Prevalence and Influencing Factors of Central Obesity among Adults in China: China Nutrition and Health Surveillance (2015–2017)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Data Collection
2.3. Definition of Central Obesity
2.4. Confounding Factors
2.5. Quality Control
2.6. Statistical Analysis
3. Results
3.1. General Characteristics of the Participants
3.2. Central Obesity among Adults with Different Characteristics
3.3. Influencing Factors of Central Obesity Prevalence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, Regional, and National Prevalence of Overweight and Obesity in Children and Adults during 1980–2013: A Systematic Analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef]
- Jin, W.; Pan, C. Worldwide consensus of definition of metabolic syndrome by international. Chin. J. Endocrinol. Metab. 2005, 21, 4b1–4b2. [Google Scholar] [CrossRef]
- Dong, X.; Liu, Y.; Yang, J.; Sun, Y.; Chen, L. Efficiency of Anthropometric Indicators of Obesity for Identifying Cardiovascular Risk Factors in a Chinese Population. Postgrad. Med. J. 2011, 87, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.C.S.; Huang, J.; Wang, J.; Chan, P.S.F.; Lok, V.; Chen, X.; Leung, C.; Wang, H.H.X.; Lao, X.Q.; Zheng, Z.-J. Global, Regional and Time-Trend Prevalence of Central Obesity: A Systematic Review and Meta-Analysis of 13.2 Million Subjects. Eur. J. Epidemiol. 2020, 35, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Zhao, L.; Zhang, J.; Yang, Z.; Yang, L.; Huang, J.; Fang, H.; Guo, Q.; Xu, X.; Ju, L.; et al. China Nutrition and Health Surveys (1982–2017). China CDC Wkly. 2021, 3, 193–195. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Xi, B.; Yang, L.; Sun, J.; Zhao, M.; Bovet, P. Trends in the Prevalence of Overweight, Obesity, and Abdominal Obesity among Chinese Adults between 1993 and 2015. Int. J. Obes. 2021, 45, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, J.; Jia, X.; Jiang, H.; Wang, L.; Wang, H.; Zhang, B.; Wang, Z. Secular trends in central obesity prevalence and demographic and socioeconomic factors of adults aged 18–35 years in 15 provinces (autonomous regions and municipalities) of China from 1993 to 2018. J. Environ. Occup. Med. 2022, 39, 323–330. [Google Scholar] [CrossRef]
- Tang, C.; Cooper, M.; Wang, S.; Song, J.; He, J. The Relationship between Body Weight and Dietary Restraint Is Explained by Body Dissatisfaction and Body Image Inflexibility among Young Adults in China. Eat. Weight. Disord. Stud. Anorex. Bulim. Obes. 2021, 26, 1863–1870. [Google Scholar] [CrossRef]
- NCD Risk Factor Collaboration (NCD-RisC). Rising Rural Body-Mass Index Is the Main Driver of the Global Obesity Epidemic in Adults. Nature 2019, 569, 260–264. [Google Scholar] [CrossRef]
