; Javaid, S.; Akram, H.; Parvez, S. Influence of postharvest gamma irradiation treatment on the content of bioactive compounds and antioxidant activity of fenugreek (Trigonella foenum–graceum L.) and spinach (Spinacia oleracea L.) leaves. Innov. Food Sci. Emerg. Technol. 2016, 33, 268–281. [Google Scholar] [CrossRef]
- Singh, S.; Singh, H.; Bharat, N.K. Hot water seed treatment: A review. In Capsicum; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Baker, K.F. Thermotherapy of planting material. Phytopathology 1962, 52, 1244–1255. [Google Scholar]
- Muniz, M.F.B. Control of microorganisms associated with tomato seeds using thermotherapy. Rev. Brassileira Sementes 2001, 23, 176–280. [Google Scholar]
- Aguilar, G.A.; Cruz, R.; Baez, R. Storage quality of bell peppers pretreated with hot water and polyethylene packaging. J. Food Qual. 1998, 22, 287–299. [Google Scholar] [CrossRef]
- Musazura, W.; Bertling, I. Investigations into the effect of multiple hot water treatment of tomato (Solanum lycopersicum) and pepper (Capsicum annuum) seeds on seed viability and seed vigor. Acta Hortic. 2013, 1007, 795–799. [Google Scholar] [CrossRef]
- Temple, T.N.; Toit, L.J.; Derie, M.L.; Johnson, K.B. Quantitative molecular detection of Xanthomonas hortorum pv. carotae in carrot seed before and after hot-water treatment. Plant Dis. 2013, 97, 1585–1592. [Google Scholar] [CrossRef] [PubMed]
- Heddleson, R.A.; Doores, S. Factors affecting microwave heating of foods and microwave induced destruction of foodborne pathogens—A review. J. Food Prot. 1994, 57, 1025–1037. [Google Scholar] [CrossRef] [PubMed]
- Shamis, Y.; Croft, R.; Taube, A.; Crawford, R.J.; Ivanova, E.P. Review of the specific effects of microwave radiation on bacterial cells. Appl. Microbiol. Biotechnol. 2012, 96, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Tkalec, V.; Mahnic, A.; Gselman, P.; Rupnik, M. Analysis of seed-associated bacteria and fungi on staple crops using the cultivation and metagenomic approaches. Folia Microbiol. 2022, 67, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Fu, T.J.; Smith, M.A. Microbial contamination in sprouts: How effective is seed disinfection treatment? J. Food Sci. 2013, 78, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Danilchuk, T.N.; Alkhateeb, M.-K. Effects of microwave radiation on living microorganisms: Effects and mechanisms. Health Food Biotechnol. 2021, 3, 75–84. [Google Scholar] [CrossRef]
- Thakran, S.; Siddiqui, M.R.; Baquer, N.Z. Trigonella foenum graecum seed powder protects against histopathological abnormalities in tissues of diabetic rats. Mol. Cell Biochem. 2004, 266, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Swieca, M. Hydrogen peroxide treatment and the phenylpropanoid pathway precursors feeding improve phenolics and antioxidant capacity of quinoa sprouts via an induction of L-Tyrosine and L-Phenylalanine Ammonia-Lyases activities. J. Chem. 2016, 2016, 1936516. [Google Scholar] [CrossRef]
- Xue, W.L.; Li, X.S.; Zhang, J.; Liu, Y.H.; Wang, Z.L.; Zhang, R.J. Effect of Trigonella foenum-graecum (fenugreek) extract on blood glucose, blood lipid and hemorheological properties in streptozotocin-induced diabetic rats. Asia. Pac. J. Clin. Nutr. 2007, 16, 422–426. [Google Scholar]
