The Influence of Acute Oral Lactate Supplementation on Responses to Cycle Ergometer Exercise: A Randomized, Crossover Pilot Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Brief Summary of Protocol and Experimental Design
2.3. Randomization
2.4. Screening
2.5. Habituation
2.6. VO2peak and Ventilatory and Lactate Thresholds
2.7. Twenty-Minute Exercise Trial
2.8. Lactate Supplement
2.9. Statistics
3. Results
3.1. Incremental Exercise Test
3.2. Twenty-Minute Exercise Time Trial (FTP20)
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nalbandian, M.; Takeda, M. Lactate as a Signaling Molecule That Regulates Exercise-Induced Adaptations. Biology 2016, 5, 38. [Google Scholar] [CrossRef] [PubMed]
- Abbotts, K.S.S.; Ewell, T.R.; Bomar, M.C.; Butterklee, H.M.; Bell, C. Caffeine Augments the Lactate and Interleukin-6 Response to Moderate-Intensity Exercise. Med. Sci. Sport. Exerc. 2023, 55, 982–990. [Google Scholar] [CrossRef]
- Hojman, P.; Brolin, C.; Norgaard-Christensen, N.; Dethlefsen, C.; Lauenborg, B.; Olsen, C.K.; Abom, M.M.; Krag, T.; Gehl, J.; Pedersen, B.K. IL-6 release from muscles during exercise is stimulated by lactate-dependent protease activity. Am. J. Physiol. Endocrinol. Metab. 2019, 316, E940–E947. [Google Scholar] [CrossRef] [PubMed]
- Villarroya, J.; Campderros, L.; Ribas-Aulinas, F.; Carriere, A.; Casteilla, L.; Giralt, M.; Villarroya, F. Lactate induces expression and secretion of fibroblast growth factor-21 by muscle cells. Endocrine 2018, 61, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Morris, D.M.; Shafer, R.S.; Fairbrother, K.R.; Woodall, M.W. Effects of lactate consumption on blood bicarbonate levels and performance during high-intensity exercise. Int. J. Sport. Nutr. Exerc. Metab. 2011, 21, 311–317. [Google Scholar] [CrossRef]
- Van Montfoort, M.C.; Van Dieren, L.; Hopkins, W.G.; Shearman, J.P. Effects of ingestion of bicarbonate, citrate, lactate, and chloride on sprint running. Med. Sci. Sport. Exerc. 2004, 36, 1239–1243. [Google Scholar] [CrossRef] [PubMed]
- Brooks, G.A. What the Lactate Shuttle Means for Sports Nutrition. Nutrients 2023, 15, 2178. [Google Scholar] [CrossRef] [PubMed]
- Northgraves, M.J.; Peart, D.J.; Jordan, C.A.; Vince, R.V. Effect of lactate supplementation and sodium bicarbonate on 40-km cycling time trial performance. J. Strength Cond. Res. 2014, 28, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Peveler, W.W.; Palmer, T.G. Effect of magnesium lactate dihydrate and calcium lactate monohydrate on 20-km cycling time trial performance. J. Strength Cond. Res. 2012, 26, 1149–1153. [Google Scholar] [CrossRef]
- Jang, I.; Kyun, S.; Hwang, D.; Kim, T.; Lim, K.; Park, H.Y.; Kim, S.W.; Kim, J. Chronic Administration of Exogenous Lactate Increases Energy Expenditure during Exercise through Activation of Skeletal Muscle Energy Utilization Capacity in Mice. Metabolites 2024, 14, 220. [Google Scholar] [CrossRef]
- Takahashi, K.; Kitaoka, Y.; Yamamoto, K.; Matsunaga, Y.; Hatta, H. Oral Lactate Administration Additively Enhances Endurance Training-Induced Increase in Cytochrome C Oxidase Activity in Mouse Soleus Muscle. Nutrients 2020, 12, 770. [Google Scholar] [CrossRef]
