Marine Bioactive Compounds with Functional Role in Immunity and Food Allergy
Abstract
:1. Food Allergy: Sensitization and Effector Phases, Inflammation and Gut Dysbiosis
1.1. Sensitization and Effector Phases
1.2. Inflammation
- -
- Food protein-induced enterocolitis syndrome (FPIES) [20]: This is a food allergy that causes gut inflammation primarily in cow milk, soy, rice, oats, and other foods. It is marked by repetitive projectile vomiting, diarrhea, lethargy, and low blood pressure 1–4 h after the intake of food. These allergies have different immunological mechanisms and are mostly cell-mediated.
- -
- Food protein-induced allergic proctocolitis (FPIAP) [21]: Quite common in infants, this is a condition whereby the rectum and the colon become irritated, leading to blood-streaked stools with mucus. The symptoms improve when the offending food is removed from the diet either from the infant or from the breastfeeding mother. In most cases, it involves T-cell activation and other immune pathways that are non-IgE.
- -
- Food Protein-Induced Enteropathy (FPE) [22]: This is a chronic inflammation of the small intestine to foods, with diarrhea, vomiting, poor growth, and sometimes abdominal swelling. It usually manifests weeks after the introduction of foods like cow’s milk, soy, wheat, and eggs. The immune response is primarily cell-mediated.
- -
- Eosinophilic esophagitis (EoE) [23]: This is a chronic esophageal disorder caused by food allergies and causes dysphagia, bolus impaction, vomiting, and abdominal pain. Diagnosis usually requires endoscopy with subsequent biopsy. The mechanism of EoE involves a chronic, immune antigen-mediated esophageal illness characterized by eosinophil infiltration. Evidence for a substantial contribution by T cells in driving an inflammatory response against food allergens is already available.
1.3. Gut Dysbiosis
2. Marine Lipids
3. Polysaccharides and Oligosaccharides
4. Peptides
5. Vitamin D
6. Other Components
7. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Ben-Shoshan, M.; Turnbull, E.; Clarke, A. Food Allergy: Temporal Trends and Determinants. Curr. Allergy Asthma Rep. 2012, 12, 346–372. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, S.; Bennich, H. The Primary Structure of Allergen M from Cod. Scand. J. Immunol. 1975, 4, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Leung, P.S.; Chen, Y.C.; Chu, K.H. Seafood Allergy: Tropomyosins and Beyond. J. Microbiol. Immunol. Infect. 1999, 32, 143–154. [Google Scholar] [PubMed]
- Gou, J.; Liang, R.; Huang, H.; Ma, X. Maillard Reaction Induced Changes in Allergenicity of Food. Foods 2022, 11, 530. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Tavarez, R.; Moreno, H.M.; Borderias, J.; Loli-Ausejo, D.; Pedrosa, M.; Hurtado, J.L.; Rodriguez-Pérez, R.; Gasset, M. Fish Muscle Processing into Seafood Products Reduces β-Parvalbumin Allergenicity. Food Chem. 2021, 364, 130308. [Google Scholar] [CrossRef] [PubMed]
- Carrera, M.; Pazos, M.; Gasset, M. Proteomics-Based Methodologies for the Detection and Quantification of Seafood Allergens. Foods 2020, 9, 1134. [Google Scholar] [CrossRef] [PubMed]
- Tordesillas, L.; Berin, M.C. Mechanisms of Oral Tolerance. Clin. Rev. Allergy Immunol. 2018, 55, 107–117. [Google Scholar] [CrossRef]
- Bertolini, T.B.; Biswas, M.; Terhorst, C.; Daniell, H.; Herzog, R.W.; Piñeros, A.R. Role of Orally Induced Regulatory T Cells in Immunotherapy and Tolerance. Cell Immunol. 2021, 359, 104251. [Google Scholar] [CrossRef] [PubMed]
- Tordesillas, L.; Berin, M.C.; Sampson, H.A. Immunology of Food Allergy. Immunity 2017, 47, 32–50. [Google Scholar] [CrossRef]
- Abril, A.G.; Carrera, M.; Pazos, M. Immunomodulatory Effect of Marine Lipids on Food Allergy. Front. Nutr. 2023, 10, 1254681. [Google Scholar] [CrossRef]
- Pasha, M.A.; Patel, G.; Hopp, R.; Yang, Q. Role of Innate Lymphoid Cells in Allergic Diseases. Allergy Asthma Proc. 2019, 40, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Zhang, Y.; Pan, J.; Liu, N.; Qin, Y.; Qiu, L.; Liu, M.; Wang, T. The Role of Type 2 Innate Lymphoid Cells in Allergic Diseases. Front. Immunol. 2021, 12, 1586078. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Liu, Y.; Rui, B.; Lei, Z.; Ning, X.; Liu, Y.; Li, M. Crosstalk between the Gut Microbiota and Innate Lymphoid Cells in Intestinal Mucosal Immunity. Front. Immunol. 2023, 14, 1171680. [Google Scholar] [CrossRef] [PubMed]
- Safar, R.; Oussalah, A.; Mayorga, L.; Vieths, S.; Barber, D.; Torres, M.J.; Guéant, J. Epigenome Alterations in Food Allergy: A Systematic Review of Candidate Gene and epigenome-wide Association Studies. Clin. Exp. Allergy 2023, 53, 259–275. [Google Scholar] [CrossRef] [PubMed]
- Potaczek, D.P.; Harb, H.; Michel, S.; Alhamwe, B.A.; Renz, H.; Tost, J. Epigenetics and Allergy: From Basic Mechanisms to Clinical Applications. Epigenomics 2017, 9, 539–571. [Google Scholar] [CrossRef] [PubMed]