- Hansen, G.T.; Sobreira, D.R.; Weber, Z.T.; Thornburg, A.G.; Aneas, I.; Zhang, L.; Sakabe, N.J.; Joslin, A.C.; Haddad, G.A.; Strobel, S.M.; et al. Genetics of Sexually Dimorphic Adipose Distribution in Humans. Nat. Genet. 2023, 55, 461–470. [Google Scholar] [CrossRef]
- Wang, Y.; Beydoun, M.A.; Min, J.; Xue, H.; Kaminsky, L.A.; Cheskin, L.J. Has the Prevalence of Overweight, Obesity and Central Obesity Levelled off in the United States? Trends, Patterns, Disparities, and Future Projections for the Obesity Epidemic. Int. J. Epidemiol. 2020, 49, 810–823. [Google Scholar] [CrossRef] [PubMed]
- Shri, N.; Singh, S.; Singh, A. Prevalence and Predictors of Combined Body Mass Index and Waist Circumference Among Indian Adults. Int. J. Public Health 2023, 68, 1605595. [Google Scholar] [CrossRef] [PubMed]
- Hajian-Tilaki, K.O.; Heidari, B. Prevalence of Obesity, Central Obesity and the Associated Factors in Urban Population Aged 20–70 Years, in the North of Iran: A Population-Based Study and Regression Approach. Obes. Rev. 2007, 8, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.K.; Kouame, J.; Gbane, M.; Coulibaly, M.; Ake, M.D.; Ake, O. Prevalence of Abdominal Obesity and Its Correlates among Adults in a Peri-Urban Population of West Africa. AIMS Public Health 2019, 6, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Cui, C. Study on the Exercise Intervention Prescription of Aerobic and Core Strength Comprehensive Training for Middle-Aged Women with Central Obesity. Master’s Thesis, Tianjin University of Sport, Tianjin, China, 2016. [Google Scholar]
- Hu, L.; Huang, X.; You, C.; Li, J.; Hong, K.; Li, P.; Wu, Y.; Wu, Q.; Wang, Z.; Gao, R.; et al. Prevalence of Overweight, Obesity, Abdominal Obesity and Obesity-Related Risk Factors in Southern China. PLoS ONE 2017, 12, e0183934. [Google Scholar] [CrossRef] [PubMed]
- Sardinha, L.B.; Santos, D.A.; Silva, A.M.; Coelho-e-Silva, M.J.; Raimundo, A.M.; Moreira, H.; Santos, R.; Vale, S.; Baptista, F.; Mota, J. Prevalence of Overweight, Obesity, and Abdominal Obesity in a Representative Sample of Portuguese Adults. PLoS ONE 2012, 7, e47883. [Google Scholar] [CrossRef] [PubMed]
- Geiker, N.R.W.; Astrup, A.; Hjorth, M.F.; Sjödin, A.; Pijls, L.; Markus, C.R. Does Stress Influence Sleep Patterns, Food Intake, Weight Gain, Abdominal Obesity and Weight Loss Interventions and Vice Versa? Obes. Rev. 2018, 19, 81–97. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Jiang, H.; Zhang, B.; Wang, H.; Wang, L.; Jia, X.; Wang, Z. Trend of central obesity prevalence among the farmers in nine provinces (autonomous region) of China and social-demographic difference from 1993 to 2015. J. Hyg. Res. 2020, 49, 357–361+373. [Google Scholar] [CrossRef]
