High-Protein Nutritional Supplements Improve Nutritional Status in Malnourished Patients with Systemic Sclerosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Assessment
2.2. Anthropometric Measurements, Body Composition, Weight Loss, and Appetite
2.3. Laboratory Tests
- (1)
- The presence of chronic disease
- (2)
- Unintentional weight loss < 5% of usual body weight during the last 6 months
- (3)
- Chronic inflammation identified through increased CRP or ESR
- (4)
- Anorexia or anorexia-related symptoms [13].
- (1)
- The 7-point SGA score was between 1 and 5
- (2)
- The serum albumin concentration was lower than <34 g/L [19].
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Denton, C.P.; Khanna, D. Systemic sclerosis. Lancet 2017, 390, 1685–1699. [Google Scholar] [CrossRef] [PubMed]
- Krause, L.; Becker, M.O.; Brueckner, C.S.; Bellinghausen, C.J.; Becker, C.; Schneider, U.; Haeupl, T.; Hanke, K.; Hensel-Wiegel, K.; Ebert, H.; et al. Nutritional status as marker for disease activity and severity predicting mortality in patients with systemic sclerosis. Ann. Rheum. Dis. 2010, 69, 1951–1957. [Google Scholar] [CrossRef] [PubMed]
- Norman, K.; Pichard, C.; Lochs, H.; Pirlich, M. Prognostic impact of disease-related malnutrition. Clin. Nutr. 2008, 27, 5–15. [Google Scholar] [CrossRef] [PubMed]
- White, J.V.; Guenter, P.; Jensen, G.; Malone, A.; Schofield, M. Consensus Statement of the Academy of Nutrition and Dietetics/American Society for Parenteral and Enteral Nutrition: Characteristics Recommended for the Identification and Documentation of Adult Malnutrition (Undernutrition). J. Acad. Nutr. Diet. 2012, 112, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Domínguez, M.P.; García-Collinot, G.; Saavedra, M.A.; Montes-Cortes, D.H.; Morales-Aguilar, R.; Carranza-Muleiro, R.A.; Vera-Lastra, O.L.; Jara, L.J. Malnutrition is an independent risk factor for mortality in Mexican patients with systemic sclerosis: A cohort study. Rheumatol. Int. 2017, 37, 1101–1109. [Google Scholar] [CrossRef] [PubMed]
- Baron, M.; Hudson, M.; Steele, R.; Canadian Scleroderma Research Group. Malnutrition is common in systemic sclerosis: Results from the Canadian scleroderma research group database. J. Rheumatol. 2009, 36, 2737–2743. [Google Scholar] [CrossRef] [PubMed]
- Rosato, E.; Gigante, A.; Gasperini, M.L.; Proietti, L.; Muscaritoli, M. Assessing Malnutrition in Systemic Sclerosis With Global Leadership Initiative on Malnutrition and European Society of Clinical Nutrition and Metabolism Criteria. J. Parenter. Enter. Nutr. 2021, 45, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Harrison, E.; Herrick, A.L.; Dibb, M.; McLaughlin, J.T.; Lal, S. Long-term outcome of patients with systemic sclerosis requiring home parenteral nutrition. Clin. Nutr. 2015, 34, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Cereda, E.; Pisati, R.; Rondanelli, M.; Caccialanza, R. Whey Protein, Leucine-and Vitamin-D-Enriched Oral Nutritional Supplementation for the Treatment of Sarcopenia. Nutrients 2022, 14, 1524. [Google Scholar] [CrossRef]
