High-Protein Nutritional Supplements Improve Nutritional Status in Malnourished Patients with Systemic Sclerosis
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical Assessment
2.2. Anthropometric Measurements, Body Composition, Weight Loss, and Appetite
2.3. Laboratory Tests
- (1)
- The presence of chronic disease
- (2)
- Unintentional weight loss < 5% of usual body weight during the last 6 months
- (3)
- Chronic inflammation identified through increased CRP or ESR
- (4)
- Anorexia or anorexia-related symptoms [13].
- (1)
- The 7-point SGA score was between 1 and 5
- (2)
- The serum albumin concentration was lower than <34 g/L [19].
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Denton, C.P.; Khanna, D. Systemic sclerosis. Lancet 2017, 390, 1685–1699. [Google Scholar] [CrossRef] [PubMed]
- Krause, L.; Becker, M.O.; Brueckner, C.S.; Bellinghausen, C.J.; Becker, C.; Schneider, U.; Haeupl, T.; Hanke, K.; Hensel-Wiegel, K.; Ebert, H.; et al. Nutritional status as marker for disease activity and severity predicting mortality in patients with systemic sclerosis. Ann. Rheum. Dis. 2010, 69, 1951–1957. [Google Scholar] [CrossRef] [PubMed]
- Norman, K.; Pichard, C.; Lochs, H.; Pirlich, M. Prognostic impact of disease-related malnutrition. Clin. Nutr. 2008, 27, 5–15. [Google Scholar] [CrossRef] [PubMed]
- White, J.V.; Guenter, P.; Jensen, G.; Malone, A.; Schofield, M. Consensus Statement of the Academy of Nutrition and Dietetics/American Society for Parenteral and Enteral Nutrition: Characteristics Recommended for the Identification and Documentation of Adult Malnutrition (Undernutrition). J. Acad. Nutr. Diet. 2012, 112, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Domínguez, M.P.; García-Collinot, G.; Saavedra, M.A.; Montes-Cortes, D.H.; Morales-Aguilar, R.; Carranza-Muleiro, R.A.; Vera-Lastra, O.L.; Jara, L.J. Malnutrition is an independent risk factor for mortality in Mexican patients with systemic sclerosis: A cohort study. Rheumatol. Int. 2017, 37, 1101–1109. [Google Scholar] [CrossRef] [PubMed]
- Baron, M.; Hudson, M.; Steele, R.; Canadian Scleroderma Research Group. Malnutrition is common in systemic sclerosis: Results from the Canadian scleroderma research group database. J. Rheumatol. 2009, 36, 2737–2743. [Google Scholar] [CrossRef] [PubMed]
- Rosato, E.; Gigante, A.; Gasperini, M.L.; Proietti, L.; Muscaritoli, M. Assessing Malnutrition in Systemic Sclerosis With Global Leadership Initiative on Malnutrition and European Society of Clinical Nutrition and Metabolism Criteria. J. Parenter. Enter. Nutr. 2021, 45, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Harrison, E.; Herrick, A.L.; Dibb, M.; McLaughlin, J.T.; Lal, S. Long-term outcome of patients with systemic sclerosis requiring home parenteral nutrition. Clin. Nutr. 2015, 34, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Cereda, E.; Pisati, R.; Rondanelli, M.; Caccialanza, R. Whey Protein, Leucine-and Vitamin-D-Enriched Oral Nutritional Supplementation for the Treatment of Sarcopenia. Nutrients 2022, 14, 1524. [Google Scholar] [CrossRef]