- Durham, S.R.; Shamji, M.H. Allergen Immunotherapy: Past, Present and Future. Nat. Rev. Immunol. 2023, 23, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Chebar-Lozinsky, A.; De Koker, C.; Dziubak, R.; Rolnik, D.L.; Godwin, H.; Dominguez-Ortega, G.; Skrapac, A.-K.; Gholmie, Y.; Reeve, K.; Shah, N.; et al. Assessing Feeding Difficulties in Children Presenting with Non-IgE-Mediated Gastrointestinal Food Allergies—A Commonly Reported Problem. Nutrients 2024, 16, 1563. [Google Scholar] [CrossRef] [PubMed]
- Kuźniar, J.; Kozubek, P.; Gomułka, K. Differences in the Course, Diagnosis, and Treatment of Food Allergies Depending on Age—Comparison of Children and Adults. Nutrients 2024, 16, 1317. [Google Scholar] [CrossRef] [PubMed]
- Brasal-Prieto, M.; Fernández-Prades, L.; Dakhaoui, H.; Sobrino, F.; López-Enríquez, S.; Palomares, F. Update on In Vitro Diagnostic Tools and Treatments for Food Allergies. Nutrients 2023, 15, 3744. [Google Scholar] [CrossRef]
- Nowak-Wegrzyn, A.; Berin, M.C.; Mehr, S. Food Protein-Induced Enterocolitis Syndrome. J. Allergy Clin. Immunol. Pract. 2020, 8, 24–35. [Google Scholar] [CrossRef]
- Mennini, M.; Fiocchi, A.G.; Cafarotti, A.; Montesano, M.; Mauro, A.; Villa, M.P.; Di Nardo, G. Food Protein-Induced Allergic Proctocolitis in Infants: Literature Review and Proposal of a Management Protocol. World Allergy Organ. J. 2020, 13, 100471. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.G.; Sampson, H.A. Recent Trends in Food Protein–Induced Enterocolitis Syndrome (FPIES). J. Allergy Clin. Immunol. 2023, 151, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Lehman, H.K.; Lam, W. Eosinophilic Esophagitis. Immunol. Allergy Clin. N. Am. 2021, 41, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Bunyavanich, S.; Berin, M.C. Food Allergy and the Microbiome: Current Understandings and Future Directions. J. Allergy Clin. Immunol. 2019, 144, 1468–1477. [Google Scholar] [CrossRef] [PubMed]
- Abril, A.G.; Carrera, M.; Sánchez-Pérez, Á.; Villa, T.G. Gut Microbiome Proteomics in Food Allergies. Int. J. Mol. Sci. 2023, 24, 2234. [Google Scholar] [CrossRef] [PubMed]
- Abril, A.G.; Villa, T.G.; Sánchez-Pérez, Á.; Notario, V.; Carrera, M. The Role of the Gallbladder, the Intestinal Barrier and the Gut Microbiota in the Development of Food Allergies and Other Disorders. Int. J. Mol. Sci. 2022, 23, 14333. [Google Scholar] [CrossRef]
- Stephen-Victor, E.; Chatila, T.A. Regulation of Oral Immune Tolerance by the Microbiome in Food Allergy. Curr. Opin. Immunol. 2019, 60, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Mohanan, M.M.; Shetty, R.; Bang-Berthelsen, C.H.; Mudnakudu-Nagaraju, K.K. Role of Mesenchymal Stem Cells and Short Chain Fatty Acids in Allergy: A Prophylactic Therapy for Future. Immunol. Lett. 2023, 260, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Folkerts, J.; Redegeld, F.; Folkerts, G.; Blokhuis, B.; van den Berg, M.P.M.; de Bruijn, M.J.W.; van IJcken, W.F.J.; Junt, T.; Tam, S.; Galli, S.J.; et al. Butyrate Inhibits Human Mast Cell Activation via Epigenetic Regulation of FcεRI-mediated Signaling. Allergy 2020, 75, 1966–1978. [Google Scholar] [CrossRef]
- Bhaskaran, N.; Quigley, C.; Paw, C.; Butala, S.; Schneider, E.; Pandiyan, P. Role of Short Chain Fatty Acids in Controlling Tregs and Immunopathology During Mucosal Infection. Front. Microbiol. 2018, 9, 1995. [Google Scholar] [CrossRef]
- Fukaya, T.; Uto, T.; Mitoma, S.; Takagi, H.; Nishikawa, Y.; Tominaga, M.; Choijookhuu, N.; Hishikawa, Y.; Sato, K. Gut Dysbiosis Promotes the Breakdown of Oral Tolerance Mediated through Dysfunction of Mucosal Dendritic Cells. Cell Rep. 2023, 42, 112431. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Wang, Y.; Cheng, L.; Wang, J.; Raghavan, V. Gut Microbiome Modulation by Probiotics, Prebiotics, Synbiotics and Postbiotics: A Novel Strategy in Food Allergy Prevention and Treatment. Crit. Rev. Food Sci. Nutr. 2022, 64, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Very Long-Chain n-3 Fatty Acids and Human Health: Fact, Fiction and the Future. Proc. Nutr. Soc. 2018, 77, 52–72. [Google Scholar] [CrossRef] [PubMed]
- Demets, R.; Foubert, I. Chapter 1: Traditional and Novel Sources of Long-Chain Omega-3 Fatty Acids. In Omega-3 Delivery Systems; García-Moreno, P.J., Jacobsen, C., Sørensen, A.-D.M., Yesiltas, B., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 3–23. ISBN 9780128213919. [Google Scholar] [CrossRef]