- Cawood, A.L.; Elia, M.; Stratton, R.J. Systematic review and meta-analysis of the effects of high protein oral nutritional supplements. Ageing Res. Rev. 2012, 11, 278–296. [Google Scholar] [CrossRef]
- Ziętarska, M.; Krawczyk-Lipiec, J.; Kraj, L.; Zaucha, R.; Małgorzewicz, S. Chemotherapy-related toxicity, nutritional status and quality of life in precachectic oncologic patients with, or without, high protein nutritional support. A prospective, randomized study. Nutrients 2017, 9, 1108. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.R.; Cawood, A.L.; Walters, E.R.; Guildford, N.; Stratton, R.J. Ready-made oral nutritional supplements improve nutritional outcomes and reduce health care use—A randomised trial in older malnourished people in primary care. Nutrients 2020, 12, 517. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros-Pomar, M.D.; Llinàs, D.M.; Goates, S.; Barriuso, R.S.; Sanz-Paris, A. Cost-effectiveness of a specialized oral nutritional supplementation for malnourished older adult patients in Spain. Nutrients 2018, 10, 246. [Google Scholar] [CrossRef] [PubMed]
- Muscaritoli, M.; Anker, S.D.; Argilés, J.; Aversa, Z.; Bauer, J.M.; Biolo, G.; Boirie, Y.; Bosaeus, I.; Cederholm, T.; Costelli, P.; et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: Joint document elaborated by Special Interest Groups (SIG) ‘cachexia-anorexia in chronic wasting diseases’ and ‘nutrition in geriatrics’. Clin. Nutr. 2010, 29, 154–159. [Google Scholar] [CrossRef]
- Medsger, T.A., Jr.; Bombardieri, S.; Czirjak, L.; Scorza, R.; Della Rossa, A.; Bencivelli, W. Assessment of disease severity and prognosis. Clin. Exp. Rheumatol. 2003, 21 (Suppl. S29), S42–S46. [Google Scholar] [PubMed]
- Wilson, M.M.; Thomas, D.R.; Rubenstein, L.Z.; Chibnall, J.T.; Anderson, S.; Baxi, A.; Diebold, M.R.; Morley, J.E. Appetite assessment: Simple appetite questionnaire predicts weight loss in community-dwelling adults and nursing home residents. Am. J. Clin. Nutr. 2005, 82, 1074–1108. [Google Scholar] [CrossRef] [PubMed]
- Andreae, C.; Strömberg, A.; Sawatzky, R.; Årestedt, K. Psychometric Evaluation of Two Appetite Questionnaires in Patients with Heart Failure. J. Card. Fail. 2015, 21, 954–958. [Google Scholar] [CrossRef] [PubMed]
