Adaptation of Brown Adipose Tissue in Response to Chronic Exposure to the Environmental Pollutant 1,1-Dichloro-2,2-bis(p-chlorophenyl) Ethylene (DDE) and/or a High-Fat Diet in Male Wistar Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Animals
2.3. Adipose Tissue Weight, Processing, and Analysis
2.4. Oxidative Stress Measurement
2.5. Mitochondrial Isolation
2.6. Cytochrome Oxidase Activity
2.7. BAT Total Protein Extraction and Western Blotting
2.8. Immunohistochemical Stain
2.9. Statistical Analyses
3. Results
3.1. Effect of DDE Treatments and/or a HFD on BAT Morphology
3.2. Effect of DDE and/or HFD Treatments on BAT Mitochondria
3.3. Effect of DDE and/or HFD Treatments on Mitochondrial Dynamics
3.4. DDE and HFD Influence on Tissue Oxidative Stress
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Wang, Q.A.; Liu, Y.; Jiang, L. Energy Metabolism in Brown Adipose Tissue. FEBS J. 2021, 288, 3647–3662. [Google Scholar] [CrossRef] [PubMed]
- Porter, C. Quantification of UCP1 Function in Human Brown Adipose Tissue. Adipocyte 2017, 6, 167–174. [Google Scholar] [CrossRef] [PubMed]
- De Meis, L.; Ketzer, L.A.; Camacho-Pereira, J.; Galina, A. Brown Adipose Tissue Mitochondria: Modulation by GDP and Fatty Acids Depends on the Respiratory Substrates. Biosci. Rep. 2012, 32, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Ridler, C. Adipose Tissue: BAT Affects Lipid Metabolism. Nat. Rev. Endocrinol. 2016, 12, 435. [Google Scholar] [CrossRef] [PubMed]
- Peirce, V.; Vidal-Puig, A. Regulation of Glucose Homoeostasis by Brown Adipose Tissue. Lancet Diabetes Endocrinol. 2013, 1, 353–360. [Google Scholar] [CrossRef]
- Saito, M.; Okamatsu-Ogura, Y.; Matsushita, M.; Watanabe, K.; Yoneshiro, T.; Nio-Kobayashi, J.; Iwanaga, T.; Miyagawa, M.; Kameya, T.; Nakada, K.; et al. High Incidence of Metabolically Active Brown Adipose Tissue in Healthy Adult Humans: Effects of Cold Exposure and Adiposity. Diabetes 2009, 58, 1526–1531. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, S.; You, Y.; Meng, M.; Zheng, Z.; Dong, M.; Lin, J.; Zhao, Q.; Zhang, C.; Yuan, X.; et al. Brown Adipose Tissue Transplantation Reverses Obesity in Ob/Ob Mice. Endocrinology 2015, 156, 2461–2469. [Google Scholar] [CrossRef] [PubMed]
- Payab, M.; Abedi, M.; Foroughi Heravani, N.; Hadavandkhani, M.; Arabi, M.; Tayanloo-Beik, A.; Sheikh Hosseini, M.; Gerami, H.; Khatami, F.; Larijani, B.; et al. Brown Adipose Tissue Transplantation as a Novel Alternative to Obesity Treatment: A Systematic Review. Int. J. Obes. 2021, 45, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Quan, Y.; Lu, F.; Zhang, Y. Use of Brown Adipose Tissue Transplantation and Engineering as a Thermogenic Therapy in Obesity and Metabolic Disease. Obes. Rev. 2024, 25, e13677. [Google Scholar] [CrossRef]
- Rothwell, N.J.; Stock, M.J. A Role for Brown Adipose Tissue in Diet-Induced Thermogenesis. Nature 1979, 281, 31–35. [Google Scholar] [CrossRef]
- Hibi, M.; Oishi, S.; Matsushita, M.; Yoneshiro, T.; Yamaguchi, T.; Usui, C.; Yasunaga, K.; Katsuragi, Y.; Kubota, K.; Tanaka, S.; et al. Brown Adipose Tissue Is Involved in Diet-Induced Thermogenesis and Whole-Body Fat Utilization in Healthy Humans. Int. J. Obes. 2016, 40, 1655–1661. [Google Scholar] [CrossRef] [PubMed]
