Diet Quality at 3 Years of Age Relates to Lower Body Mass Index but Not Lower Blood Pressure at 10 Years of Age
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Outcomes
2.3. Determinants
2.4. Statistical Analyses
3. Results
3.1. Demographic Characteristics
3.2. Diet Scores and BMI/Overweight Issues
3.3. Diet Scores and BP/Elevated BP
3.4. Role of BMI in the Association between Diet Scores and BP
4. Discussion
4.1. Diet Scores and BMI/Overweight Issues
4.2. Diet Scores and BP/Elevated BP
4.3. Role of BMI in Relationship between Diet and BP/Elevated BP
4.4. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morton, K.; Heindl, B.; Clarkson, S.; Bittner, V. Primordial Prevention of Atherosclerotic Cardiovascular Disease: A review of the literature. J. Cardiopulm. Rehabil. Prev. 2022, 42, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Zhang, Y.; Yu, J.; Zha, M.; Zhu, Y.; Rahimi, K.; Rudan, I. Global Prevalence of Hypertension in Children: A Systematic Review and Meta-analysis. JAMA Pediatr. 2019, 173, 1154–1163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, J.; Ni, Y.; Yi, C.; Fang, Y.; Ning, Q.; Shen, B.; Zhang, K.; Liu, Y.; Yang, L.; et al. Global Prevalence of Overweight and Obesity in Children and Adolescents: A Systematic Review and Meta-Analysis. JAMA Pediatr. 2024, e241576. [Google Scholar] [CrossRef] [PubMed]
- Kibret, K.T.; Strugnell, C.; Backholer, K.; Peeters, A.; Tegegne, T.K.; Nichols, M. Life-course trajectories of body mass index and cardiovascular disease risks and health outcomes in adulthood: Systematic review and meta-analysis. Obes. Rev. 2024, 25, e13695. [Google Scholar] [CrossRef] [PubMed]
- Raitakari, O.; Pahkala, K.; Magnussen, C.G. Prevention of atherosclerosis from childhood. Nat. Rev. Cardiol. 2022, 19, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Steinberger, J.; Daniels, S.R.; Hagberg, N.; Isasi, C.R.; Kelly, A.S.; Lloyd-Jones, D.; Pate, R.R.; Pratt, C.; Shay, C.M.; Towbin, J.A.; et al. Cardiovascular Health Promotion in Children: Challenges and Opportunities for 2020 and Beyond: A Scientific Statement From the American Heart Association. Circulation. 2016, 134, e236–e255. [Google Scholar] [CrossRef]
- Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N. Engl. J. Med. 1997, 336, 1117–1124. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Obarzanek, E.; Windhauser, M.M.; Svetkey, L.P.; Vollmer, W.M.; McCullough, M.; Karanja, N.; Lin, P.H.; Steele, P.; Proschan, M.A.; et al. Rationale and design of the Dietary Approaches to Stop Hypertension trial (DASH). A multicenter controlled-feeding study of dietary patterns to lower blood pressure. Ann. Epidemiol. 1995, 5, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Mijatovic, J.; Li, A.; Koemel, N.; Nasir, R.; Toniutti, C.; Bell-Anderson, K.; Skilton, M.; O’Leary, F. Dietary Patterns and Non-Communicable Disease Biomarkers: A Network Meta-Analysis and Nutritional Geometry Approach. Nutrients 2022, 15, 76. [Google Scholar] [CrossRef]
- Cowell, O.R.; Mistry, N.; Deighton, K.; Matu, J.; Griffiths, A.; Minihane, A.M.; Mathers, J.C.; Shannon, O.M.; Siervo, M. Effects of a Mediterranean diet on blood pressure: A systematic review and meta-analysis of randomized controlled trials and observational studies. J. Hypertens. 2021, 39, 729–739. [Google Scholar] [CrossRef]
- Filippou, C.D.; Tsioufis, C.P.; Thomopoulos, C.G.; Mihas, C.C.; Dimitriadis, K.S.; Sotiropoulou, L.I.; Chrysochoou, C.A.; Nihoyannopoulos, P.I.; Tousoulis, D.M. Dietary Approaches to Stop Hypertension (DASH) Diet and Blood Pressure Reduction in Adults with and without Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2020, 11, 1150–1160. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.; Bryan, J.; Hodgson, J.; Murphy, K. Definition of the Mediterranean Diet; a Literature Review. Nutrients 2015, 7, 9139–9153. [Google Scholar] [CrossRef] [PubMed]