- Bang, H.O.; Dyerberg, G.J.; Hjorne, N. The Composition of Food Consumed by Greenland Eskimos. Acta Med. Scand. 1976, 200, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Bang, H.O.; Dyerberg, J.; Nielsen, A.B. Plasma Lipid and Lipoprotein Pattern in Greenlandic West-Coast Eskimos. Lancet 1971, 1, 1143–1146. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. The Role of Marine Omega-3 (n-3) Fatty Acids in Inflammatory Processes, Atherosclerosis and Plaque Stability. Mol. Nutr. Food Res. 2012, 56, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Dasilva, G.; Pazos, M.; García-Egido, E.; Pérez-Jiménez, J.; Torres, J.L.; Giralt, M.; Nogués, M.-R.; Medina, I. Lipidomics to Analyze the Influence of Diets with Different EPA:DHA Ratios in the Progression of Metabolic Syndrome Using SHROB Rats as a Model. Food Chem. 2016, 205, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Dasilva, G.; Pazos, M.; Garcia-Egido, E.; Gallardo, J.M.; Rodriguez, I.; Cela, R.; Medina, I. Healthy Effect of Different Proportions of Marine Omega-3 PUFAs EPA and DHA Supplementation in Wistar Rats: Lipidomic Biomarkers of Oxidative Stress and Inflammation. J. Nutr. Biochem. 2015, 26, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Chavan-Gautam, P.; Rani, A.; Freeman, D.J. Distribution of Fatty Acids and Lipids During Pregnancy. Adv. Clin. Chem. 2018, 84, 209–239. [Google Scholar] [CrossRef]
- Stables, M.J.; Gilroy, D.W. Old and New Generation Lipid Mediators in Acute Inflammation and Resolution. Prog. Lipid Res. 2011, 50, 35–51. [Google Scholar] [CrossRef]
- Wall, R.; Ross, R.P.; Fitzgerald, G.F.; Stanton, C. Fatty Acids from Fish: The Anti-Inflammatory Potential of Long-Chain Omega-3 Fatty Acids. Nutr. Rev. 2010, 68, 280–289. [Google Scholar] [CrossRef]
- Dasilva, G.; Pazos, M.; García-Egido, E.; Gallardo, J.M.; Ramos-Romero, S.; Torres, J.L.; Romeu, M.; Nogués, M.-R.; Medina, I. A Lipidomic Study on the Regulation of Inflammation and Oxidative Stress Targeted by Marine ω-3 PUFA and Polyphenols in High-Fat High-Sucrose Diets. J. Nutr. Biochem. 2017, 43, 53–67. [Google Scholar] [CrossRef] [PubMed]
- Méndez, L.; Pazos, M.; Gallardo, J.M.; Torres, J.L.; Pérez-Jiménez, J.; Nogués, R.; Romeu, M.; Medina, I. Reduced Protein Oxidation in Wistar Rats Supplemented with Marine Ω3 PUFAs. Free Radic. Biol. Med. 2013, 55, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Kotlyar, D.S.; Shum, M.; Hsieh, J.; Blonski, W.; Greenwald, D.A. Non-Pulmonary Allergic Diseases and Inflammatory Bowel Disease: A Qualitative Review. World J. Gastroenterol. 2014, 20, 11023–11032. [Google Scholar] [CrossRef] [PubMed]
- Quin, C.; Vollman, D.M.; Ghosh, S.; Haskey, N.; Estaki, M.; Pither, J.; Barnett, J.A.; Jay, M.N.; Birnie, B.W.; Gibson, D.L. Fish Oil Supplementation Reduces Maternal Defensive Inflammation and Predicts a Gut Bacteriome with Reduced Immune Priming Capacity in Infants. ISME J. 2020, 14, 2090–2104. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Wang, C.; Chin, Y.; Chen, X.; Gao, Y.; Yuan, S.; Xue, C.; Wang, Y.; Tang, Q. DHA-Phospholipids (DHA-PL) and EPA-Phospholipids (EPA-PL) Prevent Intestinal Dysfunction Induced by Chronic Stress. Food Funct. 2019, 10, 277–288. [Google Scholar] [CrossRef]
- Lauridsen, C. Effects of Dietary Fatty Acids on Gut Health and Function of Pigs Pre- and Post-Weaning. J. Anim. Sci. 2020, 98, skaa086. [Google Scholar] [CrossRef] [PubMed]
- Kaliannan, K.; Wang, B.; Li, X.Y.; Kim, K.J.; Kang, J.X. A Host-Microbiome Interaction Mediates the Opposing Effects of Omega-6 and Omega-3 Fatty Acids on Metabolic Endotoxemia. Sci. Rep. 2015, 5, 11276. [Google Scholar] [CrossRef] [PubMed]
- Noriega, B.S.; Sanchez-Gonzalez, M.A.; Salyakina, D.; Coffman, J. Understanding the Impact of Omega-3 Rich Diet on the Gut Microbiota. Case Rep. Med. 2016, 2016, 3089303. [Google Scholar] [CrossRef]
- Acevedo, N.; Alashkar Alhamwe, B.; Caraballo, L.; Ding, M.; Ferrante, A.; Garn, H.; Garssen, J.; Hii, C.S.; Irvine, J.; Llinás-Caballero, K.; et al. Perinatal and Early-Life Nutrition, Epigenetics, and Allergy. Nutrients 2021, 13, 724. [Google Scholar] [CrossRef]
- Monk, J.M.; Hou, T.Y.; Turk, H.F.; McMurray, D.N.; Chapkin, R.S. N3 PUFAs Reduce Mouse CD4+ T-Cell Ex Vivo Polarization into Th17 Cells. J. Nutr. 2013, 143, 1501–1508. [Google Scholar] [CrossRef] [PubMed]
- De Matos, O.G.; Amaral, S.S.; Pereira Da Silva, P.E.M.; Perez, D.A.; Alvarenga, D.M.; Ferreira, A.V.M.; Alvarez-Leite, J.; Menezes, G.B.; Cara, D.C. Dietary Supplementation with Omega-3-Pufa-Rich Fish Oil Reduces Signs of Food Allergy in Ovalbumin-Sensitized Mice. Clin. Dev. Immunol. 2012, 2012, 236564. [Google Scholar] [CrossRef] [PubMed]
- Van den Elsen, L.W.J.; Van Esch, B.C.A.M.; Hofman, G.A.; Kant, J.; Van de Heijning, B.J.M.; Garssen, J.; Willemsen, L.E.M. Dietary Long Chain N-3 Polyunsaturated Fatty Acids Prevent Allergic Sensitization to Cow’s Milk Protein in Mice. Clin. Exp. Allergy 2013, 43, 798–810. [Google Scholar] [CrossRef] [PubMed]
- van den Elsen, L.W.J.; Bol-Schoenmakers, M.; van Esch, B.C.A.M.; Hofman, G.A.; van de Heijning, B.J.M.; Pieters, R.H.; Smit, J.J.; Garssen, J.; Willemsen, L.E.M. DHA-Rich Tuna Oil Effectively Suppresses Allergic Symptoms in Mice Allergic to Whey or Peanut. J. Nutr. 2014, 144, 1970–1976. [Google Scholar] [CrossRef]