- Pan, X.-F.; Wang, L.; Pan, A. Epidemiology and Determinants of Obesity in China. Lancet Diabetes Endocrinol. 2021, 9, 373–392. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Chen, J.; Cao, J.; Huang, J.; Zhao, L.; Liu, X.; Yu, L.; Deng, Y. The effects of lifestyle factors on the incidence of central obesity in Chinese adults aged 35–74 years. Chin. J. Prev. Med. 2014, 48, 581–586. [Google Scholar] [CrossRef]
- Wang, R. Impact of Household Income and Lifestyle on Chinese Adult Obesity. Master’s Thesis, Southeast University, Nanjing, China, 2022. [Google Scholar]
- Ross, R.; Neeland, I.J.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; Cuevas, A.; Hu, F.B.; et al. Waist Circumference as a Vital Sign in Clinical Practice: A Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 2020, 16, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Jayedi, A.; Soltani, S.; Zargar, M.S.; Khan, T.A.; Shab-Bidar, S. Central Fatness and Risk of All Cause Mortality: Systematic Review and Dose-Response Meta-Analysis of 72 Prospective Cohort Studies. BMJ 2020, 370, m3324. [Google Scholar] [CrossRef] [PubMed]
- Bosomworth, N.J. Normal-Weight Central Obesity: Unique Hazard of the Toxic Waist. Can. Fam. Physician 2019, 65, 399–408. [Google Scholar] [PubMed]
- Lourenço, S.; Oliveira, A.; Lopes, C. The Effect of Current and Lifetime Alcohol Consumption on Overall and Central Obesity. Eur. J. Clin. Nutr. 2012, 66, 813–818. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Hou, W.; Wang, F.; Arcan, C. Factors Affecting Obesity and Waist Circumference Among US Adults. Prev. Chronic Dis. 2019, 16, 180220. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Wang, W.; Zhang, L.; Zhou, W.; Wang, Y. The Practice of Balanced Diet Patterns for Chinese Residents: Interpretation of the Dietary Guidelines for Chinese Residents (2022). Foodmachinery 2022, 38, 22–29. [Google Scholar] [CrossRef]
- Silveira, E.A.; Mendonça, C.R.; Delpino, F.M.; Souza, G.V.E.; Rosa, L.P.d.S.; Oliveira, C.d.; Noll, M. Sedentary Behavior, Physical Inactivity, Abdominal Obesity and Obesity in Adults and Older Adults: A Systematic Review and Meta-Analysis. Clin. Nutr. ESPEN 2022, 50, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Rizvi, M.R.; Saraswat, S. Obesity and Stress: A Contingent Paralysis. Int. J. Prev. Med. 2022, 13, 95. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.L.; Danyluk, A.B.; Munir, S.S.; Covassin, N. Shift Work and Obesity Risk-Are There Sex Differences? Curr. Diab Rep. 2022, 22, 341–352. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhen, S.; Yan, Y.; Liu, N.; Ding, D.; Kong, J. Association of Dietary Patterns with General and Central Obesity among Chinese Adults: A Longitudinal Population-Based Study. BMC Public Health 2023, 23, 1588. [Google Scholar] [CrossRef]
Men (N, %) * | Women (N, %) * | Total (N, %) * | |
---|---|---|---|
N | 67,535 (46.5) | 77,763 (53.5) | 145,298 (100) |