- Helfenstein, S.F.; Uster, A.; Rühlin, M.; Pless, M.; Ballmer, P.E.; Imoberdorf, R. Are Four Simple Questions Able to Predict Weight Loss in Outpatients with Metastatic Cancer? A Prospective Cohort Study Assessing the Simplified Nutritional Appetite Questionnaire. Nutr. Cancer 2016, 68, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Fink, S.; De Mello, P.D.; De Mello, E.D. Subjective global assessment of nutritional status. A systematic review of the literature. Clin. Nutr. 2015, 34, 785–792. [Google Scholar] [CrossRef]
- Lisevick, A.; Hooper, J.; Shahriari, N.; Lu, J. Nutrition and connective tissue disease. Clin. Dermatol. 2021, 2, 166–172. [Google Scholar] [CrossRef]
- Cederholm, T.; Barazzoni, R.; Austin, P.; Ballmer, P.; Biolo, G.; Bischoff, S.C.; Compher, C.; Correia, I.; Higashiguchi, T.; Holst, M.; et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin. Nutr. 2017, 36, 49–64. [Google Scholar] [CrossRef]
- Sieber, C.C. Malnutrition and sarcopenia. Aging Clin. Exp. Res. 2019, 31, 793–798. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Marighela, T.F.; Genaro, P.D.S.; Pinheiro, M.M.; Szejnfeld, V.L.; Kayser, C. Risk factors for body composition abnormalities in systemic sclerosis. Clin. Rheumatol. 2013, 32, 1037–1044. [Google Scholar] [CrossRef]
- Siegert, E.; March, C.; Otten, L.; Makowka, A.; Preis, E.; Buttgereit, F.; Riemekasten, G.; Müller-Werdan, U.; Norman, K. Prevalence of sarcopenia in systemic sclerosis: Assessing body composition and functional disability in patients with systemic sclerosis. Nutrition 2018, 55–56, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Salvioli, S.; Capri, M.; Valensin, S.; Tieri, P.; Monti, D.; Ottaviani, E.; Franceschi, C. Inflamm-Aging, Cytokines and Aging: State of the Art, New Hypotheses on the Role of Mitochondria and New Perspectives from Systems Biology. Curr. Pharm. Des. 2006, 12, 3161–3171. [Google Scholar] [CrossRef] [PubMed]
- Caimmi, C.; Caramaschi, P.; Venturini, A. Malnutrition and sarcopenia in a large cohort of patients with systemic sclerosis. Clin. Rheumatol. 2018, 4, 987–997. [Google Scholar] [CrossRef] [PubMed]
- McMahan, Z.H.; Paik, J.J.; Wigley, F.M.; Hummers, L.K. Determining the Risk Factors and Clinical Features Associated with Severe Gastrointestinal Dysmotility in Systemic Sclerosis. Arthritis Care Res. 2018, 70, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Dein, E.; Kuo, P.L.; Hong, Y.S.; Hummers, L.K.; Mecoli, C.A.; McMahan, Z.H. Evaluation of risk factors for pseudo-obstruction in systemic sclerosis. Semin. Arthritis Rheum. 2019, 49, 405–410. [Google Scholar] [CrossRef]
- Omran, M.L.; Morley, J.E. Assessment of protein energy malnutrition in older persons, part II: Laboratory evaluation. Nutrition 2000, 16, 131–140. [Google Scholar] [CrossRef]