- Lettieri Barbato, D.; Tatulli, G.; Aquilano, K.; Ciriolo, M.R. Mitochondrial Hormesis Links Nutrient Restriction to Improved Metabolism in Fat Cell. Aging 2015, 7, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Yang, Q.; Zhang, L.; Maricelli, J.W.; Rodgers, B.D.; Zhu, M.-J.; Du, M. Maternal High-Fat Diet during Lactation Impairs Thermogenic Function of Brown Adipose Tissue in Offspring Mice. Sci. Rep. 2016, 6, 34345. [Google Scholar] [CrossRef] [PubMed]
- Alcalá, M.; Calderon-Dominguez, M.; Bustos, E.; Ramos, P.; Casals, N.; Serra, D.; Viana, M.; Herrero, L. Increased Inflammation, Oxidative Stress and Mitochondrial Respiration in Brown Adipose Tissue from Obese Mice. Sci. Rep. 2017, 7, 16082. [Google Scholar] [CrossRef] [PubMed]
- Rangel-Azevedo, C.; Santana-Oliveira, D.A.; Miranda, C.S.; Martins, F.F.; Mandarim-de-Lacerda, C.A.; Souza-Mello, V. Progressive Brown Adipocyte Dysfunction: Whitening and Impaired Nonshivering Thermogenesis as Long-Term Obesity Complications. J. Nutr. Biochem. 2022, 105, 109002. [Google Scholar] [CrossRef] [PubMed]
- Di Gregorio, I.; Busiello, R.A.; Burgos Aceves, M.A.; Lepretti, M.; Paolella, G.; Lionetti, L. Environmental Pollutants Effect on Brown Adipose Tissue. Front. Physiol. 2018, 9, 1891. [Google Scholar] [CrossRef] [PubMed]
- Peshdary, V.; Styles, G.; Rigden, M.; Caldwell, D.; Kawata, A.; Sorisky, A.; Atlas, E. Exposure to Low Doses of Dechlorane Plus Promotes Adipose Tissue Dysfunction and Glucose Intolerance in Male Mice. Endocrinology 2020, 161, bqaa096. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Steinberg, G.R. Environmental Toxicants, Brown Adipose Tissue, and Potential Links to Obesity and Metabolic Disease. Curr. Opin. Pharmacol. 2022, 67, 102314. [Google Scholar] [CrossRef] [PubMed]
- Della Guardia, L.; Shin, A.C. White and Brown Adipose Tissue Functionality Is Impaired by Fine Particulate Matter (PM2.5) Exposure. J. Mol. Med. 2022, 100, 665–676. [Google Scholar] [CrossRef]
- Reckziegel, P.; Petrovic, N.; Cannon, B.; Nedergaard, J. Perfluorooctanoate (PFOA) Cell-Autonomously Promotes Thermogenic and Adipogenic Differentiation of Brown and White Adipocytes. Ecotoxicol. Environ. Saf. 2024, 271, 115955. [Google Scholar] [CrossRef]
- Zhang, G.; Sun, Q.; Liu, C. Influencing Factors of Thermogenic Adipose Tissue Activity. Front. Physiol. 2016, 7, 29. [Google Scholar] [CrossRef]
- Shabalina, I.G.; Kramarova, T.V.; Mattsson, C.L.; Petrovic, N.; Rahman Qazi, M.; Csikasz, R.I.; Chang, S.-C.; Butenhoff, J.; DePierre, J.W.; Cannon, B.; et al. The Environmental Pollutants Perfluorooctane Sulfonate and Perfluorooctanoic Acid Upregulate Uncoupling Protein 1 (UCP1) in Brown-Fat Mitochondria Through a UCP1-Dependent Reduction in Food Intake. Toxicol. Sci. 2015, 146, 334–343. [Google Scholar] [CrossRef] [PubMed]