- Chiolero, R.; Mavrocordatos, P.; Burnier, P.; Cayeux, M.C.; Schindler, C.; Jequier, E.; Tappy, L. Effects of infused sodium acetate, sodium lactate, and sodium beta-hydroxybutyrate on energy expenditure and substrate oxidation rates in lean humans. Am. J. Clin. Nutr. 1993, 58, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Bouzat, P.; Sala, N.; Suys, T.; Zerlauth, J.B.; Marques-Vidal, P.; Feihl, F.; Bloch, J.; Messerer, M.; Levivier, M.; Meuli, R.; et al. Cerebral metabolic effects of exogenous lactate supplementation on the injured human brain. Intensive Care Med. 2014, 40, 412–421. [Google Scholar] [CrossRef] [PubMed]
- Schiffer, T.; Schulte, S.; Sperlich, B.; Achtzehn, S.; Fricke, H.; Struder, H.K. Lactate infusion at rest increases BDNF blood concentration in humans. Neurosci. Lett. 2011, 488, 234–237. [Google Scholar] [CrossRef]
- Searle, G.L.; Feingold, K.R.; Hsu, F.S.; Clark, O.H.; Gertz, E.W.; Stanley, W.C. Inhibition of endogenous lactate turnover with lactate infusion in humans. Metabolism 1989, 38, 1120–1123. [Google Scholar] [CrossRef]
- Haesler, E.; Schneiter, P.; Temler, E.; Jequier, E.; Tappy, L. Effects of lactate infusion on hepatic gluconeogenesis and glycogenolysis. Clin. Physiol. 1995, 15, 581–595. [Google Scholar] [CrossRef] [PubMed]
- Bryner, R.W.; Hornsby, W.G.; Chetlin, R.; Ullrich, I.H.; Yeater, R.A. Effect of lactate consumption on exercise performance. J. Sport. Med. Phys. Fit. 1998, 38, 116–123. [Google Scholar] [CrossRef]
- Swensen, T.; Crater, G.; Bassett, D.R., Jr.; Howley, E.T. Adding polylactate to a glucose polymer solution does not improve endurance. Int. J. Sport. Med. 1994, 15, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Fahey, T.D.; Larsen, J.D.; Brooks, G.A.; Colvin, W.; Henderson, S.; Lary, D. The effects of ingesting polylactate or glucose polymer drinks during prolonged exercise. Int. J. Sport. Nutr. 1991, 1, 249–256. [Google Scholar] [CrossRef]
- Dwan, K.; Li, T.; Altman, D.G.; Elbourne, D. CONSORT 2010 statement: Extension to randomised crossover trials. BMJ 2019, 366, l4378. [Google Scholar] [CrossRef]
- Ewell, T.R.; Abbotts, K.S.S.; Williams, N.N.B.; Butterklee, H.M.; Bomar, M.C.; Harms, K.J.; Rebik, J.D.; Mast, S.M.; Akagi, N.; Dooley, G.P.; et al. Pharmacokinetic Investigation of Commercially Available Edible Marijuana Products in Humans: Potential Influence of Body Composition and Influence on Glucose Control. Pharmaceuticals 2021, 14, 817. [Google Scholar] [CrossRef]
- Newman, A.A.; Grimm, N.C.; Wilburn, J.R.; Schoenberg, H.M.; Trikha, S.R.J.; Luckasen, G.J.; Biela, L.M.; Melby, C.L.; Bell, C. Influence of Sodium Glucose Co-Transporter 2 Inhibition On The Physiological Adaptation to Endurance Exercise Training. J. Clin. Endocrinol. Metab. 2018, 104, 1953–1966. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.C.; Lonac, M.C.; Johnson, T.K.; Schweder, M.M.; Bell, C. Epigallocatechin-3-gallate Increases Maximal Oxygen Uptake in Adult Humans. Med. Sci. Sport. Exerc. 2010, 42, 739–744. [Google Scholar] [CrossRef]
- Beaver, W.L.; Wasserman, K.; Whipp, B.J. A new method for detecting anaerobic threshold by gas exchange. J. Appl. Physiol. 1986, 60, 2020–2027. [Google Scholar] [CrossRef]