- Vinke, P.C.; Corpeleijn, E.; Dekker, L.H.; Jacobs, D.R., Jr.; Navis, G.; Kromhout, D. Development of the food-based Lifelines Diet Score (LLDS) and its application in 129;369 Lifelines participants. Eur. J. Clin. Nutr. 2018, 72, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Khadem, A.; Shiraseb, F.; Mirzababaei, A.; Ghaffarian-Ensaf, R.; Mirzaei, K. Association of Lifelines Diet Score (LLDS) and metabolically unhealthy overweight/obesity phenotypes in women: A cross-sectional study. BMC Womens Health 2022, 22, 374. [Google Scholar] [CrossRef] [PubMed]
- Vinke, P.C.; Navis, G.; Kromhout, D.; Corpeleijn, E. Associations of Diet Quality and All-Cause Mortality across Levels of Cardiometabolic Health and Disease: A 7.6-Year Prospective Analysis from the Dutch Lifelines Cohort. Diabetes Care. 2021, 44, 1228–1235. [Google Scholar] [CrossRef] [PubMed]
- Asghari, G.; Yuzbashian, E.; Mirmiran, P.; Hooshmand, F.; Najafi, R.; Azizi, F. Dietary Approaches to Stop Hypertension (DASH) Dietary Pattern Is Associated with Reduced Incidence of Metabolic Syndrome in Children and Adolescents. J. Pediatr. 2016, 174, 178–184.e171. [Google Scholar] [CrossRef] [PubMed]
- Najafi, A.; Faghih, S.; Hojhabrimanesh, A.; Najafi, M.; Tangestani, H.; Atefi, M.; Teymouri, M.; Salehi, M.; Kamali, M.; Amanat, S.; et al. Greater adherence to the dietary approaches to stop hypertension (DASH) dietary pattern is associated with lower blood pressure in healthy Iranian primary school children. Eur. J. Nutr. 2018, 57, 1449–1458. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.F.W.; Lehnerd, M.E.; Houser, R.F.; Rimm, E.B. Dietary Approaches to Stop Hypertension Diet; Weight Status; and Blood Pressure among Children and Adolescents: National Health and Nutrition Examination Surveys 2003-2012. J. Acad. Nutr. Diet. 2017, 117, 1437–1444.e1432. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.L.; Bradlee, M.L.; Singer, M.R.; Qureshi, M.M.; Buendia, J.R.; Daniels, S.R. Dietary Approaches to Stop Hypertension (DASH) eating pattern and risk of elevated blood pressure in adolescent girls. Br. J. Nutr. 2012, 108, 1678–1685. [Google Scholar] [CrossRef] [PubMed]
- Ducharme-Smith, K.; Caulfield, L.E.; Brady, T.M.; Rosenstock, S.; Mueller, N.T.; Garcia-Larsen, V. Higher Diet Quality in African-American Adolescents Is Associated with Lower Odds of Metabolic Syndrome: Evidence from the NHANES. J. Nutr. 2021, 151, 1609–1617. [Google Scholar] [CrossRef]
- Zafarmand, M.H.; Spanjer, M.; Nicolaou, M.; Wijnhoven, H.A.H.; van Schaik, B.D.C.; Uitterlinden, A.G.; Snieder, H.; Vrijkotte, T.G.M. Influence of Dietary Approaches to Stop Hypertension-Type Diet; Known Genetic Variants and Their Interplay on Blood Pressure in Early Childhood: ABCD Study. Hypertension 2020, 75, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Krijger, J.A.; Nicolaou, M.; Nguyen, A.N.; Voortman, T.; Hutten, B.A.; Vrijkotte, T.G. Diet quality at age 5-6 and cardiovascular outcomes in preadolescents. Clin. Nutr. ESPEN 2021, 43, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Saneei, P.; Hashemipour, M.; Kelishadi, R.; Rajaei, S.; Esmaillzadeh, A. Effects of recommendations to follow the Dietary Approaches to Stop Hypertension (DASH) diet v. usual dietary advice on childhood metabolic syndrome: A randomised cross-over clinical trial. Br. J. Nutr. 2013, 110, 2250–2259. [Google Scholar] [CrossRef] [PubMed]