- Vo, T.S.; Kim, S.K. Marine-Derived Polysaccharides for Regulation of Allergic Responses. In Advances in Food and Nutrition Research; Academic Press: Cambridge, MA, USA, 2014; Volume 73. [Google Scholar]
- Vo, T.S.; Ngo, D.H.; Kang, K.H.; Jung, W.K.; Kim, S.K. The Beneficial Properties of Marine Polysaccharides in Alleviation of Allergic Responses. Mol. Nutr. Food Res. 2015, 59, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Arad, S.; Levy-Ontman, O. Red Microalgal Cell-Wall Polysaccharides: Biotechnological Aspects. Curr. Opin. Biotechnol. 2010, 21, 358–364. [Google Scholar] [CrossRef]
- Aam, B.B.; Heggset, E.B.; Norberg, A.L.; Sørlie, M.; Vårum, K.M.; Eijsink, V.G.H. Production of Chitooligosaccharides and Their Potential Applications in Medicine. Marine Drugs 2010, 8, 1482–1517. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.G.; Benevides, N.M.B.; Melo, M.R.S.; Valente, A.P.; Melo, F.R.; Mourão, P.A.S. Structure and Anticoagulant Activity of a Sulfated Galactan from the Red Alga, Gelidium crinale. Is There a Specific Structural Requirement for the Anticoagulant Action? Carbohydr. Res. 2005, 340, 2015–2023. [Google Scholar] [CrossRef]
- Chevolot, L.; Foucault, A.; Chaubet, F.; Kervarec, N.; Sinquin, C.; Fisher, A.M.; Boisson-Vidal, C. Further Data on the Structure of Brown Seaweed Fucans: Relationships with Anticoagulant Activity. Carbohydr. Res. 1999, 319, S0008–S6215. [Google Scholar] [CrossRef]
- Van den Broek, L.A.M.; Boeriu, C.G. Chitin and Chitosan: Properties and Applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar]
- Falch, B.H.; Espevik, T.; Ryan, L.; Stokke, B.T. The Cytokine Stimulating Activity of (1→3)-β-D-Glucans Is Dependent on the Triple Helix Conformation. Carbohydr. Res. 2000, 329, 587–596. [Google Scholar] [CrossRef]
- Bao, X.F.; Wang, X.S.; Dong, Q.; Fang, J.N.; Li, X.Y. Structural Features of Immunologically Active Polysaccharides from Ganoderma Lucidum. Phytochemistry 2002, 59, 175–181. [Google Scholar] [CrossRef]
- Lee, J.S.; Kwon, J.S.; Yun, J.S.; Pahk, J.W.; Shin, W.C.; Lee, S.Y.; Hong, E.K. Structural Characterization of Immunostimulating Polysaccharide from Cultured Mycelia of Cordyceps Militaris. Carbohydr. Polym. 2010, 80, 1011–1017. [Google Scholar] [CrossRef]
- Liu, Q.M.; Yang, Y.; Maleki, S.J.; Alcocer, M.; Xu, S.S.; Shi, C.L.; Cao, M.J.; Liu, G.M. Anti-Food Allergic Activity of Sulfated Polysaccharide from Gracilaria lemaneiformis Is Dependent on Immunosuppression and Inhibition of P38 MAPK. J. Agric. Food Chem. 2016, 64, 4536–4544. [Google Scholar] [CrossRef] [PubMed]
- Khora, S.S.; Navya, P. Bioactive Polysaccharides from Marine Macroalgae; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2020; pp. 121–145. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Y.; Shu, Z.; Liu, M.; Zeng, R.; Wang, Y.; Liu, H.; Cao, M.; Su, W.; Liu, G. Sulfated Oligosaccharide of Gracilaria lemaneiformis protect against Food Allergic Response in Mice by Up-Regulating Immunosuppression. Carbohydr. Polym. 2020, 230, 115567. [Google Scholar] [CrossRef] [PubMed]
- Asada, M.; Sugie, M.; Inoue, M.; Nakagomi, K.; Hongo, S.; Murata, K.; Irie, S.; Takeuchi, T.; Tomizuka, N.; Oka, S. Inhibitory Effect of Alginic Acids on Hyaluronidase and on Histamine Release from Mast Cells. Biosci. Biotechnol. Biochem. 1997, 61, 1030–1032. [Google Scholar] [CrossRef] [PubMed]
- Xing, M.; Qi, C.; Yu, W.; Han, X.; Jiarui, Z.; Qing, Z.; Ji, A.; Song, S. Advances in Research on the Bioactivity of Alginate Oligosaccharides. Mar. Drugs 2020, 18, 144. [Google Scholar] [CrossRef]
- Zhang, C.; Li, M.; Rauf, A.; Khalil, A.A.; Shan, Z.; Chen, C.; Rengasamy, K.R.R.; Wan, C. Process and Applications of Alginate Oligosaccharides with Emphasis on Health Beneficial Perspectives. Crit. Rev. Food Sci. Nutr. 2021, 63, 303–329. [Google Scholar] [CrossRef]
- Jeong, H.J.; Lee, S.A.; Moon, P.D.; Na, H.J.; Park, R.K.; Um, J.Y.; Kim, H.M.; Hong, S.H. Alginic Acid Has Anti-Anaphylactic Effects and Inhibits Inflammatory Cytokine Expression via Suppression of Nuclear Factor-ΚB Activation. Clin. Exp. Allergy 2006, 36, 785–794. [Google Scholar] [CrossRef]
- Yoshida, T.; Hirano, A.; Wada, H.; Takahashi, K.; Hattori, M. Alginic Acid Oligosaccharide Suppresses Th2 Development and IgE Production by Inducing IL-12 Production. Int. Arch. Allergy Immunol. 2004, 133, 239–247. [Google Scholar] [CrossRef]