- Cawood, A.L.; Elia, M.; Stratton, R.J. Systematic review and meta-analysis of the effects of high protein oral nutritional supplements. Ageing Res. Rev. 2012, 11, 278–296. [Google Scholar] [CrossRef]
- Ziętarska, M.; Krawczyk-Lipiec, J.; Kraj, L.; Zaucha, R.; Małgorzewicz, S. Chemotherapy-related toxicity, nutritional status and quality of life in precachectic oncologic patients with, or without, high protein nutritional support. A prospective, randomized study. Nutrients 2017, 9, 1108. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.R.; Cawood, A.L.; Walters, E.R.; Guildford, N.; Stratton, R.J. Ready-made oral nutritional supplements improve nutritional outcomes and reduce health care use—A randomised trial in older malnourished people in primary care. Nutrients 2020, 12, 517. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros-Pomar, M.D.; Llinàs, D.M.; Goates, S.; Barriuso, R.S.; Sanz-Paris, A. Cost-effectiveness of a specialized oral nutritional supplementation for malnourished older adult patients in Spain. Nutrients 2018, 10, 246. [Google Scholar] [CrossRef] [PubMed]
- Muscaritoli, M.; Anker, S.D.; Argilés, J.; Aversa, Z.; Bauer, J.M.; Biolo, G.; Boirie, Y.; Bosaeus, I.; Cederholm, T.; Costelli, P.; et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: Joint document elaborated by Special Interest Groups (SIG) ‘cachexia-anorexia in chronic wasting diseases’ and ‘nutrition in geriatrics’. Clin. Nutr. 2010, 29, 154–159. [Google Scholar] [CrossRef]
- Medsger, T.A., Jr.; Bombardieri, S.; Czirjak, L.; Scorza, R.; Della Rossa, A.; Bencivelli, W. Assessment of disease severity and prognosis. Clin. Exp. Rheumatol. 2003, 21 (Suppl. S29), S42–S46. [Google Scholar] [PubMed]
- Wilson, M.M.; Thomas, D.R.; Rubenstein, L.Z.; Chibnall, J.T.; Anderson, S.; Baxi, A.; Diebold, M.R.; Morley, J.E. Appetite assessment: Simple appetite questionnaire predicts weight loss in community-dwelling adults and nursing home residents. Am. J. Clin. Nutr. 2005, 82, 1074–1108. [Google Scholar] [CrossRef] [PubMed]
- Andreae, C.; Strömberg, A.; Sawatzky, R.; Årestedt, K. Psychometric Evaluation of Two Appetite Questionnaires in Patients with Heart Failure. J. Card. Fail. 2015, 21, 954–958. [Google Scholar] [CrossRef] [PubMed]