- Zhang, Z.; Pereira, S.L.; Luo, M.; Matheson, E.M. Evaluation of blood biomarkers associated with risk of malnutrition in older adults: A systematic review and meta-analysis. Nutrients 2017, 9, 829. [Google Scholar] [CrossRef]
- Sabatino, A.; Broers, N.J.H.; van der Sande, F.M.; Hemmelder, M.H.; Fiaccadori, E.; Kooman, J.P. Estimation of Muscle Mass in the Integrated Assessment of Patients on Hemodialysis. Front. Nutr. 2021, 8, 697523. [Google Scholar] [CrossRef]
- Kumar, S.; Dutt, A.; Hemraj, S.; Bhat, S.; Manipadybhima, B. Phase angle measurement in healthy human subjects through bio-impedance analysis. Iran. J. Basic Med. Sci. 2012, 15, 1180–1184. [Google Scholar] [PubMed] [PubMed Central]
- Molfino, A.; Gasperini, M.L.; Gigante, A.; Rosato, E.; Muscaritoli, M. Left Ventricular Mass Index as Potential Surrogate of Muscularity in Patients with Systemic Sclerosis without Cardiovascular Disease. J. Parenter. Enter. Nutr. 2021, 45, 1302–1308. [Google Scholar] [CrossRef]
- Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.D.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.L.; MacDonald, N.; Mantovani, G.; et al. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 2011, 12, 489–495. [Google Scholar] [CrossRef]
- Nakahara, S.; Takasaki, M.; Abe, S.; Kakitani, C.; Nishioka, S.; Wakabayashi, H.; Maeda, K. Aggressive nutrition therapy in malnutrition and sarcopenia. Nutrition 2021, 84, 111109. [Google Scholar] [CrossRef] [PubMed]
- Pareja Sierra, T.; Hünicken Torrez, F.L.; Pablos Hernández, M.C.; López Velasco, R.; Ortés Gómez, R.; Cervera Díaz, M.d.C.; Hormigo Sánchez, A.I.; Perdomo Ramírez, B.; Mora Fernández, J.; Jiménez Mola, S.; et al. A Prospective, Observational Study of the Effect of a High-Calorie, High-Protein Oral Nutritional Supplement with HMB in an Old and Malnourished or at-Risk-of-Malnutrition Population with Hip Fractures: A FracNut Study. Nutrients 2024, 16, 1223. [Google Scholar] [CrossRef] [PubMed]
- Duerksen, D.R.; Laporte, M.; Jeejeebhoy, K. Evaluation of Nutrition Status Using the Subjective Global Assessment: Malnutrition, Cachexia, and Sarcopenia. Nutr. Clin. Pract. 2021, 36, 942–956. [Google Scholar] [CrossRef] [PubMed]
- Murtaugh, M.A.; Frech, T.M. Nutritional status and gastrointestinal symptoms in systemic sclerosis patients. Clin. Nutr. 2013, 32, 130–135. [Google Scholar] [CrossRef]
- Caporali, R.; Caccialanza, R.; Bonino, C.; Klersy, C.; Cereda, E.; Xoxi, B.; Crippa, A.; Rava, M.L.; Orlandi, M.; Bonardi, C.; et al. Disease-related malnutrition in outpatients with systemic sclerosis. Clin. Nutr. 2012, 31, 666–671. [Google Scholar] [CrossRef]