Age | |||
18~29 | 5713 (3.9) | 7048 (4.9) | 12,761 (8.8) |
30~39 | 7867 (5.4) | 9960 (6.9) | 17,827 (12.3) |
40~49 | 14,791 (10.2) | 18,163 (12.5) | 32,954 (22.7) |
50~59 | 16,494 (11.4) | 19,387 (13.3) | 35,881 (24.7) |
60~69 | 15,303 (10.5) | 16,315 (11.2) | 31,618 (21.7) |
≥70 | 7367 (5.1) | 6890 (4.7) | 14,257 (9.8) |
Education level | |||
Low | 26,502 (18.2) | 41,776 (28.8) | 68,278 (47.0) |
Moderate | 35,406 (24.4) | 30,103 (20.7) | 65,509 (45.1) |
High | 5627 (3.9) | 5884 (4.0) | 11,511 (7.9) |
Marital status | |||
Unmarried | 3753 (2.6) | 2212 (1.5) | 5965 (4.1) |
Married | 61,725 (42.5) | 70,757 (48.7) | 132,482 (91.2) |
Divorced/Widowed | 2057 (1.4) | 4794 (3.3) | 6851 (4.7) |
Residence | |||
Urban | 27,551 (19.0) | 33,604 (23.1) | 61,155 (42.1) |
Rural | 39,984 (27.5) | 44,159 (30.4) | 84,143 (57.9) |
Region of China | |||
Northern | 9949 (6.8) | 11,579 (8.0) | 21,528 (14.8) |
Northeast | 6913 (4.8) | 7870 (5.4) | 14,783 (10.2) |
Eastern | 18,748 (12.9) | 20,944 (14.4) | 39,692 (27.3) |
Central | 8330 (5.7) | 9906 (6.8) | 18,236 (12.6) |
Southwest | 8972 (6.2) | 11,021 (7.6) | 19,993 (13.8) |
Northwest | 9205 (6.3) | 9992 (6.9) | 19,197 (13.2) |
Southern | 5418 (3.7) | 6451 (4.5) | 11,869 (8.2) |
Average annual household income | |||
Low | 15,747 (10.8) | 17,611 (12.1) | 33,358 (22.9) |
Moderate | 15,843 (10.9) | 18,439 (12.7) | 34,282 (23.6) |
High | 18,951 (13.0) | 22,186 (15.3) | 41,137 (28.3) |
Very high | 16,994 (11.7) | 19,527 (13.4) | 36,521 (25.1) |
BMI | |||
Low | 2246 (1.6) | 2913 (2.0) | 5159 (3.6) |
Normal | 31,202 (21.5) | 35,859 (24.7) | 67,061 (46.2) |
Overweight | 24,637 (17.0) | 27,098 (18.6) | 51,735 (35.6) |
Obese | 9450 (6.5) | 11,893 (8.2) | 21,343 (14.7) |
Smoking | |||
Never | 23,224 (16.0) | 75,003 (51.6) | 98,227 (67.6) |
Former | 34,814 (23.9) | 2118 (1.5) | 36,932 (25.4) |
Current | 9497 (6.5) | 642 (0.4) | 10,139 (6.9) |
Alcohol consumption | |||
No current alcohol consumption | 35,476 (24.4) | 69,902 (48.1) | 105,378 (72.5) |
Current alcohol consumption | 32,059 (22.1) | 7861 (5.4) | 39,920 (27.5) |
Physical activity | |||
Insufficient | 8430 (5.8) | 7569 (5.2) | 15,999 (11.0) |
Sufficient | 59,105 (40.7) | 70,194 (48.3) | 129,299 (89.0) |
Sleep duration | |||
≤6 h | 12,293 (8.5) | 14,799 (10.2) | 27,092 (18.7) |
7~8 h | 41,312 (28.4) | 45,856 (31.6) | 87,168 (60.0) |
≥9 h | 13,930 (9.6) | 17,108 (11.8) | 31,038 (21.4) |
Screen time | |||
≤5 h | 58,740 (40.4) | 69,595 (47.9) | 128,335 (88.3) |
>5 h | 8795 (6.1) | 8168 (5.6) | 16,963 (11.7) |
Prevalence (%) | 95%CI | Rao–Scott X2 | p-Value | |
---|---|---|---|---|
Total | 29.9 | 28.4~31.4 | ||
Sex | 10.15 | 0.0014 | ||
Men | 31.0 | 29.2~32.8 | ||
Women | 28.8 | 27.3~30.3 | ||
Age | 545.33 | <0.0001 | ||
18~29 | 18.4 | 16.6~20.2 | ||
30~39 | 28.1 | 25.5~30.7 | ||