- Mahdavi, A.; Mohammadi, H.; Foshati, S.; Shokri-Mashhadi, N.; Clark, C.C.T.; Moafi, A.; Rouhani, M.H. Effects of the dietary approach to stop hypertension (DASH) diet on blood pressure; blood glucose; and lipid profile in adolescents with hemophilia: A randomized clinical trial. Food Sci. Nutr. 2021, 9, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Couch, S.C.; Saelens, B.E.; Khoury, P.R.; Dart, K.B.; Hinn, K.; Mitsnefes, M.M.; Daniels, S.R.; Urbina, E.M. Dietary Approaches to Stop Hypertension Dietary Intervention Improves Blood Pressure and Vascular Health in Youth With Elevated Blood Pressure. Hypertension 2021, 77, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Aljahdali, A.A.; Peterson, K.E.; Cantoral, A.; Ruiz-Narvaez, E.; Tellez-Rojo, M.M.; Kim, H.M.; Hebert, J.R.; Wirth, M.D.; Torres-Olascoaga, L.A.; Shivappa, N.; et al. Diet Quality Scores and Cardiometabolic Risk Factors in Mexican Children and Adolescents: A Longitudinal Analysis. Nutrients 2022, 14, 896. [Google Scholar] [CrossRef]
- Eloranta, A.M.; Schwab, U.; Venalainen, T.; Kiiskinen, S.; Lakka, H.M.; Laaksonen, D.E.; Lakka, T.A.; Lindi, V. Dietary quality indices in relation to cardiometabolic risk among Finnish children aged 6-8 years—The PANIC study. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 833–841. [Google Scholar] [CrossRef]
- Bricarello, L.P.; de Moura Souza, A.; de Almeida Alves, M.; Retondario, A.; Fernandes, R.; Santos de Moraes Trindade, E.B.; Zanette Ramos Zeni, L.A.; de Assis Guedes de Vasconcelos, F. Association between DASH diet (Dietary Approaches to Stop Hypertension) and hypertension in adolescents: A cross-sectional school-based study. Clin. Nutr. ESPEN 2020, 36, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, H.; Yuzbashian, E.; Zareie, R.; Asghari, G.; Djazayery, A.; Movahedi, A.; Mirmiran, P. Dietary approaches to stop hypertension (DASH) score and obesity phenotypes in children and adolescents. Nutr. J. 2020, 19, 112. [Google Scholar] [CrossRef]
- Mesas, A.E.; Jimenez-Lopez, E.; Martinez-Vizcaino, V.; Fernandez-Rodriguez, R.; Bizzozero-Peroni, B.; Garrido-Miguel, M.; Cavero-Redondo, I.; Lopez-Gil, J.F. Are adherence to the Mediterranean diet and siesta individually or jointly associated with blood pressure in Spanish adolescents? Results from the EHDLA study. Front. Public Health 2022, 10, 934854. [Google Scholar] [CrossRef]
- Garcia-Hermoso, A.; Vegas-Heredia, E.D.; Fernandez-Vergara, O.; Ceballos-Ceballos, R.; Andrade-Schnettler, R.; Arellano-Ruiz, P.; Ramirez-Velez, R. Independent and combined effects of handgrip strength and adherence to a Mediterranean diet on blood pressure in Chilean children. Nutrition 2019, 60, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Cagiran Yilmaz, F.; Cagiran, D.; Ozcelik, A.O. Adolescent Obesity and Its Association with Diet Quality and Cardiovascular Risk Factors. Ecol. Food Nutr. 2019, 58, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Agostinis-Sobrinho, C.; Santos, R.; Rosario, R.; Moreira, C.; Lopes, L.; Mota, J.; Martinkenas, A.; Garcia-Hermoso, A.; Correa-Bautista, J.E.; Ramirez-Velez, R. Optimal Adherence to a Mediterranean Diet May Not Overcome the Deleterious Effects of Low Physical Fitness on Cardiovascular Disease Risk in Adolescents: A Cross-Sectional Pooled Analysis. Nutrients 2018, 10, 815. [Google Scholar] [CrossRef]
- Mistretta, A.; Marventano, S.; Antoci, M.; Cagnetti, A.; Giogianni, G.; Nolfo, F.; Rametta, S.; Pecora, G.; Marranzano, M. Mediterranean diet adherence and body composition among Southern Italian adolescents. Obes. Res. Clin. Pract. 2017, 11, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Zhong, V.W.; Lamichhane, A.P.; Crandell, J.L.; Couch, S.C.; Liese, A.D.; The, N.S.; Tzeel, B.A.; Dabelea, D.; Lawrence, J.M.; Marcovina, S.M.; et al. Association of adherence to a Mediterranean diet with glycemic control and cardiovascular risk factors in youth with type I diabetes: The SEARCH Nutrition Ancillary Study. Eur. J. Clin. Nutr. 2016, 70, 802–807. [Google Scholar] [CrossRef] [PubMed]