- Uno, T.; Hattori, M.; Yoshida, T. Oral Administration of Alginic Acid Oligosaccharide Suppresses IgE Production and Inhibits the Induction of Oral Tolerance. Biosci. Biotechnol. Biochem. 2006, 70, 3054–3057. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wu, X.; Wang, Q.; Cai, N.; Zhang, H.; Jiang, Z.; Wan, M.; Oda, T. Immunomodulatory Effects of Alginate Oligosaccharides on Murine Macrophage RAW264.7 Cells and Their Structure-Activity Relationships. J. Agric. Food Chem. 2014, 62, 3168–3176. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Bi, D.C.; Li, C.; Fang, W.S.; Zhou, R.; Li, S.M.; Chi, L.L.; Wan, M.; Shen, L.M. Morphological and Proteomic Analyses Reveal That Unsaturated Guluronate Oligosaccharide Modulates Multiple Functional Pathways in Murine Macrophage RAW264.7 Cells. Mar. Drugs 2015, 13, 1798–1818. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Bi, D.; Zheng, R.; Cai, N.; Xu, H.; Zhou, R.; Lu, J.; Wan, M.; Xu, X. Identification and Activation of TLR4-Mediated Signalling Pathways by Alginate-Derived Guluronate Oligosaccharide in RAW264.7 Macrophages. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef]
- Robb, C.S.; Hobbs, J.K.; Pluvinage, B.; Reintjes, G.; Klassen, L.; Monteith, S.; Giljan, G.; Amundsen, C.; Vickers, C.; Hettle, A.G.; et al. Metabolism of a Hybrid Algal Galactan by Members of the Human Gut Microbiome. Nat. Chem. Biol. 2022, 18, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, K.; Oyamada, C.; Matsushima, R.; Murata, M.; Muraoka, T. Inhibitory Effect of Porphyran, Prepared from Dried “Nori”, on Contact Hypersensitivity in Mice. Biosci. Biotechnol. Biochem. 2005, 69, 1824–1830. [Google Scholar] [CrossRef] [PubMed]
- Yoshizawa, Y.; Enomoto, A.; Todoh, H.; Ametani, A.; Kaminogawa, S. Activation of Murine Macrophages by Polysaccharide Fractions from Marine Algae (Porphyra yezoensis). Biosci. Biotechnol. Biochem. 1993, 57, 1862–1866. [Google Scholar] [CrossRef] [PubMed]
- Yoshizawa, Y.; Tsunehiro, J.; Fukui, F.; Ametani, A.; Kaminogawa, S.; Nomura, K.; Itoh, M. Macrophage Stimulation Activity of the Polysaccharide Fraction from a Marine Alga (Porphyra yezoensis): Structure-Function Relationships and Improved Solubility. Biosci. Biotechnol. Biochem. 1995, 59, 1933–1937. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.; Rathee, P.; Sharma, K.; Chaugule, B.B.; Kar, N.; Bera, T. Immuno-Modulation Effect of Sulphated Polysaccharide (Porphyran) from Porphyra Vietnamensis. Int. J. Biol. Macromol. 2013, 57, 50–56. [Google Scholar] [CrossRef]
- Wei, Y.-J.; Fang, R.-E.; Liu, J.-S.; Chen, Y.-C.; Lin, H.T.V.; Pan, C.-L. Influence of Porphyra derived polysaccharides and oligosaccharides on attenuating food allergy and modulating enteric microflora in mice. Food Agric. Immunol. 2023, 34, 2248419. [Google Scholar] [CrossRef]
- Wang, K.; Siddanakoppalu, P.N.; Ahmed, I.; Pavase, T.R.; Lin, H.; Li, Z. Purification and Identification of Anti-Allergic Peptide from Atlantic Salmon (Salmo Salar) Byproduct Enzymatic Hydrolysates. J. Funct. Foods 2020, 72, 104084. [Google Scholar] [CrossRef]
- Wang, Y.; Hwang, J.; Yadav, D.; Oda, T.; Lee, P.C.W.; Jin, J.O. Inhibitory Effect of Porphyran on Lipopolysaccharide-Induced Activation of Human Immune Cells. Carbohydr. Polym. 2020, 232, 115811. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, B.; Yao, Z. Porphyran, Porphyran Oligosaccharides and Porphyranase: Source, Structure, Preparation Methods and Applications. Algal Res. 2023, 73, 103167. [Google Scholar] [CrossRef]
- Li, Y.T.; Huo, Y.F.; Wang, F.; Wang, C.; Zhu, Q.; Wang, Y.B.; Fu, L.L.; Zhou, T. Improved Antioxidant and Immunomodulatory Activities of Enzymatically Degraded Porphyra haitanensis Polysaccharides. J. Food Biochem. 2020, 44, e13189. [Google Scholar] [CrossRef]
- Li, B.; Lu, F.; Wei, X.; Zhao, R. Fucoidan: Structure and Bioactivity. Molecules 2008, 13, 1671–1695. [Google Scholar] [CrossRef]
- Lee, H.G.; Liyanage, N.M.; Yang, F.; Kim, Y.S.; Lee, S.H.; Ko, S.C.; Yang, H.W.; Jeon, Y.J. Investigation of Physical Characteristics and In Vitro Anti-Inflammatory Effects of Fucoidan from Padina arborescens: A Comprehensive Assessment against Lipopolysaccharide-Induced Inflammation. Mar. Drugs 2024, 22, 109. [Google Scholar] [CrossRef]
- Saito, A.; Yoneda, M.; Yokohama, S.; Okada, M.; Haneda, M.; Nakamura, K. Fucoidan Prevents Concanavalin A-Induced Liver Injury through Induction of Endogenous IL-10 in Mice. Hepatol. Res. 2006, 35, 190–198. [Google Scholar] [CrossRef]
- Maruyama, H.; Tamauchi, H.; Hashimoto, M.; Nakano, T. Suppression of Th2 Immune Responses by Mekabu Fucoidan from Undaria Pinnatifida Sporophylls. Int. Arch. Allergy Immunol. 2005, 137, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Yanase, Y.; Hiragun, T.; Uchida, K.; Ishii, K.; Oomizu, S.; Suzuki, H.; Mihara, S.; Iwamoto, K.; Matsuo, H.; Onishi, N.; et al. Peritoneal Injection of Fucoidan Suppresses the Increase of Plasma IgE Induced by OVA-Sensitization. Biochem. Biophys. Res. Commun. 2009, 387, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, K.; Hiragun, T.; Takahagi, S.; Yanase, Y.; Morioke, S.; Mihara, S.; Kameyoshi, Y.; Hide, M. Fucoidan Suppresses IgE Production in Peripheral Blood Mononuclear Cells from Patients with Atopic Dermatitis. Arch. Dermatol. Res. 2011, 303, 425–431. [Google Scholar] [CrossRef]