- Helfenstein, S.F.; Uster, A.; Rühlin, M.; Pless, M.; Ballmer, P.E.; Imoberdorf, R. Are Four Simple Questions Able to Predict Weight Loss in Outpatients with Metastatic Cancer? A Prospective Cohort Study Assessing the Simplified Nutritional Appetite Questionnaire. Nutr. Cancer 2016, 68, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Fink, S.; De Mello, P.D.; De Mello, E.D. Subjective global assessment of nutritional status. A systematic review of the literature. Clin. Nutr. 2015, 34, 785–792. [Google Scholar] [CrossRef]
- Lisevick, A.; Hooper, J.; Shahriari, N.; Lu, J. Nutrition and connective tissue disease. Clin. Dermatol. 2021, 2, 166–172. [Google Scholar] [CrossRef]
- Cederholm, T.; Barazzoni, R.; Austin, P.; Ballmer, P.; Biolo, G.; Bischoff, S.C.; Compher, C.; Correia, I.; Higashiguchi, T.; Holst, M.; et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin. Nutr. 2017, 36, 49–64. [Google Scholar] [CrossRef]
- Sieber, C.C. Malnutrition and sarcopenia. Aging Clin. Exp. Res. 2019, 31, 793–798. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Marighela, T.F.; Genaro, P.D.S.; Pinheiro, M.M.; Szejnfeld, V.L.; Kayser, C. Risk factors for body composition abnormalities in systemic sclerosis. Clin. Rheumatol. 2013, 32, 1037–1044. [Google Scholar] [CrossRef]
- Siegert, E.; March, C.; Otten, L.; Makowka, A.; Preis, E.; Buttgereit, F.; Riemekasten, G.; Müller-Werdan, U.; Norman, K. Prevalence of sarcopenia in systemic sclerosis: Assessing body composition and functional disability in patients with systemic sclerosis. Nutrition 2018, 55–56, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Salvioli, S.; Capri, M.; Valensin, S.; Tieri, P.; Monti, D.; Ottaviani, E.; Franceschi, C. Inflamm-Aging, Cytokines and Aging: State of the Art, New Hypotheses on the Role of Mitochondria and New Perspectives from Systems Biology. Curr. Pharm. Des. 2006, 12, 3161–3171. [Google Scholar] [CrossRef] [PubMed]
- Caimmi, C.; Caramaschi, P.; Venturini, A. Malnutrition and sarcopenia in a large cohort of patients with systemic sclerosis. Clin. Rheumatol. 2018, 4, 987–997. [Google Scholar] [CrossRef] [PubMed]
- McMahan, Z.H.; Paik, J.J.; Wigley, F.M.; Hummers, L.K. Determining the Risk Factors and Clinical Features Associated with Severe Gastrointestinal Dysmotility in Systemic Sclerosis. Arthritis Care Res. 2018, 70, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Dein, E.; Kuo, P.L.; Hong, Y.S.; Hummers, L.K.; Mecoli, C.A.; McMahan, Z.H. Evaluation of risk factors for pseudo-obstruction in systemic sclerosis. Semin. Arthritis Rheum. 2019, 49, 405–410. [Google Scholar] [CrossRef]
- Omran, M.L.; Morley, J.E. Assessment of protein energy malnutrition in older persons, part II: Laboratory evaluation. Nutrition 2000, 16, 131–140. [Google Scholar] [CrossRef]