- Cobos-Palacios, L.; Munoz-Ubeda, M.; Gallardo-Escribano, C.; Ruiz-Moreno, M.I.; Vilches-Perez, A.; Vargas-Candela, A.; Leiva-Gea, I.; Tinahones, F.J.; Gomez-Huelgas, R.; Bernal-Lopez, M.R. Adipokines Profile and Inflammation Biomarkers in Prepubertal Population with Obesity and Healthy Metabolic State. Children. 2022, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Macknin, M.; Stegmeier, N.; Thomas, A.; Worley, S.; Li, L.; Hazen, S.L.; Tang, W.H.W. Three Healthy Eating Patterns and Cardiovascular Disease Risk Markers in 9 to 18 Year Olds With Body Mass Index >95%: A Randomized Trial. Clin. Pediatr. 2021, 60, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hu, J.; Huang, S.; Yang, Z.; Dong, Y.; Dong, B.; Ma, J.; Liang, W. Exploring Overweight Risk Trajectories During Childhood and Their Associations With Elevated Blood Pressure at Late Adolescence: A Retrospective Cohort Study. Hypertension 2022, 79, 1605–1613. [Google Scholar] [CrossRef] [PubMed]
- Berz, J.P.; Singer, M.R.; Guo, X.; Daniels, S.R.; Moore, L.L. Use of a DASH food group score to predict excess weight gain in adolescent girls in the National Growth and Health Study. Arch. Pediatr. Adolesc. Med. 2011, 165, 540–546. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Golpour-Hamedani, S.; Mohammadifard, N.; Khosravi, A.; Feizi, A.; Safavi, S.M. Dietary approaches to stop hypertension diet and obesity: A cross-sectional study of Iranian children and adolescents. ARYA Atheroscler. 2017, 13, 7–13. [Google Scholar] [PubMed]
- Bekelman, T.A.; Ringham, B.M.; Sauder, K.A.; Johnson, S.L.; Harrall, K.H.; Glueck, D.H.; Dabelea, D. Adherence to index-based dietary patterns in childhood and BMI trajectory during the transition to adolescence: The EPOCH study. Int. J. Obes. 2021, 45, 2439–2446. [Google Scholar] [CrossRef] [PubMed]
- Monjardino, T.; Lucas, R.; Ramos, E.; Barros, H. Associations between a priori-defined dietary patterns and longitudinal changes in bone mineral density in adolescents. Public Health Nutr. 2014, 17, 195–205. [Google Scholar] [CrossRef]
- Martin-Calvo, N.; Chavarro, J.E.; Falbe, J.; Hu, F.B.; Field, A.E. Adherence to the Mediterranean dietary pattern and BMI change among US adolescents. Int. J. Obes. 2016, 40, 1103–1108. [Google Scholar] [CrossRef] [PubMed]
- Tognon, G.; Hebestreit, A.; Lanfer, A.; Moreno, L.A.; Pala, V.; Siani, A.; Tornaritis, M.; De Henauw, S.; Veidebaum, T.; Molnar, D.; et al. Mediterranean diet; overweight and body composition in children from eight European countries: Cross-sectional and prospective results from the IDEFICS study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Jennings, A.; Welch, A.; van Sluijs, E.M.; Griffin, S.J.; Cassidy, A. Diet quality is independently associated with weight status in children aged 9-10 years. J. Nutr. 2011, 141, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Vinke, P.C.; Luitjens, M.; Blijleven, K.A.; Navis, G.; Kromhout, D.; Corpeleijn, E. Nutrition beyond the first 1000 days: Diet quality and 7-year change in BMI and overweight in 3-year old children from the Dutch GECKO Drenthe birth cohort. J. Dev. Orig. Health Dis. 2021, 12, 933–939. [Google Scholar] [CrossRef] [PubMed]
- L’Abee, C.; Sauer, P.J.; Damen, M.; Rake, J.P.; Cats, H.; Stolk, R.P. Cohort Profile: The GECKO Drenthe study; overweight programming during early childhood. Int. J. Epidemiol. 2008, 37, 486–489. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Flynn, J.T.; Kaelber, D.C.; Baker-Smith, C.M.; Blowey, D.; Carroll, A.E.; Daniels, S.R.; de Ferranti, S.D.; Dionne, J.M.; Falkner, B.; Flinn, S.K.; et al. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics 2017, 140, e20171904. [Google Scholar] [CrossRef]
- Sijtsma, A.; Bocca, G.; L’Abee, C.; Liem, E.T.; Sauer, P.J.; Corpeleijn, E. Waist-to-height ratio; waist circumference and BMI as indicators of percentage fat mass and cardiometabolic risk factors in children aged 3–7 years. Clin. Nutr. 2014, 33, 311–315. [Google Scholar] [CrossRef]
- Dutch Growth Research Foundation. Growth Analyser: Innovative Healthcare Software Version 3.5. Available online: https://growthanalyser.org (accessed on 3 July 2024).