40~49 | 33.5 | 32.0~35.0 | ||
50~59 | 37.9 | 36.2~39.6 | ||
60~69 | 38.0 | 36.1~39.9 | ||
≥70 | 34.9 | 32.5~37.4 | ||
Education level | 32.19 | <0.0001 | ||
Low | 32.7 | 31.0~34.3 | ||
Moderate | 29.6 | 27.8~31.4 | ||
High | 25.0 | 22.4~27.7 | ||
Marital status | 222.80 | <0.0001 | ||
Unmarried | 16.2 | 13.7~18.6 | ||
Married | 31.7 | 30.3~33.2 | ||
Divorced/Widowed | 33.9 | 30.9~36.9 | ||
Residence | 1.81 | 0.1787 | ||
Urban | 30.9 | 28.6~33.3 | ||
Rural | 28.8 | 26.9~30.7 | ||
Region of China | 77.80 | <0.0001 | ||
Northern | 38.9 | 36.1~41.6 | ||
Northeast | 33.0 | 29.9~36.0 | ||
Eastern | 30.8 | 28.1~33.5 | ||
Central | 28.9 | 25.0~32.8 | ||
Southwest | 25.2 | 23.1~27.2 | ||
Northwest | 30.0 | 26.9~33.1 | ||
Southern | 20.0 | 16.5~23.6 | ||
Average annual household income | 5.71 | 0.1264 | ||
Low | 29.5 | 27.7~31.4 | ||
Moderate | 28.5 | 27.0~30.0 | ||
High | 31.3 | 29.5~33.0 | ||
Very high | 30.0 | 27.2~32.7 | ||
BMI | 397,694.71 | <0.0001 | ||
Low | 0.8 | 0.4~1.2 | ||
Normal | 5.3 | 4.6~6.0 | ||
Overweight | 42.3 | 40.8~43.8 | ||
Obese | 90.7 | 89.6~91.7 | ||
Smoking | 47.15 | <0.0001 | ||
Never | 29.5 | 27.9~31.0 | ||
Former | 29.5 | 27.7~31.3 | ||
Current | 37.8 | 35.3~40.3 | ||
Alcohol consumption | 15.86 | <0.0001 | ||
No current consumption | 29.1 | 27.7~30.5 | ||
Current consumption | 31.9 | 29.8~33.9 | ||
Physical activity | 3.23 | 0.0725 | ||
Insufficient | 31.2 | 29.1~33.4 | ||
Sufficient | 29.7 | 28.3~31.2 | ||
Sleep duration | 41.70 | <0.0001 | ||
≤6 h | 33.9 | 32.1~35.7 | ||
7~8 h | 29.4 | 27.9~30.9 | ||
≥9 h | 28.7 | 26.6~30.7 | ||
Screen time | 37.46 | <0.0001 | ||
≤5 h | 30.8 | 29.2~32.3 | ||
>5 h | 26.4 | 24.6~28.2 |
Influencing Factor | β | SE | Wald X2 | p | OR | 95%CI | |
---|---|---|---|---|---|---|---|
Intercept | −5.018 | 0.139 | 1297.975 | <0.0001 | |||
Sex | Women vs. Men | 0.285 | 0.021 | 192.565 | <0.0001 | 1.329 | 1.277~1.384 |
Age | 30~39 vs. 18~29 | 0.137 | 0.039 | 12.100 | 0.0005 | 1.146 | 1.061~1.238 |
40~49 vs. 18~29 | 0.227 | 0.037 | 37.931 | <0.0001 | 1.254 | 1.167~1.348 | |
50~59 vs. 18~29 | 0.574 | 0.037 | 244.079 | <0.0001 | 1.774 | 1.651~1.907 | |
60~69 vs. 18~29 | 0.713 | 0.038 | 352.559 | <0.0001 | 2.041 | 1.894~2.198 | |
≥70 vs. 18~29 | 0.890 | 0.043 | 435.930 | <0.0001 | 2.434 | 2.239~2.647 | |
Education level | Moderate vs. Low | −0.100 | 0.017 | 33.447 | <0.0001 | 0.905 | 0.875~0.936 |
High vs. Low | −0.155 | 0.034 | 21.205 | <0.0001 | 0.857 | 0.802~0.915 | |
Marital status | Married vs. Unmarried | 0.169 | 0.049 | 12.149 | 0.0005 | 1.184 | 1.077~1.302 |
Divorced/Widowed vs. Unmarried | 0.124 | 0.060 | 4.271 | 0.0388 | 1.132 | 1.006~1.273 | |
Residence | Urban vs. Rural | 0.092 | 0.017 | 30.996 | <0.0001 | 1.096 | 1.061~1.132 |
Region | Northeast vs. Northern | −0.440 | 0.029 | 228.171 | <0.0001 | 0.644 | 0.608~0.682 |