- Zhang, Z.; Pereira, S.L.; Luo, M.; Matheson, E.M. Evaluation of blood biomarkers associated with risk of malnutrition in older adults: A systematic review and meta-analysis. Nutrients 2017, 9, 829. [Google Scholar] [CrossRef]
- Sabatino, A.; Broers, N.J.H.; van der Sande, F.M.; Hemmelder, M.H.; Fiaccadori, E.; Kooman, J.P. Estimation of Muscle Mass in the Integrated Assessment of Patients on Hemodialysis. Front. Nutr. 2021, 8, 697523. [Google Scholar] [CrossRef]
- Kumar, S.; Dutt, A.; Hemraj, S.; Bhat, S.; Manipadybhima, B. Phase angle measurement in healthy human subjects through bio-impedance analysis. Iran. J. Basic Med. Sci. 2012, 15, 1180–1184. [Google Scholar] [PubMed] [PubMed Central]
- Molfino, A.; Gasperini, M.L.; Gigante, A.; Rosato, E.; Muscaritoli, M. Left Ventricular Mass Index as Potential Surrogate of Muscularity in Patients with Systemic Sclerosis without Cardiovascular Disease. J. Parenter. Enter. Nutr. 2021, 45, 1302–1308. [Google Scholar] [CrossRef]
- Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.D.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.L.; MacDonald, N.; Mantovani, G.; et al. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 2011, 12, 489–495. [Google Scholar] [CrossRef]
- Nakahara, S.; Takasaki, M.; Abe, S.; Kakitani, C.; Nishioka, S.; Wakabayashi, H.; Maeda, K. Aggressive nutrition therapy in malnutrition and sarcopenia. Nutrition 2021, 84, 111109. [Google Scholar] [CrossRef] [PubMed]
- Pareja Sierra, T.; Hünicken Torrez, F.L.; Pablos Hernández, M.C.; López Velasco, R.; Ortés Gómez, R.; Cervera Díaz, M.d.C.; Hormigo Sánchez, A.I.; Perdomo Ramírez, B.; Mora Fernández, J.; Jiménez Mola, S.; et al. A Prospective, Observational Study of the Effect of a High-Calorie, High-Protein Oral Nutritional Supplement with HMB in an Old and Malnourished or at-Risk-of-Malnutrition Population with Hip Fractures: A FracNut Study. Nutrients 2024, 16, 1223. [Google Scholar] [CrossRef] [PubMed]
- Duerksen, D.R.; Laporte, M.; Jeejeebhoy, K. Evaluation of Nutrition Status Using the Subjective Global Assessment: Malnutrition, Cachexia, and Sarcopenia. Nutr. Clin. Pract. 2021, 36, 942–956. [Google Scholar] [CrossRef] [PubMed]
- Murtaugh, M.A.; Frech, T.M. Nutritional status and gastrointestinal symptoms in systemic sclerosis patients. Clin. Nutr. 2013, 32, 130–135. [Google Scholar] [CrossRef]
- Caporali, R.; Caccialanza, R.; Bonino, C.; Klersy, C.; Cereda, E.; Xoxi, B.; Crippa, A.; Rava, M.L.; Orlandi, M.; Bonardi, C.; et al. Disease-related malnutrition in outpatients with systemic sclerosis. Clin. Nutr. 2012, 31, 666–671. [Google Scholar] [CrossRef]