- Oomizu, S.; Yanase, Y.; Suzuki, H.; Kameyoshi, Y.; Hide, M. Fucoidan Prevents Cε Germline Transcription and NFκB P52 Translocation for IgE Production in B Cells. Biochem. Biophys. Res. Commun. 2006, 350, 501–507. [Google Scholar] [CrossRef]
- Shibata, Y.; Metzger, W.J.; Myrvik, Q.N. Chitin Particle-Induced Cell-Mediated Immunity Is Inhibited by Soluble Mannan: Mannose Receptor-Mediated Phagocytosis Initiates IL-12 Production. J. Immunol. 1997, 159, 2462–2467. [Google Scholar] [CrossRef] [PubMed]
- Shibata, Y.; Foster, L.A.; Metzger, W.J.; Myrvik, Q.N. Alveolar Macrophage Priming by Intravenous Administration of Chitin Particles, Polymers of N-Acetyl-D-Glucosamine, in Mice. Infect. Immun. 1997, 65, 1734–1741. [Google Scholar] [CrossRef] [PubMed]
- Shibata, Y.; Foster, L.A.; Bradfield, J.F.; Myrvik, Q.N. Oral Administration of Chitin Down-Regulates Serum IgE Levels and Lung Eosinophilia in the Allergic Mouse. J. Immunol. 2000, 164, 1314–1321. [Google Scholar] [CrossRef]
- Shibata, Y.; Honda, I.; Justice, J.P.; Van Scott, M.R.; Nakamura, R.M.; Myrvik, Q.N. Th1 Adjuvant N-Acetyl-D-Glucosamine Polymer up-Regulates Th1 Immunity but down-Regulates Th2 Immunity against a Mycobacterial Protein (MPB-59) in Interleukin-10-Knockout and Wild-Type Mice. Infect. Immun. 2001, 69, 6123–6130. [Google Scholar] [CrossRef]
- Lee, C.G. Chitin, Chitinases and Chitinase-like Proteins in Allergic Inflammation and Tissue Remodeling. Yonsei Med. J. 2009, 50, 22–30. [Google Scholar] [CrossRef]
- Hamajima, K.; Kojima, Y.; Matsui, K.; Toda, Y.; Jounai, N.; Ozaki, T.; Xin, K.Q.; Strong, P.; Okuda, K. Chitin Micro-Particles (CMP): A Useful Adjuvant for Inducing Viral Specific Immunity When Delivered Intranasally with an HIV-DNA Vaccine. Viral Immunol. 2004, 16, 541–547. [Google Scholar] [CrossRef]
- Strong, P.; Clark, H.; Reid, K. Intranasal Application of Chitin Microparticles Down-Regulates Symptoms of Allergic Hypersensitivity to Dermatophagoides pteronyssinus and Aspergillus Fumigatus in Murine Models of Allergy. Clin. Exp. Allergy 2002, 32, 1794–1800. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Rajapakse, N. Enzymatic Production and Biological Activities of Chitosan Oligosaccharides (COS): A Review. Carbohydr. Polym. 2005, 62, 357–368. [Google Scholar] [CrossRef]
- Wen, Z.S.; Xu, Y.L.; Zou, X.T.; Xu, Z.R. Chitosan Nanoparticles Act as an Adjuvant to Promote Both Th1 and Th2 Immune Responses Induced by Ovalbumin in Mice. Mar. Drugs 2011, 9, 1038–1055. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.S.; Kim, J.A.; Ngo, D.H.; Kong, C.S.; Kim, S.K. Protective Effect of Chitosan Oligosaccharides against FcɛRI-Mediated RBL-2H3 Mast Cell Activation. Process Biochem. 2012, 47, 327–330. [Google Scholar] [CrossRef]
- Vo, T.S.; Kong, C.S.; Kim, S.K. Inhibitory Effects of Chitooligosaccharides on Degranulation and Cytokine Generation in Rat Basophilic Leukemia RBL-2H3 Cells. Carbohydr. Polym. 2011, 84, 649–655. [Google Scholar] [CrossRef]
- Chung, M.J.; Park, J.K.; Park, Y. Il Anti-Inflammatory Effects of Low-Molecular Weight Chitosan Oligosaccharides in IgE-Antigen Complex-Stimulated RBL-2H3 Cells and Asthma Model Mice. Int. Immunopharmacol. 2012, 12, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Cunha, S.A.; Pintado, M.E. Bioactive Peptides Derived from Marine Sources: Biological and Functional Properties. Trends Food Sci. Technol. 2022, 119, 348–370. [Google Scholar] [CrossRef]
- Abril, A.G.; Pazos, M.; Villa, T.G.; Calo-Mata, P.; Barros-Velázquez, J.; Carrera, M. Proteomics Characterization of Food-Derived Bioactive Peptides with Anti-Allergic and Anti-Inflammatory Properties. Nutrients 2022, 14, 4400. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.S.; Kim, Y.S.; Ngo, D.H.; Le, P.U.; Kim, S.Y.; Kim, S.K. Spirulina Maxima Peptides Suppress Mast Cell Degranulation via Inactivating Akt and MAPKs Phosphorylation in RBL-2H3 Cells. Int. J. Biol. Macromol. 2018, 118, 2224–2229. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.S.; Ngo, D.H.; Kang, K.H.; Park, S.J.; Kim, S.K. The Role of Peptides Derived from Spirulina Maxima in Downregulation of FcεRI-Mediated Allergic Responses. Mol. Nutr. Food Res. 2014, 58, 2226–2234. [Google Scholar] [CrossRef] [PubMed]
- Cheung, R.C.F.; Ng, T.B.; Wong, J.H. Marine Peptides: Bioactivities and Applications. Mar. Drugs 2015, 13, 4006–4043. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Nath, A.; Gupta, P.; Shulka, M.; Khare, S.; Kundu, B. Antiallergic/Antiasthmatic Activity of Oligopeptide Related to IgE. Pharmacol. Res. 1998, 37, 353–356. [Google Scholar] [CrossRef]
- Ko, S.C.; Lee, D.S.; Park, W.S.; Yoo, J.S.; Yim, M.J.; Qian, Z.J.; Lee, C.M.; Oh, J.; Jung, W.K.; Choi, I.W. Anti-Allergic Effects of a Nonameric Peptide Isolated from the Intestine Gastrointestinal Digests of Abalone (Haliotis Discus Hannai) in Activated HMC-1 Human Mast Cells. Int. J. Mol. Med. 2016, 37, 243–250. [Google Scholar] [CrossRef]