- Cole, T.J.; Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness; overweight and obesity. Pediatr. Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef]
- Dutman, A.E.; Stafleu, A.; Kruizinga, A.; Brants, H.A.; Westerterp, K.R.; Kistemaker, C.; Meuling, W.J.; Goldbohm, R.A. Validation of an FFQ and options for data processing using the doubly labelled water method in children. Public Health Nutr. 2011, 14, 410–417. [Google Scholar] [CrossRef] [PubMed]
- The National Institute for Public Health and the Environment (RIVM)/Netherlands Nutrition Centre. NEVO-Tabel: Dutch Nutrient Database 2011; NEVO: Hague, The Netherlands, 2011. [Google Scholar]
- Black, A.E. Critical evaluation of energy intake using the Goldberg cut-off for energy intake: Basal metabolic rate. A practical guide to its calculation; use and limitations. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 1119–1130. [Google Scholar] [CrossRef] [PubMed]
- Schofield, W.N. Predicting basal metabolic rate; new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985, 39 (Suppl. S1), 5–41. [Google Scholar] [PubMed]
- Sijtsma, A.; Corpeleijn, E.; Sauer, P.J. Energy requirements for maintenance and growth in 3- to 4-year-olds may be overestimated by existing equations. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 642–646. [Google Scholar] [CrossRef] [PubMed]
- Aubert, A.M.; Forhan, A.; de Lauzon-Guillain, B.; Chen, L.W.; Polanska, K.; Hanke, W.; Jankowska, A.; Mensink-Bout, S.M.; Duijts, L.; Suderman, M.; et al. Deriving the Dietary Approaches to Stop Hypertension (DASH) Score in Women from Seven Pregnancy Cohorts from the European ALPHABET Consortium. Nutrients 2019, 11, 2706. [Google Scholar] [CrossRef] [PubMed]
- Vafeiadi, M.; Margetaki, K.; Stratakis, N.; Roumeliotaki, T.; Chatzi, L.; Charles, M.-A.; Dargent-Molina, P.; Lioret, S.; de Lauzon, B.; Heude, B.; et al. LifeCycle quality checks and protocol for harmonization of WP3.1.4: Lifestyle (WP3). 2018. Available online: https://lifecycle-project.eu/wp-content/uploads/2020/05/LifeCycle_Subtask_3.1.4_Harmonisation_Protocol_QControl.pdf (accessed on 3 July 2024).