- Forster, H.V.; Dempsey, J.A.; Thomson, J.; Vidruk, E.; DoPico, G.A. Estimation of arterial PO2, PCO2, pH, and lactate from arterialized venous blood. J. Appl. Physiol. 1972, 32, 134–137. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, K. The anaerobic threshold: Definition, physiological significance and identification. Adv. Cardiol. 1986, 35, 1–23. [Google Scholar]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sport. Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Midgley, A.W.; Carroll, S. Emergence of the verification phase procedure for confirming ‘true’ VO(2max). Scand. J. Med. Sci. Sport. 2009, 19, 313–322. [Google Scholar] [CrossRef]
- Mackey, J.; Horner, K. What is known about the FTP(20) test related to cycling? A scoping review. J. Sport. Sci. 2021, 39, 2735–2745. [Google Scholar] [CrossRef]
- Ewell, T.R.; Bomar, M.C.; Abbotts, K.S.S.; Butterklee, H.M.; Dooley, G.P.; Bell, C. Edible marijuana and cycle ergometer exercise. Front. Physiol. 2022, 13, 1085822. [Google Scholar] [CrossRef]
- Lim, C.Y.; In, J. Considerations for crossover design in clinical study. Korean J. Anesthesiol. 2021, 74, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 48. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Ho, J.; Tumkaya, T.; Aryal, S.; Choi, H.; Claridge-Chang, A. Moving beyond P values: Data analysis with estimation graphics. Nat. Methods 2019, 16, 565–566. [Google Scholar] [CrossRef] [PubMed]
- Decroix, L.; De Pauw, K.; Foster, C.; Meeusen, R. Guidelines to Classify Female Subject Groups in Sport-Science Research. Int. J. Sport. Physiol. Perform. 2016, 11, 204–213. [Google Scholar] [CrossRef]
- De Pauw, K.; Roelands, B.; Cheung, S.S.; de Geus, B.; Rietjens, G.; Meeusen, R. Guidelines to classify subject groups in sport-science research. Int. J. Sport. Physiol. Perform. 2013, 8, 111–122. [Google Scholar] [CrossRef]
- Xu, J.; Farney, T.M.; Nelson, A.G. Muscle Sentry(R) has No Effect on Total Work Performed and Estimated MVO (2) after High Intensity Short Duration Resistance Training. Int. J. Exerc. Sci. 2020, 13, 744–754. [Google Scholar]
- Bartschi, T.M.; Sanders, D.C.; Farney, T.M.; Kokkonen, J.; Nelson, A.G. A Pre-Exercise Dose of Muscle Sentry((R)) has no Effect on Performing Repeated Leg Press Sets to Failure. Int. J. Exerc. Sci. 2017, 10, 1000–1008. [Google Scholar] [CrossRef]
- Dyck, D.J.; Peters, S.J.; Wendling, P.S.; Chesley, A.; Hultman, E.; Spriet, L.L. Regulation of muscle glycogen phosphorylase activity during intense aerobic cycling with elevated FFA. Am. J. Physiol. 1996, 270, E116–E125. [Google Scholar] [CrossRef]
- McConell, G.K.; Lee-Young, R.S.; Chen, Z.P.; Stepto, N.K.; Huynh, N.N.; Stephens, T.J.; Canny, B.J.; Kemp, B.E. Short-term exercise training in humans reduces AMPK signalling during prolonged exercise independent of muscle glycogen. J. Physiol. 2005, 568, 665–676. [Google Scholar] [CrossRef]
- Gollnick, P.D.; Armstrong, R.B.; Saubert, C.W.t.; Sembrowich, W.L.; Shepherd, R.E.; Saltin, B. Glycogen depletion patterns in human skeletal muscle fibers during prolonged work. Pflug. Arch. Eur. J. Physiol. 1973, 344, 1–12. [Google Scholar] [CrossRef]
- Poffe, C.; Wyns, F.; Ramaekers, M.; Hespel, P. Exogenous Ketosis Impairs 30-min Time-Trial Performance Independent of Bicarbonate Supplementation. Med. Sci. Sport. Exerc. 2021, 53, 1068–1078. [Google Scholar] [CrossRef]
- Heck, K.L.; Potteiger, J.A.; Nau, K.L.; Schroeder, J.M. Sodium bicarbonate ingestion does not attenuate the VO2 slow component during constant-load exercise. Int. J. Sport. Nutr. 1998, 8, 60–69. [Google Scholar] [CrossRef]