- Wojteczek, A.; Dardzińska, J.A.; Małgorzewicz, S.; Gruszecka, A.; Zdrojewski, Z. Prevalence of malnutrition in systemic sclerosis patients assessed by different diagnostic tools. Clin. Rheumatol. 2020, 39, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Borba, E.F.; Borges, C.T.L.; Bonfá, E. Lipoprotein profile in limited systemic sclerosis. Rheumatol. Int. 2005, 25, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Ferraz-Amaro, I.; Delgado-Frías, E.; Hernández-Hernández, V.; Sánchez-Pérez, H.; de Armas-Rillo, L.; Armas-González, E.; Machado, J.D.; Diaz-González, F. HDL cholesterol efflux capacity and lipid profile in patients with systemic sclerosis. Arthritis Res. Ther. 2021, 23, 62. [Google Scholar] [CrossRef] [PubMed]
- Harrison, E.; Herrick, A.L.; McLaughlin, J.T.; Lal, S. Malnutrition in systemic sclerosis. Rheumatology 2012, 51, 1747–1756. [Google Scholar] [CrossRef]
- Ortiz-Santamaria, V.; Puig, C.; Soldevilla, C.; Barata, A.; Cuquet, J.; Recasens, A. Nutritional Support in Patients with Systemic Sclerosis. Reumatol. Clín. 2014, 10, 283–287. [Google Scholar] [CrossRef]
Control Group (n = 49) | SSc Patients (n = 56) | p-Value | |
---|---|---|---|
Sex, n (%) | |||
Women | 42 (85.7) | 47 (83.9) | 0.799 |
Men | 7 (14.3) | 9 (16.1) | 0.799 |
Age [y], Me (IQR) | 57 (14) | 57.5 (15.5) | 0.777 |
SNAQ [points], Me (IQR) | 17 (2) | 16.5 (3.25) | 0.467 |
SGA [points], Me (IQR) | 7 (1) | 6 (0) | <0.001 |
Anthropometric measurements | |||
Height [cm], Me (IQR) | 165 (10) | 163.5 (9.75) | 0.157 |
Weight [kg], Me (IQR) | 69 (22.25) | 67.2 (16.5) | 0.070 |
BMI [kg/m2], Me (IQR) | 25.7 (7.15) | 25.05 (4.45) | 0.105 |
HGS [kg], Me (IQR) | 24 (10.42) | 18.33 (9.67) | 0.001 |
MAC [cm], Me (IQR) | 29 (5.525) | 27.75 (4.5) | 0.053 |
WC [cm], Me (IQR) | 89 (23.75) | 84.5 (16.12) | 0.083 |
HC [cm], Me (IQR) | 103.7 (16.62) | 99 (9.25) | 0.024 |
WHR, Me (IQR) | 0.84 (0.1) | 0.86 (015) | 0.959 |
TSF [mm], Me (IQR) | 23.87 (10.51) | 21.07 (9.55) | 0.133 |
Bioimpedance analysis | |||
OH [L], Me (IQR) | −0.3 (1.45) | −0.055 (1.62) | 0.191 |
OH [% ECW], Me (IQR) | −2.1 (8.8) | −0.5 (10.9) | 0.220 |
V [L], Me (IQR) | 35.1 (9.05) | 31.3 (5.8) | 0.002 |
TBW [L], Me (IQR) | 36.3 (9.3) | 32.65 (6.77) | 0.020 |
ECW [L], Me (IQR) | 15.8 (4.25) | 14.3 (3.47) | 0.044 |
ICW [L], Me (IQR) | 19.5 (3.85) | 17.25 (4.22) | 0.001 |
E/I ratio, Me (IQR) | 0.8 (0.095) | 0.81 (0.14) | 0.365 |
LTI [kg/m2], Me (IQR) | 14.9 (4) | 13.5 (3) | 0.009 |
FTI [kg/m2], Me (IQR) | 11.7 (7.5) | 11.2 (6.1) | 0.752 |
LTM [kg], Me (IQR) | 40.1 (10.10) | 35.1 (10.5) | 0.008 |
LTM [%], Me (IQR) | 58.9 (20.05) | 54.8 (16) | 0.486 |
FAT [kg], Me (IQR) | 21.9 (16.4) | 21.5 (11.4) | 0.569 |
FAT [%], Me (IQR) | 29.5 (15.05) | 31.8 (12.1) | 0.623 |
ATM [kg], Me (IQR) | 29.8 (22.35) | 29.3 (15.4) | 0.569 |
BCM [kg], Me (IQR) | 22.7 (7.1) | 20 (7.3) | 0.006 |
Laboratory measurements | |||
Hb [g/dL], Me (IQR) | 13.9 (1.4) | 13.2 (1.5) | 0.007 |