- Hannana, J.M.A.; Rokeya, B.; Faruque, O. Effect of soluble dietary fibre fraction of Trigonella foenum graecum on glycemic, insulinemic, lipidemic and platelet aggregation status of Type 2 diabetic model rats. J. Ethnopharmacol. 2003, 88, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Al-Habori, M.; Raman, A.; Lawrence, M.J.; Skett, P. In vitro effect of fenugreek extracts on intestinal sodium-dependent glucose uptake and hepatic glycogen phosphorylase A. Int. J. Exp. Diabetes Res. 2001, 2, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Chand, P.; Singh, K.; Singh, B.N.; Naidu, A. Contribution of fenugreek (Trigonella foenum graecum L.) seeds towards the nutritional characterization. J. Med. Plant Res. 2013, 7, 3052–3058. [Google Scholar]
- Khoja, K.K.; Howes, M.J.R.; Hider, R.; Sharp, P.A.; Farrell, I.W.; Latunde-Dada, G.O. Cytotoxicity of fenugreek sprout and seed extracts and their bioactive constituents on MCF-7 breast cancer cells. Nutrients 2022, 14, 784. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Kumari, P.; Ahmad, M. Apigenin attenuates edifenphos-induced toxicity by modulating ROS-mediated oxidative stress, mitochondrial dysfunction and caspase signal pathway in rat liver and kidney. Pestic. Biochem. Physiol. 2019, 159, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Muhammed, M.T.; Jalil, A.T.; Taher, W.M.; Aminov, Z.; Alsaikhan, F.; Ramz-Coronel, A.A.; Ramaiah, P.; Farhood, B. The effects of apigenin in the treatment of diabetic nephropathy: A systematic review of non-clinical studies. Mini. Rev. Med. Chem. 2024, 24, 341–354. [Google Scholar] [CrossRef]
- Zhang, K.; Song, W.; Li, D.; Jin, X. Apigenin in the regulation of cholesterol metabolism and protection of blood vessels. Exp. Ther. Med. 2017, 13, 1719–1724. [Google Scholar] [CrossRef] [PubMed]
- Vasavada, N.; Agarwal, R. Role of oxidative stress in diabetic nephropathy. Adv. Chronic Kidney Dis. 2005, 12, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Najafi, M.; Mortezaee, K.; Rahimifard, M.; Farhood, B.; Haghi-Aminjan, H. The role of curcumin/curcuminoids during gastric cancer chemotherapy: A systematic review of non-clinical study. Life Sci. 2020, 257, 118051. [Google Scholar] [CrossRef]
- Yan, L.J. Pathogenesis of chronic hyperglycemia: From reductive stress to oxidative stress. J. Diabetes Res. 2014, 2014, 137919. [Google Scholar] [CrossRef]
- Forbes, J.M.; Coughlan, M.T.; Cooper, M.E. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 2008, 57, 1446–1454. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Suchal, K.; Khan, S.I.; Bhatia, J.; Kishore, K.; Dinda, A.K.; Arya, D.S. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1- MAPK-fibronectin pathways. Am. J. Physiol. Renal Physiol. 2017, 313, F414–F422. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Yin, M.C. Renal protective effects of extracts from guava fruit (Psidium guajava L.) in diabetic mice. Plant Foods Hum. Nutr. 2012, 67, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Zhang, Y.; Lin, S.; Yu, Y.; Yang, L.; Li, L.; Wang, W. Protective mechanism of apigenin in diabetic nephropathy is related to its regulation of miR-423-5P-USF2 axis. Am. J. Transl. Res. 2021, 13, 2006–2020. [Google Scholar] [PubMed]
Treatments | Initial Body Weight (g) | Final Body Weight (g) | Changes in Body Weight (g) |
---|---|---|---|
Negative control | 176.0 ± 1.00 a | 213.67 ± 0.67 a | 37.7 ± 0.33 a |
Positive control | 173.0 ± 1.15 a | 167.67 ± 1.45 g | −5.3 ± 1.20 f |