- La Merrill, M.; Karey, E.; Moshier, E.; Lindtner, C.; La Frano, M.R.; Newman, J.W.; Buettner, C. Perinatal Exposure of Mice to the Pesticide DDT Impairs Energy Expenditure and Metabolism in Adult Female Offspring. PLoS ONE 2014, 9, e103337. [Google Scholar] [CrossRef] [PubMed]
- VonderEmbse, A.N.; Elmore, S.E.; Jackson, K.B.; Habecker, B.A.; Manz, K.E.; Pennell, K.D.; Lein, P.J.; La Merrill, M.A. Developmental Exposure to DDT or DDE Alters Sympathetic Innervation of Brown Adipose in Adult Female Mice. Environ. Health 2021, 20, 37. [Google Scholar] [CrossRef] [PubMed]
- Migliaccio, V.; Gregorio, I.D.; Putti, R.; Lionetti, L. Mitochondrial Involvement in the Adaptive Response to Chronic Exposure to Environmental Pollutants and High-Fat Feeding in a Rat Liver and Testis. Cells 2019, 8, 834. [Google Scholar] [CrossRef] [PubMed]
- Burgos Aceves, M.A.; Migliaccio, V.; Lepretti, M.; Paolella, G.; Di Gregorio, I.; Penna, S.; Faggio, C.; Lionetti, L. Dose-Dependent Response to the Environmental Pollutant Dichlorodipheniletylhene (DDE) in HepG2 Cells: Focus on Cell Viability and Mitochondrial Fusion/Fission Proteins. Toxics 2021, 9, 270. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, A.; Cregut, M.; Abbes, C.; Durand, M.-J.; Landoulsi, A.; Thouand, G. The Environmental Issues of DDT Pollution and Bioremediation: A Multidisciplinary Review. Appl. Biochem. Biotechnol. 2017, 181, 309–339. [Google Scholar] [CrossRef] [PubMed]
- Jaga, K.; Dharmani, C. Global Surveillance of DDT and DDE Levels in Human Tissues. Int. J. Occup. Med. Environ. Health 2003, 16, 7–20. [Google Scholar]
- Ritter, R.; Scheringer, M.; MacLeod, M.; Schenker, U.; Hungerbühler, K. A Multi-Individual Pharmacokinetic Model Framework for Interpreting Time Trends of Persistent Chemicals in Human Populations: Application to a Postban Situation. Environ. Health Perspect. 2009, 117, 1280–1286. [Google Scholar] [CrossRef]
- Al-Obaidi, Z.A.F.; Erdogan, C.S.; Sümer, E.; Özgün, H.B.; Gemici, B.; Sandal, S.; Yilmaz, B. Investigation of Obesogenic Effects of Hexachlorobenzene, DDT and DDE in Male Rats. Gen. Comp. Endocrinol. 2022, 327, 114098. [Google Scholar] [CrossRef]
- Migliaccio, V.; Scudiero, R.; Sica, R.; Lionetti, L.; Putti, R. Oxidative Stress and Mitochondrial Uncoupling Protein 2 Expression in Hepatic Steatosis Induced by Exposure to Xenobiotic DDE and High Fat Diet in Male Wistar Rats. PLoS ONE 2019, 14, e0215955. [Google Scholar] [CrossRef] [PubMed]
- La Merrill, M.; Emond, C.; Kim, M.J.; Antignac, J.-P.; Le Bizec, B.; Clément, K.; Birnbaum, L.S.; Barouki, R. Toxicological Function of Adipose Tissue: Focus on Persistent Organic Pollutants. Environ. Health Perspect. 2013, 121, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Elmore, S.E.; La Merrill, M.A. Oxidative Phosphorylation Impairment by DDT and DDE. Front. Endocrinol. 2019, 10, 122. [Google Scholar] [CrossRef] [PubMed]
- Makita, Y.; Omura, M.; Tanaka, A.; Kiyohara, C. Effects of Concurrent Exposure to Tributyltin and 1,1-Dichloro-2,2 Bis (p-Chlorophenyl) Ethylene (p,p’-DDE) on Immature Male Wistar Rats. Basic. Clin. Pharmacol. Toxicol. 2005, 97, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Cheng, Y.; Wu, W.; Wang, L.; Li, S.; Li, Q.; Chen, L.; Zhang, J.; Chen, R.; Tan, X.; et al. Paternal p,p’-DDE Exposure and Pre-Pubertal High-Fat Diet Increases the Susceptibility to Fertility Impairment and Sperm Igf2 DMR2 Hypo-Methylation in Male Offspring. Ecotoxicol. Environ. Saf. 2024, 271, 115999. [Google Scholar] [CrossRef] [PubMed]