- Wojteczek, A.; Dardzińska, J.A.; Małgorzewicz, S.; Gruszecka, A.; Zdrojewski, Z. Prevalence of malnutrition in systemic sclerosis patients assessed by different diagnostic tools. Clin. Rheumatol. 2020, 39, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Borba, E.F.; Borges, C.T.L.; Bonfá, E. Lipoprotein profile in limited systemic sclerosis. Rheumatol. Int. 2005, 25, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Ferraz-Amaro, I.; Delgado-Frías, E.; Hernández-Hernández, V.; Sánchez-Pérez, H.; de Armas-Rillo, L.; Armas-González, E.; Machado, J.D.; Diaz-González, F. HDL cholesterol efflux capacity and lipid profile in patients with systemic sclerosis. Arthritis Res. Ther. 2021, 23, 62. [Google Scholar] [CrossRef] [PubMed]
- Harrison, E.; Herrick, A.L.; McLaughlin, J.T.; Lal, S. Malnutrition in systemic sclerosis. Rheumatology 2012, 51, 1747–1756. [Google Scholar] [CrossRef]
- Ortiz-Santamaria, V.; Puig, C.; Soldevilla, C.; Barata, A.; Cuquet, J.; Recasens, A. Nutritional Support in Patients with Systemic Sclerosis. Reumatol. Clín. 2014, 10, 283–287. [Google Scholar] [CrossRef]
Control Group (n = 49) | SSc Patients (n = 56) | p-Value | |
---|---|---|---|
Sex, n (%) | |||
Women | 42 (85.7) | 47 (83.9) | 0.799 |
Men | 7 (14.3) | 9 (16.1) | 0.799 |
Age [y], Me (IQR) | 57 (14) | 57.5 (15.5) | 0.777 |
SNAQ [points], Me (IQR) | 17 (2) | 16.5 (3.25) | 0.467 |
SGA [points], Me (IQR) | 7 (1) | 6 (0) | <0.001 |
Anthropometric measurements | |||
Height [cm], Me (IQR) | 165 (10) | 163.5 (9.75) | 0.157 |
Weight [kg], Me (IQR) | 69 (22.25) | 67.2 (16.5) | 0.070 |
BMI [kg/m2], Me (IQR) | 25.7 (7.15) | 25.05 (4.45) | 0.105 |
HGS [kg], Me (IQR) | 24 (10.42) | 18.33 (9.67) | 0.001 |
MAC [cm], Me (IQR) | 29 (5.525) | 27.75 (4.5) | 0.053 |
WC [cm], Me (IQR) | 89 (23.75) | 84.5 (16.12) | 0.083 |
HC [cm], Me (IQR) | 103.7 (16.62) | 99 (9.25) | 0.024 |
WHR, Me (IQR) | 0.84 (0.1) | 0.86 (015) | 0.959 |
TSF [mm], Me (IQR) | 23.87 (10.51) | 21.07 (9.55) | 0.133 |
Bioimpedance analysis | |||
OH [L], Me (IQR) | −0.3 (1.45) | −0.055 (1.62) | 0.191 |
OH [% ECW], Me (IQR) | −2.1 (8.8) | −0.5 (10.9) | 0.220 |
V [L], Me (IQR) | 35.1 (9.05) | 31.3 (5.8) | 0.002 |
TBW [L], Me (IQR) | 36.3 (9.3) | 32.65 (6.77) | 0.020 |
ECW [L], Me (IQR) | 15.8 (4.25) | 14.3 (3.47) | 0.044 |
ICW [L], Me (IQR) | 19.5 (3.85) | 17.25 (4.22) | 0.001 |
E/I ratio, Me (IQR) | 0.8 (0.095) | 0.81 (0.14) | 0.365 |
LTI [kg/m2], Me (IQR) | 14.9 (4) | 13.5 (3) | 0.009 |
FTI [kg/m2], Me (IQR) | 11.7 (7.5) | 11.2 (6.1) | 0.752 |
LTM [kg], Me (IQR) | 40.1 (10.10) | 35.1 (10.5) | 0.008 |
LTM [%], Me (IQR) | 58.9 (20.05) | 54.8 (16) | 0.486 |
FAT [kg], Me (IQR) | 21.9 (16.4) | 21.5 (11.4) | 0.569 |
FAT [%], Me (IQR) | 29.5 (15.05) | 31.8 (12.1) | 0.623 |
ATM [kg], Me (IQR) | 29.8 (22.35) | 29.3 (15.4) | 0.569 |
BCM [kg], Me (IQR) | 22.7 (7.1) | 20 (7.3) | 0.006 |
Laboratory measurements | |||
Hb [g/dL], Me (IQR) | 13.9 (1.4) | 13.2 (1.5) | 0.007 |