- Tognon, G.; Moreno, L.A.; Mouratidou, T.; Veidebaum, T.; Molnar, D.; Russo, P.; Siani, A.; Akhandaf, Y.; Krogh, V.; Tornaritis, M.; et al. Adherence to a Mediterranean-like dietary pattern in children from eight European countries. The IDEFICS study. Int. J. Obes. 2014, 38 (Suppl. S2), S108–S114. [Google Scholar] [CrossRef] [PubMed]
- Parada-Ricart, E.; Luque, V.; Zaragoza, M.; Ferre, N.; Closa-Monasterolo, R.; Koletzko, B.; Grote, V.; Gruszfeld, D.; Verduci, E.; Xhonneux, A.; et al. Effect of maternal smoking during pregnancy on child blood pressure in a European cohort. Sci. Rep. 2022, 12, 17308. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Peters, H.; Gama, A.; Carvalhal, M.I.; Nogueira, H.G.; Rosado-Marques, V.; Padez, C. Maternal smoking in pregnancy association with childhood adiposity and blood pressure. Pediatr. Obes. 2016, 11, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Małachowska, A.; Gębski, J.; Jeżewska-Zychowicz, M. Childhood Food Experiences and Selected Eating Styles as Determinants of Diet Quality in Adulthood-A Cross-Sectional Study. Nutrients 2023, 15, 2256. [Google Scholar] [CrossRef]
- Chao, A.M.; Quigley, K.M.; Wadden, T.A. Dietary interventions for obesity: Clinical and mechanistic findings. J. Clin. Investig. 2021, 131, e140065. [Google Scholar] [CrossRef]
- Usheva, N.; Lateva, M.; Galcheva, S.; Koletzko, B.V.; Cardon, G.; De Craemer, M.; Androutsos, O.; Kotowska, A.; Socha, P.; Moreno, L.A.; et al. Breastfeeding and Overweight in European Preschoolers: The ToyBox Study. Nutrients 2021, 13, 2880. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.S.; Martin, B.R.; Weaver, C.M. Short-Term RCT of Increased Dietary Potassium from Potato or Potassium Gluconate: Effect on Blood Pressure, Microcirculation, and Potassium and Sodium Retention in Pre-Hypertensive-to-Hypertensive Adults. Nutrients 2021, 13, 1610. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Del Gobbo, L.C.; Rosanoff, A.; Wang, J.; Zhang, W.; Song, Y. Effects of Magnesium Supplementation on Blood Pressure: A Meta-Analysis of Randomized Double-Blind Placebo-Controlled Trials. Hypertension 2016, 68, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Luft, F.C.; Miller, J.Z.; Lyle, R.M.; Melby, C.L.; Fineberg, N.S.; McCarron, D.A.; Weinberger, M.H.; Morris, C.D. The effect of dietary interventions to reduce blood pressure in normal humans. J. Am. Coll. Nutr. 1989, 8, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Trieu, K.; Yoshimura, S.; Neal, B.; Woodward, M.; Campbell, N.R.C.; Li, Q.; Lackland, D.T.; Leung, A.A.; Anderson, C.A.M.; et al. Effect of dose and duration of reduction in dietary sodium on blood pressure levels: Systematic review and meta-analysis of randomised trials. BMJ 2020, 368, m315. [Google Scholar] [CrossRef] [PubMed]
- Guyton, A.C.; Coleman, T.G.; Young, D.B.; Lohmeier, T.E.; DeClue, J.W. Salt balance and long-term blood pressure control. Annu. Rev. Med. 1980, 31, 15–27. [Google Scholar] [CrossRef]
- Filippini, T.; Violi, F.; D’Amico, R.; Vinceti, M. The effect of potassium supplementation on blood pressure in hypertensive subjects: A systematic review and meta-analysis. Int. J. Cardiol. 2017, 230, 127–135. [Google Scholar] [CrossRef]
- Dibaba, D.T.; Xun, P.; Song, Y.; Rosanoff, A.; Shechter, M.; He, K. The effect of magnesium supplementation on blood pressure in individuals with insulin resistance; prediabetes; or noncommunicable chronic diseases: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2017, 106, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, P.; Tihtonen, K.; Isojärvi, J.; Ojala, R.; Ashorn, U.; Ashorn, P.; Tammela, O. Calcium supplementation during pregnancy and long-term offspring outcome: A systematic literature review and meta-analysis. Ann. N. Y. Acad. Sci. 2022, 1510, 36–51. [Google Scholar] [CrossRef]
- Chen, A.K.; Roberts, C.K.; Barnard, R.J. Effect of a short-term diet and exercise intervention on metabolic syndrome in overweight children. Metabolism 2006, 55, 871–878. [Google Scholar] [CrossRef]