- Driver, A.S.; Kodavanti, P.R.; Mundy, W.R. Age-Related Changes in Reactive Oxygen Species Production in Rat Brain Homogenates. Neurotoxicol Teratol. 2000, 22, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Aguilar Diaz De Leon, J.; Borges, C.R. Evaluation of Oxidative Stress in Biological Samples Using the Thiobarbituric Acid Reactive Substances Assay. J. Vis. Exp. 2020, 159, e61122. [Google Scholar] [CrossRef]
- Lombardi, A.; Senese, R.; De Matteis, R.; Busiello, R.A.; Cioffi, F.; Goglia, F.; Lanni, A. 3,5-Diiodo-L-Thyronine Activates Brown Adipose Tissue Thermogenesis in Hypothyroid Rats. PLoS ONE 2015, 10, e0116498. [Google Scholar] [CrossRef] [PubMed]
- Lanni, A.; Moreno, M.; Lombardi, A.; Goglia, F. Biochemical and Functional Differences in Rat Liver Mitochondrial Subpopulations Obtained at Different Gravitational Forces. Int. J. Biochem. Cell Biol. 1996, 28, 337–343. [Google Scholar] [CrossRef]
- Lionetti, L.; Crescenzo, R.; Mollica, M.P.; Tasso, R.; Barletta, A.; Liverini, G.; Iossa, S. Modulation of Hepatic Mitochondrial Energy Efficiency with Age. Cell Mol. Life Sci. 2004, 61, 1366–1371. [Google Scholar] [CrossRef]
- Liverini, G.; Iossa, S.; Barletta, A. The Effect of Cold Exposure on Rat Liver Mitochondrial Respiratory Capacity. Comp. Biochem. Physiol. B 1991, 98, 583–585. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.S.; de Maré, S.; Jones, H.A.; Göransson, O.; Lindkvist-Petersson, K. Visualization of Lipid Directed Dynamics of Perilipin 1 in Human Primary Adipocytes. Sci. Rep. 2017, 7, 15011. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-F.; Ku, H.-C.; Lin, H. PGC-1α as a Pivotal Factor in Lipid and Metabolic Regulation. Int. J. Mol. Sci. 2018, 19, 3447. [Google Scholar] [CrossRef] [PubMed]
- Gao, A.W.; Houtkooper, R.H. Mitochondrial Fission: Firing up Mitochondria in Brown Adipose Tissue. EMBO J. 2014, 33, 401–402. [Google Scholar] [CrossRef] [PubMed]
- Michurina, S.S.; Stafeev, I.S.; Menshikov, M.Y.; Parfyonova, Y.V. Mitochondrial Dynamics Keep Balance of Nutrient Combustion in Thermogenic Adipocytes. Mitochondrion 2021, 59, 157–168. [Google Scholar] [CrossRef]
- Zorzano, A.; Liesa, M.; Palacín, M. Mitochondrial Dynamics as a Bridge between Mitochondrial Dysfunction and Insulin Resistance. Arch. Physiol. Biochem. 2009, 115, 1–12. [Google Scholar] [CrossRef]
- Wikstrom, J.D.; Mahdaviani, K.; Liesa, M.; Sereda, S.B.; Si, Y.; Las, G.; Twig, G.; Petrovic, N.; Zingaretti, C.; Graham, A.; et al. Hormone-Induced Mitochondrial Fission Is Utilized by Brown Adipocytes as an Amplification Pathway for Energy Expenditure. EMBO J. 2014, 33, 418–436. [Google Scholar] [CrossRef] [PubMed]