Eastern vs. Northern | −0.285 | 0.023 | 151.976 | <0.0001 | 0.752 | 0.718~0.787 | |
Central vs. Northern | −0.312 | 0.028 | 128.830 | <0.0001 | 0.732 | 0.694~0.772 | |
Southwest vs. Northern | −0.192 | 0.028 | 47.700 | <0.0001 | 0.825 | 0.781~0.871 | |
Northwest vs. Northern | −0.252 | 0.027 | 84.594 | <0.0001 | 0.777 | 0.737~0.820 | |
Southern vs. Northern | −0.547 | 0.034 | 262.321 | <0.0001 | 0.579 | 0.541~0.618 | |
Average annual household income | Moderate vs. Low | 0.021 | 0.022 | 0.895 | 0.3442 | 1.021 | 0.978~1.066 |
High vs. Low | 0.046 | 0.022 | 4.552 | 0.0329 | 1.047 | 1.004~1.093 | |
Very high vs. Low | 0.065 | 0.024 | 7.531 | 0.0061 | 1.067 | 1.019~1.118 | |
BMI | Low vs. Normal | −1.841 | 0.263 | −7.00 | <0.0001 | 0.159 | 0.095~0.266 |
Overweight vs. Normal | 2.537 | 0.053 | 47.59 | <0.0001 | 12.645 | 11.388~14.042 | |
Obese vs. Normal | 5.198 | 0.085 | 60.86 | <0.0001 | 180.989 | 153.025~214.064 | |
Smoking | Former vs. Never | 0.038 | 0.023 | 2.798 | 0.0944 | 1.038 | 0.994~1.085 |
Current vs. Never | 0.111 | 0.032 | 12.408 | 0.0004 | 1.117 | 1.05~1.188 | |
Alcohol consumption | No current consumption vs. Current consumption | 0.067 | 0.019 | 12.829 | 0.0003 | 1.069 | 1.031~1.109 |
Physical activity | Sufficient vs. Insufficient | 0.199 | 0.024 | 71.565 | <0.0001 | 0.819 | 0.782~0.858 |
Sleep duration | 7~8 vs. ≤6 | 0.006 | 0.019 | 0.089 | 0.7650 | 1.006 | 0.968~1.045 |
≥9 vs. ≤6 | 0.039 | 0.024 | 2.769 | 0.0961 | 1.040 | 0.993~1.089 | |
Screen time | >5 vs. ≤5 | 0.084 | 0.025 | 11.696 | 0.0006 | 1.088 | 1.036~1.141 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nan, J.; Chen, M.; Yuan, H.; Cai, S.; Piao, W.; Li, F.; Yang, Y.; Zhao, L.; Yu, D. Prevalence and Influencing Factors of Central Obesity among Adults in China: China Nutrition and Health Surveillance (2015–2017). Nutrients 2024, 16, 2623. https://doi.org/10.3390/nu16162623
Nan J, Chen M, Yuan H, Cai S, Piao W, Li F, Yang Y, Zhao L, Yu D. Prevalence and Influencing Factors of Central Obesity among Adults in China: China Nutrition and Health Surveillance (2015–2017). Nutrients. 2024; 16(16):2623. https://doi.org/10.3390/nu16162623
Chicago/Turabian StyleNan, Jing, Mulei Chen, Hongtao Yuan, Shuya Cai, Wei Piao, Fusheng Li, Yuxiang Yang, Liyun Zhao, and Dongmei Yu. 2024. "Prevalence and Influencing Factors of Central Obesity among Adults in China: China Nutrition and Health Surveillance (2015–2017)" Nutrients 16, no. 16: 2623. https://doi.org/10.3390/nu16162623
APA StyleNan, J., Chen, M., Yuan, H., Cai, S., Piao, W., Li, F., Yang, Y., Zhao, L., & Yu, D. (2024). Prevalence and Influencing Factors of Central Obesity among Adults in China: China Nutrition and Health Surveillance (2015–2017). Nutrients, 16(16), 2623. https://doi.org/10.3390/nu16162623