Diabetic FS1 | 176.7 ± 0.67 a | 182.33 ± 2.03 f | 5.7 ± 1.45 e |
Diabetic FS2 | 174.6 ± 0.88 a | 189.33 ± 1.66 e | 14.7 ± 0.88 d |
Diabetic FS3 | 176.0 ± 1.15 a | 192.33 ± 0.58 e | 16.0 ± 1.00 d |
Diabetic FSP1 | 175.7 ± 1.76 a | 196.00 ± 1.00 d | 20.3 ± 1.86 c |
Diabetic FSP2 | 173.3 ± 0.88 a | 200.33 ± 1.33 c | 27.0 ± 0.57 b |
Diabetic FSP3 | 176.3 ± 1.20 a | 205.00 ± 1.15 b | 28.7 ± 0.33 b |
Treatments | Glucose | Total Cholesterol | Triglycerides | HDL |
---|---|---|---|---|
Unit | mg dL−1 | |||
Negative control | 94.9 ± 0.17 f | 93.57 ± 0.42 f | 55.96 ± 1.13 c | 60.87 ± 0.64 a |
Positive control | 325.7 ± 2.1 a | 114.86 ± 1.06 a | 69.97 ± 0.85 a | 40.08 ± 0.41 f |
Diabetic FS1 | 278.7 ± 3.8 b | 112.17 ± 0.89 b | 66.89 ± 0.81 ab | 49.16 ± 0.36 e |
Diabetic FS2 | 227.9 ± 1.6 c | 107.23 ± 0.93 c | 65.26 ± 2.24 b | 50.93 ± 0.25 d |
Diabetic FS3 | 169.6 ± 4.2 d | 104.79 ± 0.50 d | 66.64 ± 0.51 ab | 52.03 ± 0.73 cd |
Diabetic FSP1 | 125.15 ± 0.6 e | 99.26 ± 0.39 e | 58.10 ± 0.13 c | 53.62 ± 0.34 bc |
Diabetic FSP2 | 117.1 ± 0.82 e | 94.08 ± 0.68 e | 56.36 ± 0.40 c | 54.74 ± 0.54 b |
Diabetic FSP3 | 121.6 ± 0.84 e | 97.43 ± 0.52 f | 56.89 ± 0.28 c | 53.09 ± 0.09 bc |
Treatments | Uric | Urea | Creatinine |
---|---|---|---|
Negative control | 2.31 ± 0.08b c | 34.06 ± 0.36 f | 0.24 ± 0.008 e |
Positive control | 2.86 ± 0.07 a | 57.87 ± 0.98 a | 0.38 ± 0.014 a |
Diabetic FS1 | 2.59 ± 0.12 b | 57.25 ± 0.29 a | 0.38 ± 0.003 a |
Diabetic FS2 | 2.47 ± 0.55 bc | 52.52 ± 0.80 b | 0.34 ± 0.01 b |
Diabetic FS3 | 2.44 ± 0.02 bc | 51.48 ± 0.19 bc | 0.33 ± 0.003 b |
Diabetic FSP1 | 2.38 ± 0.02 bc | 49.65 ± 0.46 c | 0.27 ± 0.001 cd |
Diabetic FSP2 | 2.23 ± 0.02 c | 45.55 ± 1.0 d | 0.25 ± 0.005 c |
Diabetic FSP3 | 2.29 ± 0.06 c | 47.54 ± 0.33 e | 0.28 ± 0.004 de |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahab, A.A.; Bayomy, H.M.; El-Salam, H.S.A.; Almasoudi, S.E.; Ozaybi, N.A.; Mahmoud, G.A.; Atteya, A.K.G.; El-Serafy, R.S. Seed Disinfection Treatments Minimized Microbial Load and Enhanced Nutritional Properties of Fenugreek Sprouts Which Alleviated Diabetes-Negative Disorders in Diabetic Rats. Nutrients 2024, 16, 2635. https://doi.org/10.3390/nu16162635
Dahab AA, Bayomy HM, El-Salam HSA, Almasoudi SE, Ozaybi NA, Mahmoud GA, Atteya AKG, El-Serafy RS. Seed Disinfection Treatments Minimized Microbial Load and Enhanced Nutritional Properties of Fenugreek Sprouts Which Alleviated Diabetes-Negative Disorders in Diabetic Rats. Nutrients. 2024; 16(16):2635. https://doi.org/10.3390/nu16162635
Chicago/Turabian StyleDahab, Abeer A., Hala M. Bayomy, Hemat S. Abd El-Salam, Seham E. Almasoudi, Nawal A. Ozaybi, Gehan A. Mahmoud, Amira K. G. Atteya, and Rasha S. El-Serafy. 2024. "Seed Disinfection Treatments Minimized Microbial Load and Enhanced Nutritional Properties of Fenugreek Sprouts Which Alleviated Diabetes-Negative Disorders in Diabetic Rats" Nutrients 16, no. 16: 2635. https://doi.org/10.3390/nu16162635
APA StyleDahab, A. A., Bayomy, H. M., El-Salam, H. S. A., Almasoudi, S. E., Ozaybi, N. A., Mahmoud, G. A., Atteya, A. K. G., & El-Serafy, R. S. (2024). Seed Disinfection Treatments Minimized Microbial Load and Enhanced Nutritional Properties of Fenugreek Sprouts Which Alleviated Diabetes-Negative Disorders in Diabetic Rats. Nutrients, 16(16), 2635. https://doi.org/10.3390/nu16162635