Plt [G/L], Me (IQR) | 257 (49.5) | 249.5 (92) | 0.775 |
Wbc [G/L], Me (IQR) | 5.83 (1.31) | 6.65 (3.135) | 0.054 |
Neut [G/L], Me (IQR) | 2.93 (1.12) | 3.855 (2.20) | 0.002 |
Lymph [G/L], Me (IQR) | 2.12 (0.55) | 1.725 (0.72) | 0.001 |
Mono [G/L], Me (IQR) | 0.51 (0.19) | 0.555 (0.29) | 0.063 |
Eos [G/L], Me (IQR) | 0.16 (0.12) | 0.12 (0.13) | 0.050 |
Baso [G/L], Me (IQR) | 0.03 (0.02) | 0.02 (0.02) | <0.001 |
TC [mg/dL], Me (IQR) | 216 (54) | 211.5 (67.5) | 0.321 |
TG [mg/dL], Me (IQR) | 107 (57.5) | 121 (83.5) | 0.033 |
HDL [mg/dL], Me (IQR) | 58 (15) | 46 (17.5) | 0.001 |
LDL [mg/dL], Me (IQR) | 141 (48.5) | 135 (50) | 0.367 |
ESR [mm/h], Me (IQR) | 8 (10) | 15 (17) | <0.001 |
CRP [mg/L], Me (IQR) | 1.51 (2.74) | 1.74 (3.69) | 0.297 |
hsCRP [mg/L], Me (IQR) | 3.84 (5.97) | 5.03 (10.06) | 0.311 |
IL-6 [pg/mL], Me (IQR) | 2.07 (2.58) | 3.16 (5.33) | 0.001 |
Albumins [g/L], Me (IQR) | 39 (4) | 39 (5) | 0.024 |
Well Nourished (n = 40) | Pre-Cachexia (n = 5) | Malnourished (n = 11) | p-Value | |
---|---|---|---|---|
Disease duration [y], Me (IQR) | 10.5 (14.25) | 9 (13.5) | 6 (6) | 0.272 |
lcSSc, n (%) | 24 (60.0) | 4 (80.0) | 5 (45.5) | 0.404 |
dcSSc, n (%) | 16 (40.0) | 1 (20.0) | 6 (54.5) | 0.404 |
mRSS [points], Me (IQR) | 6 (6) | 5 (4.5) | 6 (13) | 0.787 |
DSS skin [points], Me (IQR) | 1 (0) | 1 (0) | 1 (1) | 0.257 |
DSS joint/tendon [points], Me (IQR) | 1 (1) | 1 (2.5) | 1 (2) | 0.489 |
DSS muscle [points], Me (IQR) | 0 (0) | 0 (0.5) | 1 (1) | <0.001 |
DSS GI tract [points], Me (IQR) | 0 (1) | 0 (1) | 1 (1) | 0.120 |
DSS lung [points], Me (IQR) | 1 (2) | 0 (1) | 2 (2) | 0.095 |
DSS heart [points], Me (IQR) | 0 (0) | 0 (0) | 0 (1) | 0.008 |
DSS kidney [points], Me (IQR) | 0 (0) | 0 (0) | 0 (0) | 0.016 |
DSS in total [points], Me (IQR) | 5 (4) | 4 (5) | 9 (8) | 0.009 |
SNAQ [points], Me (IQR) | 17 (3) | 13 (2) | 13.5 (4.5) | 0.006 |
SGA [points], Me (IQR) | 6 (0) | 6 (0.5) | 5 (1) | <0.001 |
Anthropometric measurements | ||||
Weight [kg], Me (IQR) | 68.5 (15.4) | 58 (30) | 55 (12) | 0.003 |
BMI [kg/m2], Me (IQR) | 25.5 (3.82) | 24.8 (11.15) | 20.7 (5.8) | 0.001 |
MAC [cm], Me (IQR) | 28 (3.75) | 29.5 (7.75) | 24 (7.3) | 0.004 |
HC [cm], Me (IQR) | 99.75 (6.62) | 96 (20.5) | 94 (19) | 0.033 |
Bioimpedance analysis | ||||
LTI [kg/m2], Me (IQR) | 14.3 (4.275) | 13.45 (2.1) | 12.2 (2.6) | 0.091 |
FTI [kg/m2], Me (IQR) | 11.25 (5.25) | 9.7 (7.25) | 6.1 (7.3) | 0.036 |
LTM [kg], Me (IQR) | 37 (12.25) | 34.95 (9.4) | 33.3 (8.8) | 0.235 |
LTM [%], Me (IQR) | 54.5 (16.225) | 58.05 (11.925) | 64.5 (22.1) | 0.278 |
Fat [kg], Me (IQR) | 23 (9.525) | 17.6 (15.3) | 12.2 (11.8) | 0.013 |
Fat [%], Me (IQR) | 33.2 (11.87) | 31.05 (10.5) | 23 (19.3) | 0.185 |