- Oxfeldt, M.; Frederiksen, L.K.; Gunnarson, T.; Hansen, M. Influence of menstrual cycle phase and oral contraceptive phase on exercise performance in endurance-trained females. J. Sport. Med. Phys. Fit. 2024, 64, 236–247. [Google Scholar] [CrossRef]
- Clayton, D.J.; Barutcu, A.; Machin, C.; Stensel, D.J.; James, L.J. Effect of Breakfast Omission on Energy Intake and Evening Exercise Performance. Med. Sci. Sport. Exerc. 2015, 47, 2645–2652. [Google Scholar] [CrossRef] [PubMed]
- Scheiman, J.; Luber, J.M.; Chavkin, T.A.; MacDonald, T.; Tung, A.; Pham, L.D.; Wibowo, M.C.; Wurth, R.C.; Punthambaker, S.; Tierney, B.T.; et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat. Med. 2019, 25, 1104–1109. [Google Scholar] [CrossRef] [PubMed]
- Petri, C.; Mascherini, G.; Izzicupo, P.; Rosati, D.; Cerboneschi, M.; Smeazzetto, S.; Arrones, L.S. Gut microbiota and physical activity level: Characterization from sedentary to soccer players. Biol. Sport. 2024, 41, 169–176. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; Xu, M.; Zhang, Y.; Weng, X.; Luo, J.; Li, Y.; Mao, Y.H. Dietary Patterns, Gut Microbiota and Sports Performance in Athletes: A Narrative Review. Nutrients 2024, 16, 1634. [Google Scholar] [CrossRef]
- Gasser, B.; Dossegger, A.; Giraud, M.N.; Fluck, M. T-Allele Carriers of Mono Carboxylate Transporter One Gene Polymorphism rs1049434 Demonstrate Altered Substrate Metabolization during Exhaustive Exercise. Genes 2024, 15, 918. [Google Scholar] [CrossRef]
- Chavez-Guevara, I.A.; Gonzalez-Rodriguez, E.; Moreno-Brito, V.; Perez-Leon, J.A.; Amaro-Gahete, F.J.; Trejo-Trejo, M.; Ramos-Jimenez, A. The polymorphism T1470A of the SLC16A1 gene is associated with the lactate and ventilatory thresholds but not with fat oxidation capacity in young men. Eur. J. Appl. Physiol. 2024, 124, 1835–1843. [Google Scholar] [CrossRef]
- Pasqualetti, M.; Onori, M.E.; Canu, G.; Moretti, G.; Minucci, A.; Baroni, S.; Mordente, A.; Urbani, A.; Galvani, C. The Relationship between ACE, ACTN3 and MCT1 Genetic Polymorphisms and Athletic Performance in Elite Rugby Union Players: A Preliminary Study. Genes 2022, 13, 969. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ewell, T.R.; Bomar, M.C.; Brown, D.M.; Brown, R.L.; Kwarteng, B.S.; Thomson, D.P.; Bell, C. The Influence of Acute Oral Lactate Supplementation on Responses to Cycle Ergometer Exercise: A Randomized, Crossover Pilot Clinical Trial. Nutrients 2024, 16, 2624. https://doi.org/10.3390/nu16162624
Ewell TR, Bomar MC, Brown DM, Brown RL, Kwarteng BS, Thomson DP, Bell C. The Influence of Acute Oral Lactate Supplementation on Responses to Cycle Ergometer Exercise: A Randomized, Crossover Pilot Clinical Trial. Nutrients. 2024; 16(16):2624. https://doi.org/10.3390/nu16162624
Chicago/Turabian StyleEwell, Taylor R., Matthew C. Bomar, David M. Brown, Reagan L. Brown, Beatrice S. Kwarteng, David P. Thomson, and Christopher Bell. 2024. "The Influence of Acute Oral Lactate Supplementation on Responses to Cycle Ergometer Exercise: A Randomized, Crossover Pilot Clinical Trial" Nutrients 16, no. 16: 2624. https://doi.org/10.3390/nu16162624
APA StyleEwell, T. R., Bomar, M. C., Brown, D. M., Brown, R. L., Kwarteng, B. S., Thomson, D. P., & Bell, C. (2024). The Influence of Acute Oral Lactate Supplementation on Responses to Cycle Ergometer Exercise: A Randomized, Crossover Pilot Clinical Trial. Nutrients, 16(16), 2624. https://doi.org/10.3390/nu16162624