- Wang, J.; Kortner, T.M.; Chikwati, E.M.; Li, Y.; Jaramillo-Torres, A.; Jakobsen, J.V.; Ravndal, J.; Brevik, Ø.J.; Einen, O.; Krogdahl, Å. Gut Immune Functions and Health in Atlantic Salmon (Salmo Salar) from Late Freshwater Stage until One Year in Seawater and Effects of Functional Ingredients: A Case Study from a Commercial Sized Research Site in the Arctic Region. Fish. Shellfish. Immunol. 2020, 106, 1106–1119. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Pramod, S.N.; Pavase, T.R.; Ahmed, I.; Lin, H.; Liu, L.; Tian, S.; Lin, H.; Li, Z. An Overview on Marine Anti-Allergic Active Substances for Alleviating Food-Induced Allergy. Crit. Rev. Food Sci. Nutr. 2019, 60, 2549–2563. [Google Scholar] [CrossRef] [PubMed]
- Chansuwan, W.; Takahashi Upunqui, C.; Chinachoti, P. Anti-inflammatory and anti-allergic activities of Skipjack tuna (Katsuwonus pelamis) dark muscle hydrolysates evaluated in cell culture model. Funct. Foods Health Dis. 2019, 9, 446–465. [Google Scholar] [CrossRef]
- Poole, A.; Song, Y.; Brown, H.; Hart, P.H.; Zhang, G. (Brad) Cellular and Molecular Mechanisms of Vitamin D in Food Allergy. J. Cell Mol. Med. 2018, 22, 3270–3277. [Google Scholar] [CrossRef] [PubMed]
- Suaini, N.H.A.; Zhang, Y.; Vuillermin, P.J.; Allen, K.J.; Harrison, L.C. Immune Modulation by Vitamin D and Its Relevance to Food Allergy. Nutrients 2015, 7, 6088–6108. [Google Scholar] [CrossRef] [PubMed]
- Mabrouk, R.R.; Amer, H.A.; Soliman, D.A.; Mohamed, N.A.; El-Ghoneimy, D.H.; Hamdy, A.M.; Atef, S.A. Vitamin D Increases Percentages of Interleukin-10 Secreting Regulatory T Cells in Children with Cow’s Milk Allergy. Egypt. J. Immunol. 2019, 26, 15–29. [Google Scholar] [PubMed]
- Fakhoury, H.M.A.; Kvietys, P.R.; AlKattan, W.; Anouti, F.A.; Elahi, M.A.; Karras, S.N.; Grant, W.B. Vitamin D and Intestinal Homeostasis: Barrier, Microbiota, and Immune Modulation. J. Steroid Biochem. Mol. Biol. 2020, 200, 105663. [Google Scholar] [CrossRef] [PubMed]
- White, J.H. Emerging Roles of Vitamin D-Induced Antimicrobial Peptides in Antiviral Innate Immunity. Nutrients 2022, 14, 284. [Google Scholar] [CrossRef]
- Giannetti, A.; Bernardini, L.; Cangemi, J.; Gallucci, M.; Masetti, R.; Ricci, G. Role of Vitamin D in Prevention of Food Allergy in Infants. Front. Pediatr. 2020, 8, 447. [Google Scholar] [CrossRef]
- Onodera, K.I.; Konishi, Y.; Taguchi, T.; Kiyoto, S.; Tominaga, A. Peridinin from the Marine Symbiotic Dinoflagellate, Symbiodinium Sp., Regulates Eosinophilia in Mice. Mar. Drugs 2014, 12, 1773–1787. [Google Scholar] [CrossRef]
- Remirez, D.; Ledón, N.; González, R. Role of Histamine in the Inhibitory Effects of Phycocyanin in Experimental Models of Allergic Inflammatory Response. Mediat. Inflamm. 2002, 11, 81–85. [Google Scholar] [CrossRef]
- Romay, C.; Gonzalez, R.; Ledon, N.; Remirez, D.; Rimbau, V. C-Phycocyanin: A Biliprotein with Antioxidant, Anti-Inflammatory and Neuroprotective Effects. Curr. Protein Pept. Sci. 2005, 4, 207–216. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Y.; Cao, M.; Pan, T.; Yang, Y.; Mao, H.; Sun, L.; Liu, G. Anti-Allergic Activity of R-Phycocyanin from Porphyra haitanensis in Antigen-Sensitized Mice and Mast Cells. Int. Immunopharmacol. 2015, 25, 465–473. [Google Scholar] [CrossRef]
- Yang, H.N.; Lee, E.H.; Kim, H.M. Spirulina Platensis Inhibits Anaphaylactic Reaction. Life Sci. 1997, 61, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Li, Z.; Wu, Y.; Yang, X.; Li, L.; Chen, S.; Qi, B.; Wang, Y.; Li, C.; Zhao, Y. Exploring Plant Polyphenols as Anti-Allergic Functional Products to Manage the Growing Incidence of Food Allergy. Front. Nutr. 2023, 10, 1102225. [Google Scholar] [CrossRef]
- Sugiura, Y.; Katsuzaki, H.; Imai, K.; Amano, H. The Anti-Allergic and Anti-Inflammatory Effects of Phlorotannins from the Edible Brown Algae, Ecklonia Sp. and Eisenia Sp. Nat. Prod. Commun. 2021, 16, 1934578X211060924. [Google Scholar]
- Chen, N.; Zhang, S.; Javeed, A.; Jian, C.; Liu, Y.; Sun, J.; Wu, S.; Fu, P.; Han, B. Structures and Anti-Allergic Activities of Natural Products from Marine Organisms. Mar. Drugs 2023, 21, 152. [Google Scholar] [CrossRef] [PubMed]
- Jiao, W.H.; Cheng, B.H.; Shi, G.H.; Chen, G.D.; Gu, B.B.; Zhou, Y.J.; Hong, L.L.; Yang, F.; Liu, Z.Q.; Qiu, S.Q.; et al. Dysivillosins A–D, Unusual Anti-Allergic Meroterpenoids from the Marine Sponge Dysidea villosa. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Hong, L.L.; Yu, H.B.; Wang, J.; Jiao, W.H.; Cheng, B.H.; Yang, F.; Zhou, Y.J.; Gu, B.B.; Song, S.J.; Lin, H.W. Unusual Anti-Allergic Diterpenoids from the Marine Sponge Hippospongia lachne. Sci. Rep. 2017, 7, srep43138. [Google Scholar] [CrossRef]