Plt [G/L], Me (IQR) | 257 (49.5) | 249.5 (92) | 0.775 |
Wbc [G/L], Me (IQR) | 5.83 (1.31) | 6.65 (3.135) | 0.054 |
Neut [G/L], Me (IQR) | 2.93 (1.12) | 3.855 (2.20) | 0.002 |
Lymph [G/L], Me (IQR) | 2.12 (0.55) | 1.725 (0.72) | 0.001 |
Mono [G/L], Me (IQR) | 0.51 (0.19) | 0.555 (0.29) | 0.063 |
Eos [G/L], Me (IQR) | 0.16 (0.12) | 0.12 (0.13) | 0.050 |
Baso [G/L], Me (IQR) | 0.03 (0.02) | 0.02 (0.02) | <0.001 |
TC [mg/dL], Me (IQR) | 216 (54) | 211.5 (67.5) | 0.321 |
TG [mg/dL], Me (IQR) | 107 (57.5) | 121 (83.5) | 0.033 |
HDL [mg/dL], Me (IQR) | 58 (15) | 46 (17.5) | 0.001 |
LDL [mg/dL], Me (IQR) | 141 (48.5) | 135 (50) | 0.367 |
ESR [mm/h], Me (IQR) | 8 (10) | 15 (17) | <0.001 |
CRP [mg/L], Me (IQR) | 1.51 (2.74) | 1.74 (3.69) | 0.297 |
hsCRP [mg/L], Me (IQR) | 3.84 (5.97) | 5.03 (10.06) | 0.311 |
IL-6 [pg/mL], Me (IQR) | 2.07 (2.58) | 3.16 (5.33) | 0.001 |
Albumins [g/L], Me (IQR) | 39 (4) | 39 (5) | 0.024 |
Well Nourished (n = 40) | Pre-Cachexia (n = 5) | Malnourished (n = 11) | p-Value | |
---|---|---|---|---|
Disease duration [y], Me (IQR) | 10.5 (14.25) | 9 (13.5) | 6 (6) | 0.272 |
lcSSc, n (%) | 24 (60.0) | 4 (80.0) | 5 (45.5) | 0.404 |
dcSSc, n (%) | 16 (40.0) | 1 (20.0) | 6 (54.5) | 0.404 |
mRSS [points], Me (IQR) | 6 (6) | 5 (4.5) | 6 (13) | 0.787 |
DSS skin [points], Me (IQR) | 1 (0) | 1 (0) | 1 (1) | 0.257 |
DSS joint/tendon [points], Me (IQR) | 1 (1) | 1 (2.5) | 1 (2) | 0.489 |
DSS muscle [points], Me (IQR) | 0 (0) | 0 (0.5) | 1 (1) | <0.001 |
DSS GI tract [points], Me (IQR) | 0 (1) | 0 (1) | 1 (1) | 0.120 |
DSS lung [points], Me (IQR) | 1 (2) | 0 (1) | 2 (2) | 0.095 |
DSS heart [points], Me (IQR) | 0 (0) | 0 (0) | 0 (1) | 0.008 |
DSS kidney [points], Me (IQR) | 0 (0) | 0 (0) | 0 (0) | 0.016 |
DSS in total [points], Me (IQR) | 5 (4) | 4 (5) | 9 (8) | 0.009 |
SNAQ [points], Me (IQR) | 17 (3) | 13 (2) | 13.5 (4.5) | 0.006 |
SGA [points], Me (IQR) | 6 (0) | 6 (0.5) | 5 (1) | <0.001 |
Anthropometric measurements | ||||
Weight [kg], Me (IQR) | 68.5 (15.4) | 58 (30) | 55 (12) | 0.003 |
BMI [kg/m2], Me (IQR) | 25.5 (3.82) | 24.8 (11.15) | 20.7 (5.8) | 0.001 |
MAC [cm], Me (IQR) | 28 (3.75) | 29.5 (7.75) | 24 (7.3) | 0.004 |
HC [cm], Me (IQR) | 99.75 (6.62) | 96 (20.5) | 94 (19) | 0.033 |
Bioimpedance analysis | ||||
LTI [kg/m2], Me (IQR) | 14.3 (4.275) | 13.45 (2.1) | 12.2 (2.6) | 0.091 |
FTI [kg/m2], Me (IQR) | 11.25 (5.25) | 9.7 (7.25) | 6.1 (7.3) | 0.036 |
LTM [kg], Me (IQR) | 37 (12.25) | 34.95 (9.4) | 33.3 (8.8) | 0.235 |
LTM [%], Me (IQR) | 54.5 (16.225) | 58.05 (11.925) | 64.5 (22.1) | 0.278 |
Fat [kg], Me (IQR) | 23 (9.525) | 17.6 (15.3) | 12.2 (11.8) | 0.013 |
Fat [%], Me (IQR) | 33.2 (11.87) | 31.05 (10.5) | 23 (19.3) | 0.185 |