ATM [kg], Me (IQR) | 31.15 (12.97) | 23.95 (20.82) | 16.6 (16) | 0.013 |
Laboratory measurements | ||||
Hb [g/dL], Me (IQR) | 13.4 (1.65) | 12.4 (2.95) | 12.8 (2.4) | 0.086 |
Plt [G/L], Me (IQR) | 248 (92) | 245 (51) | 277 (178) | 0.195 |
Wbc [G/L], Me (IQR) | 6.58 (2.62) | 6.81 (7.39) | 6.91 (7.13) | 0.362 |
Lymph [G/L], Me (IQR) | 1.675 (0.67) | 1.97 (1.255) | 1.75 (0.9) | 0.529 |
TC [mg/dL], Me (IQR) | 218.5 (52.25) | 162 (47) | 203 (122) | 0.043 |
TG [mg/dL], Me (IQR) | 126.5 (82) | 113 (54) | 112 (123) | 0.875 |
HDL [mg/dL], Me (IQR) | 47.5 (16.75) | 45 (23.5) | 40 (23) | 0.220 |
LDL [mg/dL], Me (IQR) | 138 (41) | 98 (36) | 141 (73) | 0.031 |
ESR [mm/h], Me (IQR) | 15 (15) | 17 (18.5) | 23 (37) | 0.461 |
CRP [mg/L], Me (IQR) | 1.52 (3.57) | 1.89 (2.47) | 2.59 (31.97) | 0.151 |
hsCRP [mg/L], Me (IQR) | 4.455 (9.49) | 6.32 (9.51) | 8.715 (11.43) | 0.360 |
IL-6 [pg/mL], Me (IQR) | 3.24 (3.51) | 3.16 (6.63) | 5.22 (27.29) | 0.455 |
Albumin [g/L], Me (IQR) | 39 (4) | 33 (9) | 35 (8) | 0.014 |
Visit 1 | Visit 2 | Visit 3 | p-Value | |
---|---|---|---|---|
SNAQ [points], Me (IQR) | 13 (2) | 14 (3.5) | 16 (4) | 0.441 |
SGA [points], Me (IQR) | 6 (0.5) | 6 (0.5) | 6 (0.5) | 1.000 |
Anthropometric measurements | ||||
Weight [kg], Me (IQR) | 58 (30) | 60.5 (27.7) | 62 (22.7) | 0.504 |
MAC [cm], Me (IQR) | 29.5 (7.8) | 28 (9) | 29.5 (6.8) | 0.291 |
HC [cm], Me (IQR) | 96 (20.5) | 96 (23.3) | 102.5 (18.5) | 0.838 |
Bioimpedance analysis | ||||
ECW [L], Me (IQR) | 14.2 (4.9) | 14.8 (5.8) | 15.9 (3.9) | 0.091 |
ICW [L], Me (IQR) | 16.5 (15.2) | 17.5 (5.9) | 18.7 (4.5) | 0.819 |
LTI [kg/m2],, Me (IQR) | 13.5 (2.1) | 14.2 (6.7) | 15 (4.6) | 0.627 |
FTI [kg/m2], Me (IQR) | 9.7 (7.3) | 13.3 (11.3) | 12.2 (12.2) | 0.472 |
LTM [kg], Me (IQR) | 35 (9.4) | 37.3 (18.8) | 37.2 (14.2) | 0.779 |
LTM [%], Me (IQR) | 58.1 (11.9) | 56.9 (34.3) | 53.4 (33) | 0.779 |
BCM [kg], Me (IQR) | 19 (5.5) | 21 (13.4) | 21.5 (9.8) | 0.627 |
Laboratory measurements | ||||
Hb [g/dL], Me (IQR) | 12.4 (3) | 12.8 (2.4) | 12.4 (1.8) | 0.291 |
Plt [G/L], Me (IQR) | 245 (51) | 252 (97) | 261 (130) | 0.041 |
Wbc [G/L], Me (IQR) | 6.8 (7.4) | 6.9 (4.6) | 7.2 (6.8) | 0.549 |
Lymph [G/L], Me (IQR) | 2 (1.3) | 2 (1.2) | 2.4 (1.7) | 0.449 |
ESR [mm/h], Me (IQR) | 17 (18.5) | 17 (34) | 23 (35.5) | 0.257 |
CRP [mg/L], Me (IQR) | 1.9 (2.5) | 3.2 (9.3) | 2 (3.2) | 0.041 |
hsCRP [mg/L], Me (IQR) | 6.3 (9.5) | 11.3 (10.4) | 2.7 (5) | 0.022 |
IL-6 [pg/mL], Me (IQR) | 3.2 (6.6) | 5.5 (10.9) | 4.9 (6.9) | 1.000 |
Albumin [g/L], Me (IQR) | 33 (9) | 39 (7) | 38 (4.5) | 0.056 |
Visit 1 | Visit 2 | Visit 3 | p-Value | |
---|---|---|---|---|
SNAQ [points], Me (IQR) | 15 (0) | 16 (2) | 15 (7) | 0.454 |
SGA [points], Me (IQR) | 5 (0) | 6 (0) | 6 (0) | 0.002 |