- Brace, L.E.; Vose, S.C.; Stanya, K.; Gathungu, R.M.; Marur, V.R.; Longchamp, A.; Treviño-Villarreal, H.; Mejia, P.; Vargas, D.; Inouye, K.; et al. Increased Oxidative Phosphorylation in Response to Acute and Chronic DNA Damage. NPJ Aging Mech. Dis. 2016, 2, 16022. [Google Scholar] [CrossRef] [PubMed]
- Shabalina, I.G.; Vrbacký, M.; Pecinová, A.; Kalinovich, A.V.; Drahota, Z.; Houštěk, J.; Mráček, T.; Cannon, B.; Nedergaard, J. ROS Production in Brown Adipose Tissue Mitochondria: The Question of UCP1-Dependence. Biochim. Biophys. Acta 2014, 1837, 2017–2030. [Google Scholar] [CrossRef]
- Moreno-Aliaga, M.J.; Matsumura, F. Effects of 1,1,1-Trichloro-2,2-Bis(p-Chlorophenyl)-Ethane (p,p’-DDT) on 3T3-L1 and 3T3-F442A Adipocyte Differentiation. Biochem. Pharmacol. 2002, 63, 997–1007. [Google Scholar] [CrossRef]
- Da Eira, D.; Jani, S.; Ceddia, R.B. An Obesogenic Diet Impairs Uncoupled Substrate Oxidation and Promotes Whitening of the Brown Adipose Tissue in Rats. J. Physiol. 2023, 601, 69–82. [Google Scholar] [CrossRef] [PubMed]
- You, L.; Gazi, E.; Archibeque-Engle, S.; Casanova, M.; Conolly, R.B.; Heck, H.A. Transplacental and Lactational Transfer of p,p’-DDE in Sprague-Dawley Rats. Toxicol. Appl. Pharmacol. 1999, 157, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Longnecker, M.P.; Klebanoff, M.A.; Zhou, H.; Brock, J.W. Association between Maternal Serum Concentration of the DDT Metabolite DDE and Preterm and Small-for-Gestational-Age Babies at Birth. Lancet 2001, 358, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Xiao, W.; You, L.; Zhang, F.; Cao, X.; Feng, J.; Shen, D.; Li, Y.; Wang, Y.; Ji, C.; et al. Age-Induced Oxidative Stress Impairs Adipogenesis and Thermogenesis in Brown Fat. FEBS J. 2019, 286, 2753–2768. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migliaccio, V.; Di Gregorio, I.; Penna, S.; Panico, G.; Lombardi, A.; Lionetti, L. Adaptation of Brown Adipose Tissue in Response to Chronic Exposure to the Environmental Pollutant 1,1-Dichloro-2,2-bis(p-chlorophenyl) Ethylene (DDE) and/or a High-Fat Diet in Male Wistar Rats. Nutrients 2024, 16, 2616. https://doi.org/10.3390/nu16162616
Migliaccio V, Di Gregorio I, Penna S, Panico G, Lombardi A, Lionetti L. Adaptation of Brown Adipose Tissue in Response to Chronic Exposure to the Environmental Pollutant 1,1-Dichloro-2,2-bis(p-chlorophenyl) Ethylene (DDE) and/or a High-Fat Diet in Male Wistar Rats. Nutrients. 2024; 16(16):2616. https://doi.org/10.3390/nu16162616
Chicago/Turabian StyleMigliaccio, Vincenzo, Ilaria Di Gregorio, Serena Penna, Giuliana Panico, Assunta Lombardi, and Lillà Lionetti. 2024. "Adaptation of Brown Adipose Tissue in Response to Chronic Exposure to the Environmental Pollutant 1,1-Dichloro-2,2-bis(p-chlorophenyl) Ethylene (DDE) and/or a High-Fat Diet in Male Wistar Rats" Nutrients 16, no. 16: 2616. https://doi.org/10.3390/nu16162616
APA StyleMigliaccio, V., Di Gregorio, I., Penna, S., Panico, G., Lombardi, A., & Lionetti, L. (2024). Adaptation of Brown Adipose Tissue in Response to Chronic Exposure to the Environmental Pollutant 1,1-Dichloro-2,2-bis(p-chlorophenyl) Ethylene (DDE) and/or a High-Fat Diet in Male Wistar Rats. Nutrients, 16(16), 2616. https://doi.org/10.3390/nu16162616