ATM [kg], Me (IQR) | 31.15 (12.97) | 23.95 (20.82) | 16.6 (16) | 0.013 |
Laboratory measurements | ||||
Hb [g/dL], Me (IQR) | 13.4 (1.65) | 12.4 (2.95) | 12.8 (2.4) | 0.086 |
Plt [G/L], Me (IQR) | 248 (92) | 245 (51) | 277 (178) | 0.195 |
Wbc [G/L], Me (IQR) | 6.58 (2.62) | 6.81 (7.39) | 6.91 (7.13) | 0.362 |
Lymph [G/L], Me (IQR) | 1.675 (0.67) | 1.97 (1.255) | 1.75 (0.9) | 0.529 |
TC [mg/dL], Me (IQR) | 218.5 (52.25) | 162 (47) | 203 (122) | 0.043 |
TG [mg/dL], Me (IQR) | 126.5 (82) | 113 (54) | 112 (123) | 0.875 |
HDL [mg/dL], Me (IQR) | 47.5 (16.75) | 45 (23.5) | 40 (23) | 0.220 |
LDL [mg/dL], Me (IQR) | 138 (41) | 98 (36) | 141 (73) | 0.031 |
ESR [mm/h], Me (IQR) | 15 (15) | 17 (18.5) | 23 (37) | 0.461 |
CRP [mg/L], Me (IQR) | 1.52 (3.57) | 1.89 (2.47) | 2.59 (31.97) | 0.151 |
hsCRP [mg/L], Me (IQR) | 4.455 (9.49) | 6.32 (9.51) | 8.715 (11.43) | 0.360 |
IL-6 [pg/mL], Me (IQR) | 3.24 (3.51) | 3.16 (6.63) | 5.22 (27.29) | 0.455 |
Albumin [g/L], Me (IQR) | 39 (4) | 33 (9) | 35 (8) | 0.014 |
Visit 1 | Visit 2 | Visit 3 | p-Value | |
---|---|---|---|---|
SNAQ [points], Me (IQR) | 13 (2) | 14 (3.5) | 16 (4) | 0.441 |
SGA [points], Me (IQR) | 6 (0.5) | 6 (0.5) | 6 (0.5) | 1.000 |
Anthropometric measurements | ||||
Weight [kg], Me (IQR) | 58 (30) | 60.5 (27.7) | 62 (22.7) | 0.504 |
MAC [cm], Me (IQR) | 29.5 (7.8) | 28 (9) | 29.5 (6.8) | 0.291 |
HC [cm], Me (IQR) | 96 (20.5) | 96 (23.3) | 102.5 (18.5) | 0.838 |
Bioimpedance analysis | ||||
ECW [L], Me (IQR) | 14.2 (4.9) | 14.8 (5.8) | 15.9 (3.9) | 0.091 |
ICW [L], Me (IQR) | 16.5 (15.2) | 17.5 (5.9) | 18.7 (4.5) | 0.819 |
LTI [kg/m2],, Me (IQR) | 13.5 (2.1) | 14.2 (6.7) | 15 (4.6) | 0.627 |
FTI [kg/m2], Me (IQR) | 9.7 (7.3) | 13.3 (11.3) | 12.2 (12.2) | 0.472 |
LTM [kg], Me (IQR) | 35 (9.4) | 37.3 (18.8) | 37.2 (14.2) | 0.779 |
LTM [%], Me (IQR) | 58.1 (11.9) | 56.9 (34.3) | 53.4 (33) | 0.779 |
BCM [kg], Me (IQR) | 19 (5.5) | 21 (13.4) | 21.5 (9.8) | 0.627 |
Laboratory measurements | ||||
Hb [g/dL], Me (IQR) | 12.4 (3) | 12.8 (2.4) | 12.4 (1.8) | 0.291 |
Plt [G/L], Me (IQR) | 245 (51) | 252 (97) | 261 (130) | 0.041 |
Wbc [G/L], Me (IQR) | 6.8 (7.4) | 6.9 (4.6) | 7.2 (6.8) | 0.549 |
Lymph [G/L], Me (IQR) | 2 (1.3) | 2 (1.2) | 2.4 (1.7) | 0.449 |
ESR [mm/h], Me (IQR) | 17 (18.5) | 17 (34) | 23 (35.5) | 0.257 |
CRP [mg/L], Me (IQR) | 1.9 (2.5) | 3.2 (9.3) | 2 (3.2) | 0.041 |
hsCRP [mg/L], Me (IQR) | 6.3 (9.5) | 11.3 (10.4) | 2.7 (5) | 0.022 |
IL-6 [pg/mL], Me (IQR) | 3.2 (6.6) | 5.5 (10.9) | 4.9 (6.9) | 1.000 |
Albumin [g/L], Me (IQR) | 33 (9) | 39 (7) | 38 (4.5) | 0.056 |
Visit 1 | Visit 2 | Visit 3 | p-Value | |
---|---|---|---|---|
SNAQ [points], Me (IQR) | 15 (0) | 16 (2) | 15 (7) | 0.454 |
SGA [points], Me (IQR) | 5 (0) | 6 (0) | 6 (0) | 0.002 |