Anthropometric measurements | ||||
Weight [kg], Me (IQR) | 55 (7) | 56.2 (4.7) | 55.5 (9) | 0.756 |
MAC [cm], Me (IQR) | 24 (5.3) | 23.5 (3) | 26 (6.5) | 0.048 |
HC [cm], Me (IQR) | 95.5 (15) | 96.5 (9) | 100 (8) | 0.008 |
Bioimpedance analysis | ||||
ECW [L], Me (IQR) | 13.1 (3.1) | 13.5 (2.1) | 14.3 (2.3) | 0.008 |
ICW [L], Me (IQR) | 15.3 (2) | 16.3 (2.7) | 17.6 (2.1) | 0.021 |
LTI [kg/m2], Me (IQR) | 12.1 (2.1) | 12.7 (3.2) | 14.4 (4) | 0.021 |
FTI [kg/m2], Me (IQR) | 9.7 (6.8) | 6.3 (6.3) | 9.2 (10.2) | 0.867 |
LTM [kg], Me (IQR) | 31.1 (7.7) | 35.1 (9.1) | 36.6 (10.2) | 0.021 |
LTM [%], Me (IQR) | 54.1 (18.7) | 67.6 (18.2) | 61 (36.5) | 0.156 |
BCM [kg], Me (IQR) | 16.7 (5) | 19.6 (7.3) | 20.9 (7.3) | 0.021 |
Laboratory measurements | ||||
Hb [g/dL], Me (IQR) | 13.2 (0.7) | 13 (0.7) | 13.6 (3.1) | 0.738 |
Plt [G/L], Me (IQR) | 245 (134) | 265.5 (134) | 251 (73) | 0.846 |
Wbc [G/L], Me (IQR) | 6.8 (10) | 7.3 (9.3) | 5.6 (2.4) | 0.607 |
Lymph [G/L], Me (IQR) | 1.8 (0.5) | 2 (1.4) | 1.4 (1) | 0.311 |
ESR [mm/h], Me (IQR) | 23 (24) | 16 (21) | 24 (17) | 0.756 |
CRP [mg/L], Me (IQR) | 2 (2.4) | 3.3 (6.5) | 2.7 (2.1) | 0.156 |
hsCRP [mg/L], Me (IQR) | 5 (10.4) | 8.1 (11.1) | 4.6 (3.3) | 0.368 |
IL-6 [pg/mL], Me (IQR) | 2.5 (5.3) | 2.9 (16.2) | 1 (4.5) | 0.156 |
Albumin [g/L], Me (IQR) | 39 (5) | 36 (4) | 39 (3) | 0.368 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojteczek, A.; Dardzińska, J.; Ziętkiewicz, M.; Smoleńska, Ż.; Czuszyńska, Z.; De Cock, D.; Zdrojewski, Z.; Małgorzewicz, S.; Chmielewski, M. High-Protein Nutritional Supplements Improve Nutritional Status in Malnourished Patients with Systemic Sclerosis. Nutrients 2024, 16, 2622. https://doi.org/10.3390/nu16162622
Wojteczek A, Dardzińska J, Ziętkiewicz M, Smoleńska Ż, Czuszyńska Z, De Cock D, Zdrojewski Z, Małgorzewicz S, Chmielewski M. High-Protein Nutritional Supplements Improve Nutritional Status in Malnourished Patients with Systemic Sclerosis. Nutrients. 2024; 16(16):2622. https://doi.org/10.3390/nu16162622
Chicago/Turabian StyleWojteczek, Anna, Jolanta Dardzińska, Marcin Ziętkiewicz, Żaneta Smoleńska, Zenobia Czuszyńska, Diederik De Cock, Zbigniew Zdrojewski, Sylwia Małgorzewicz, and Michał Chmielewski. 2024. "High-Protein Nutritional Supplements Improve Nutritional Status in Malnourished Patients with Systemic Sclerosis" Nutrients 16, no. 16: 2622. https://doi.org/10.3390/nu16162622
APA StyleWojteczek, A., Dardzińska, J., Ziętkiewicz, M., Smoleńska, Ż., Czuszyńska, Z., De Cock, D., Zdrojewski, Z., Małgorzewicz, S., & Chmielewski, M. (2024). High-Protein Nutritional Supplements Improve Nutritional Status in Malnourished Patients with Systemic Sclerosis. Nutrients, 16(16), 2622. https://doi.org/10.3390/nu16162622