- Roberts, C.K.; Vaziri, N.D.; Barnard, R.J. Effect of diet and exercise intervention on blood pressure; insulin; oxidative stress; and nitric oxide availability. Circulation 2002, 106, 2530–2532. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, J.M.; Zhu, K.; Lewis, J.R.; Kerr, D.; Meng, X.; Solah, V.; Devine, A.; Binns, C.W.; Woodman, R.J.; Prince, R.L. Long-term effects of a protein-enriched diet on blood pressure in older women. Br. J. Nutr. 2012, 107, 1664–1672. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Liu, M.; Troy, L.M.; Bangalore, S.; Hayes, R.B.; Parekh, N. Concordance with DASH diet and blood pressure change: Results from the Framingham Offspring Study (1991–2008). J. Hypertens. 2015, 33, 2223–2230. [Google Scholar] [CrossRef] [PubMed]
- Miura, K.; Nakagawa, H. Can dietary changes reduce blood pressure in the long term? Curr. Opin. Nephrol. Hypertens. 2005, 14, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Wuhl, E. Hypertension in childhood obesity. Acta Paediatr. 2019, 108, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Savica, V.; Bellinghieri, G.; Kopple, J.D. The effect of nutrition on blood pressure. Annu. Rev. Nutr. 2010, 30, 365–401. [Google Scholar] [CrossRef]
- Wiersma, R.; Hartman, E.; Boezen H, M.; Corpeleijn, E. Adiposity and high blood pressure during childhood: A prospective analysis of the role of physical activity intensity and sedentary time in the GECKO Drenthe cohort. Int. J. Environ. Res. Public Health 2020, 17, 9526. [Google Scholar] [CrossRef]
General Characteristics | N = 1077 | |
---|---|---|
Sex (female), n (%) | 524 (48.7%) | |
Age at food frequency questionnaire (years), median (IQR) | 3.08 (3.02, 3.16) | |
Age at outcomes measurement 1 (years), median (IQR) | 5.83 (5.58, 6.00) | |
Age at outcomes measurement 2 (years), median (IQR) | 10.58 (10.25, 10.83) | |
Maternal education level within one year of birth, n (%) | High 423 (39.7%) | |
Medium 357 (33.5%) | ||
Low 285 (26.8%) | ||
Paternal education level within one year of birth, n (%) | High 338 (32.4%) | |
Medium 288 (27.6%) | ||
Low 416 (39.9%) | ||
Any smoking during pregnancy, n (%) | 118 (11.0%) | |
Maternal history of hypertension, n (%) | 109 (10.3%) | |
Maternal prepregnancy BMI (kg/m2), median (IQR) | 23.81 (21.61, 26.76) | |
Determinants | N = 1077 | |
DASH score at 3 years of age, median (IQR) | 16 (13, 19) | |
MDS at 3 years of age, median (IQR) | 4 (3, 5) | |
LLDS at 3 years of age, median (IQR) | 21 (17, 26) | |
Outcomes | 5 years of age (N = 971) | 10 years of age (N = 959) |
SBP (mm Hg), median (IQR) | 103.33 (98.00, 109.00) | 107.19 (101.86, 113.38) |
DBP (mm Hg), median (IQR) | 61.67 (57.00, 66.33) | 63.50 (58.33, 68.00) |
Elevated BP (including hypertension), n (%) | 293 (34.5%) | 217 (23.9%) |
Hypertension, n (%) | 180 (21.2%) | 121 (13.3%) |
BMI z-score (SD), median (IQR) | 0.21 (−0.31, 0.71) | 0.12 (−0.49, 0.91) |
Overweight (including obesity), n (%) | 105 (10.8%) | 158 (16.5%) |
Obesity, n (%) | 17 (1.8%) | 29 (3.0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Xie, T.; Huo, X.; Snieder, H.; Corpeleijn, E. Diet Quality at 3 Years of Age Relates to Lower Body Mass Index but Not Lower Blood Pressure at 10 Years of Age. Nutrients 2024, 16, 2634. https://doi.org/10.3390/nu16162634
Wang Q, Xie T, Huo X, Snieder H, Corpeleijn E. Diet Quality at 3 Years of Age Relates to Lower Body Mass Index but Not Lower Blood Pressure at 10 Years of Age. Nutrients. 2024; 16(16):2634. https://doi.org/10.3390/nu16162634
Chicago/Turabian StyleWang, Qihua, Tian Xie, Xia Huo, Harold Snieder, and Eva Corpeleijn. 2024. "Diet Quality at 3 Years of Age Relates to Lower Body Mass Index but Not Lower Blood Pressure at 10 Years of Age" Nutrients 16, no. 16: 2634. https://doi.org/10.3390/nu16162634
APA StyleWang, Q., Xie, T., Huo, X., Snieder, H., & Corpeleijn, E. (2024). Diet Quality at 3 Years of Age Relates to Lower Body Mass Index but Not Lower Blood Pressure at 10 Years of Age. Nutrients, 16(16), 2634. https://doi.org/10.3390/nu16162634