Anthropometric measurements | ||||
Weight [kg], Me (IQR) | 55 (7) | 56.2 (4.7) | 55.5 (9) | 0.756 |
MAC [cm], Me (IQR) | 24 (5.3) | 23.5 (3) | 26 (6.5) | 0.048 |
HC [cm], Me (IQR) | 95.5 (15) | 96.5 (9) | 100 (8) | 0.008 |
Bioimpedance analysis | ||||
ECW [L], Me (IQR) | 13.1 (3.1) | 13.5 (2.1) | 14.3 (2.3) | 0.008 |
ICW [L], Me (IQR) | 15.3 (2) | 16.3 (2.7) | 17.6 (2.1) | 0.021 |
LTI [kg/m2], Me (IQR) | 12.1 (2.1) | 12.7 (3.2) | 14.4 (4) | 0.021 |
FTI [kg/m2], Me (IQR) | 9.7 (6.8) | 6.3 (6.3) | 9.2 (10.2) | 0.867 |
LTM [kg], Me (IQR) | 31.1 (7.7) | 35.1 (9.1) | 36.6 (10.2) | 0.021 |
LTM [%], Me (IQR) | 54.1 (18.7) | 67.6 (18.2) | 61 (36.5) | 0.156 |
BCM [kg], Me (IQR) | 16.7 (5) | 19.6 (7.3) | 20.9 (7.3) | 0.021 |
Laboratory measurements | ||||
Hb [g/dL], Me (IQR) | 13.2 (0.7) | 13 (0.7) | 13.6 (3.1) | 0.738 |
Plt [G/L], Me (IQR) | 245 (134) | 265.5 (134) | 251 (73) | 0.846 |
Wbc [G/L], Me (IQR) | 6.8 (10) | 7.3 (9.3) | 5.6 (2.4) | 0.607 |
Lymph [G/L], Me (IQR) | 1.8 (0.5) | 2 (1.4) | 1.4 (1) | 0.311 |
ESR [mm/h], Me (IQR) | 23 (24) | 16 (21) | 24 (17) | 0.756 |
CRP [mg/L], Me (IQR) | 2 (2.4) | 3.3 (6.5) | 2.7 (2.1) | 0.156 |
hsCRP [mg/L], Me (IQR) | 5 (10.4) | 8.1 (11.1) | 4.6 (3.3) | 0.368 |
IL-6 [pg/mL], Me (IQR) | 2.5 (5.3) | 2.9 (16.2) | 1 (4.5) | 0.156 |
Albumin [g/L], Me (IQR) | 39 (5) | 36 (4) | 39 (3) | 0.368 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojteczek, A.; Dardzińska, J.; Ziętkiewicz, M.; Smoleńska, Ż.; Czuszyńska, Z.; De Cock, D.; Zdrojewski, Z.; Małgorzewicz, S.; Chmielewski, M. High-Protein Nutritional Supplements Improve Nutritional Status in Malnourished Patients with Systemic Sclerosis. Nutrients 2024, 16, 2622. https://doi.org/10.3390/nu16162622
Wojteczek A, Dardzińska J, Ziętkiewicz M, Smoleńska Ż, Czuszyńska Z, De Cock D, Zdrojewski Z, Małgorzewicz S, Chmielewski M. High-Protein Nutritional Supplements Improve Nutritional Status in Malnourished Patients with Systemic Sclerosis. Nutrients. 2024; 16(16):2622. https://doi.org/10.3390/nu16162622
Chicago/Turabian StyleWojteczek, Anna, Jolanta Dardzińska, Marcin Ziętkiewicz, Żaneta Smoleńska, Zenobia Czuszyńska, Diederik De Cock, Zbigniew Zdrojewski, Sylwia Małgorzewicz, and Michał Chmielewski. 2024. "High-Protein Nutritional Supplements Improve Nutritional Status in Malnourished Patients with Systemic Sclerosis" Nutrients 16, no. 16: 2622. https://doi.org/10.3390/nu16162622
APA StyleWojteczek, A., Dardzińska, J., Ziętkiewicz, M., Smoleńska, Ż., Czuszyńska, Z., De Cock, D., Zdrojewski, Z., Małgorzewicz, S., & Chmielewski, M. (2024). High-Protein Nutritional Supplements Improve Nutritional Status in Malnourished Patients with Systemic Sclerosis. Nutrients, 16(16), 2622. https://doi.org/10.3390/nu16162622