- Bramley, A.M.; Langlands, J.M.; Jones, A.K.; Burgoyne, D.L.; Li, Y.; Andersen, R.J.; Salari, H. Effects of IZP-94005 (Contignasterol) on Antigen-induced Bronchial Responsiveness in Ovalbumin-sensitized Guinea-pigs. Br. J. Pharmacol. 1995, 115, 1433–1438. [Google Scholar] [CrossRef]
- Shoji, N.; Umeyama, A.; Motoki, S.; Arihara, S.; Ishida, T.; Nomoto, K.; Kobayashi, J.; Takei, M. Potent Inhibitors of Histamine Release, Two Novel Triterpenoids from the Okinawan Marine Sponge Penares incrustans. J. Nat. Prod. 1992, 55, 1682–1685. [Google Scholar] [CrossRef] [PubMed]
- Takei, M.; Umeyama, A.; Shoji, N.; Arihara, S.; Endo, K. Mechanism of Inhibition of IgE-Dependent Histamine Release from Rat Mast Cells by Xestobergsterol A from the Okinawan Marine Sponge Xestospongia Bergquistia. Experientia 1993, 49, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Pozharitskaya, O.N.; Shikov, A.N.; Makarova, M.N.; Ivanova, S.A.; Kosman, V.M.; Makarov, V.G.; Bazgier, V.; Berka, K.; Otyepka, M.; Ulrichová, J. Antiallergic Effects of Pigments Isolated from Green Sea Urchin (Strongylocentrotus droebachiensis) Shells. Planta Med. 2013, 79, 1698–1704. [Google Scholar] [CrossRef] [PubMed]
- Shoji, N.; Umeyama, A.; Takei, M.; Arihara, S. Potent Inhibitors of Histamine Release: Polyhydroxylated Sterols from the Okinawan Soft Coral Sinularia Abrupta. J. Pharm. Sci. 1994, 83, 761–762. [Google Scholar] [CrossRef] [PubMed]
- Mizumoto, S.; Murakoshi, S.; Kalayanamitra, K.; Deepa, S.S.; Fukui, S.; Kongtawelert, P.; Yamada, S.; Sugahara, K. Highly Sulfated Hexasaccharide Sequences Isolated from Chondroitin Sulfate of Shark Fin Cartilage: Insights into the Sugar Sequences with Bioactivities. Glycobiology 2013, 23, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Takeda, N.; Horai, S.; Tamura, J.I. Facile Analysis of Contents and Compositions of the Chondroitin Sulfate/Dermatan Sulfate Hybrid Chain in Shark and Ray Tissues. Carbohydr. Res. 2016, 424, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Park, D.K.; Cho, M.; Park, H.J. Anti-Inflammatory and Anti-Allergic Activities of Sea Cucumber (Stichopus japonicus) Extract. Food Sci. Biotechnol. 2013, 22, 1661–1666. [Google Scholar] [CrossRef]
- Harunari, E.; Imada, C.; Igarashi, Y.; Fukuda, T.; Terahara, T.; Kobayashi, T. Hyaluromycin, a New Hyaluronidase Inhibitor of Polyketide Origin from Marine Streptomyces Sp. Mar. Drugs 2014, 12, 491–507. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Liu, Q.; Xia, J.M.; Xie, C.L.; Luo, Z.H.; Shao, Z.; Liu, G.; Yang, X.W. Polyketides from the Deep-Sea-Derived Fungus Graphostroma Sp. MCCC 3A00421 Showed Potent Antifood Allergic Activities. J. Agric. Food Chem. 2018, 66, 1369–1376. [Google Scholar] [CrossRef]
- Niu, S.; Xie, C.L.; Xia, J.M.; Liu, Q.M.; Peng, G.; Liu, G.M.; Yang, X.W. Botryotins A-H, Tetracyclic Diterpenoids Representing Three Carbon Skeletons from a Deep-Sea-Derived Botryotinia Fuckeliana. Org. Lett. 2020, 22, 580–583. [Google Scholar] [CrossRef]
- Shu, Z.; Liu, Q.; Xing, C.; Zhang, Y.; Zhou, Y.; Zhang, J.; Liu, H.; Cao, M.; Yang, X.; Liu, G. Viridicatol Isolated from Deep-Sea Penicillium Griseofulvum Alleviates Anaphylaxis and Repairs the Intestinal Barrier in Mice by Suppressing Mast Cell Activation. Mar. Drugs 2020, 18, 517. [Google Scholar] [CrossRef] [PubMed]
- Uras, I.S.; Ebada, S.S.; Korinek, M.; Albohy, A.; Abdulrazik, B.S.; Wang, Y.H.; Chen, B.H.; Horng, J.T.; Lin, W.; Hwang, T.L.; et al. Anti-Inflammatory, Antiallergic, and COVID-19 Main Protease (MPRO) Inhibitory Activities of Butenolides from a Marine-Derived Fungus Aspergillus Terreus. Molecules 2021, 26, 3354. [Google Scholar] [CrossRef] [PubMed]
Source/Allergen | Peptide Sequence | Activity | Reference |
---|---|---|---|
Spirulina maxima | LDAVNR—MMLDF—ADSDGK | ↓ Histamine ↓ intracelular Ca2+ | [109,110] |
Mollusk/Abalone intestine | PFNQGTFAS | ↓ histamine, ↓ PCA ↓ inflammatory cytokines (TNF-α, IL-1β and IL-6) | [113] |
Fish/Atlantic salmon byproduct | TPEVHIAVDKF | ↓ β-hexosaminidase for IgE-mediated RBL-2H3 cell | [84,114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abril, A.G.; Carrera, M.; Pazos, M. Marine Bioactive Compounds with Functional Role in Immunity and Food Allergy. Nutrients 2024, 16, 2592. https://doi.org/10.3390/nu16162592
Abril AG, Carrera M, Pazos M. Marine Bioactive Compounds with Functional Role in Immunity and Food Allergy. Nutrients. 2024; 16(16):2592. https://doi.org/10.3390/nu16162592
Chicago/Turabian StyleAbril, Ana G., Mónica Carrera, and Manuel Pazos. 2024. "Marine Bioactive Compounds with Functional Role in Immunity and Food Allergy" Nutrients 16, no. 16: 2592. https://doi.org/10.3390/nu16162592
APA StyleAbril, A. G., Carrera, M., & Pazos, M. (2024). Marine Bioactive Compounds with Functional Role in Immunity and Food Allergy. Nutrients, 16(16), 2592. https://doi.org/10.3390/nu16162592