Persimmon Fiber-Rich Ingredients Promote Anti-Inflammatory Responses and the Growth of Beneficial Anti-Inflammatory Firmicutes Species from the Human Colon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparations of Soluble Fiber-Rich Fractions from the Persimmon Fruits
2.2. Chemicals and Reagents
2.3. Analysis of Free Sugars Composition of Persimmon Fiber-Rich Fractions
2.4. Analysis of Anthocyanin Composition of Persimmon Fiber-Rich Fractions
2.5. Analysis of Other Phenolic Molecules Composition of Persimmon Fiber-Rich Fractions
2.6. Preparation of Bacterial Cultures and Assessment of Growth on Persimmon Fiber-Rich Fractions Using a Microtitre Plate Assay
2.7. Growth Rate Determinations
2.8. Quantification of Short-Chain Fatty Acid Analysis
2.9. Mammalian Cell Culture
2.10. Persimmon Fiber-Rich Fractions Preparation for Cell Culture Studies
2.11. Viability and Cytotoxicity Assays
2.12. Inflammatory Cytokine Tests
2.13. Cellular Antioxidant Enzyme Activity Assays
2.14. Statistical Analysis
3. Results
3.1. Composition of the Soluble Persimmon Fiber-Rich Fractions
3.2. Effects of Persimmon Fiber-Rich Fractions on Cell Viability
3.3. Anti-Inflammatory Effects of Persimmon Fiber-Rich Fractions
3.4. Effects of Persimmon Fiber-Rich Fractions on the Activity of Antioxidant Enzymes
3.5. Effects of Persimmon Fiber-Rich Fractions on Bacterial Growth
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matheus, J.R.V.; de Andrade, C.J.; Miyahira, R.F.; Fai, A.E.C. Persimmon (Diospyros Kaki L.): Chemical Properties, Bioactive Compounds and Potential Use in the Development of New Products—A Review. Food Rev. Int. 2022, 38, 384–401. [Google Scholar] [CrossRef]
- Pérez-Burillo, S.; Oliveras, M.J.; Quesada, J.; Rufián-Henares, J.A.; Pastoriza, S. Relationship between Composition and Bioactivity of Persimmon and Kiwifruit. Food Res. Int. 2018, 105, 461–472. [Google Scholar] [CrossRef] [PubMed]
- FAO World Food and Agriculture-Statistical Yearbook. Available online: http://www.fao.org/faostat/es/#data/QC (accessed on 1 July 2024).
- Conesa, C.; Laguarda-Miró, N.; Fito, P.; Seguí, L. Evaluation of Persimmon (Diospyros Kaki Thunb. Cv. Rojo Brillante) Industrial Residue as a Source for Value Added Products. Waste Biomass Valorization 2020, 11, 3749–3760. [Google Scholar] [CrossRef]
- MAPA (Ministerio de Agricultura, P. y A. MAPA (Ministerio de Agricultura, Pesca y Alimentación). Superficies y Producciones Anuales de Cultivos-Anuario de Estadística. Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/superficies-producciones-anuales-cultivos/ (accessed on 1 July 2024).
- Sharma, S.K.; Bansal, S.; Mangal, M.; Dixit, A.K.; Gupta, R.K.; Mangal, A.K. Utilization of Food Processing By-Products as Dietary, Functional, and Novel Fiber: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1647–1661. [Google Scholar] [CrossRef]
- Lee, J.; Kim, M.; Jung, J.; Heo, J.W.; Lee, K.H.; Kim, S.; Son, H.; Chun, Y.; Yoo, H.Y. Valorization of Persimmon Calyx, an Industrial Biowaste, as a Potential Resource for Antioxidant Production. Environ. Technol. Innov. 2023, 30, 103038. [Google Scholar] [CrossRef]
- Baiano, A. Recovery of Biomolecules from Food Wastes—A Review. Molecules 2014, 19, 14821–14842. [Google Scholar] [CrossRef] [PubMed]
- Torres-León, C.; Ramírez-Guzman, N.; Londoño-Hernandez, L.; Martinez-Medina, G.A.; Díaz-Herrera, R.; Navarro-Macias, V.; Alvarez-Pérez, O.B.; Picazo, B.; Villarreal-Vázquez, M.; Ascacio-Valdes, J.; et al. Food Waste and Byproducts: An Opportunity to Minimize Malnutrition and Hunger in Developing Countries. Front. Sustain. Food Syst. 2018, 2, 52. [Google Scholar] [CrossRef]
- Gea-Botella, S.; Agulló, L.; Martí, N.; Martínez-Madrid, M.C.; Lizama, V.; Martín-Bermudo, F.; Berná, G.; Saura, D.; Valero, M. Carotenoids from Persimmon Juice Processing. Food Res. Int. 2021, 141, 109882. [Google Scholar] [CrossRef] [PubMed]
- González, C.; Hernando, I.; Moraga, G. In vitro and in vivo digestion of persimmon and derived products: A Review. Foods 2021, 10, 3083. [Google Scholar] [CrossRef]
- Direito, R.; Rocha, J.; Sepodes, B.; Eduardo-Figueira, M. From Diospyros kaki L. (Persimmon) phytochemical profile and health impact to new product perspectives and waste valorization. Nutrients 2021, 13, 3283. [Google Scholar] [CrossRef]
- Hur, S.J.; Lee, S.Y.; Kim, Y.-C.; Choi, I.; Kim, G.-B. Effect of Fermentation on the Antioxidant Activity in Plant-Based Foods. Food Chem. 2014, 160, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Sadh, P.K.; Kumar, S.; Chawla, P.; Duhan, J.S. Fermentation: A Boon for Production of Bioactive Compounds by Processing of Food Industries Wastes (By-Products). Molecules 2018, 23, 2560. [Google Scholar] [CrossRef] [PubMed]
- Flint, H.J.; Scott, K.P.; Louis, P.; Duncan, S.H. The Role of the Gut Microbiota in Nutrition and Health. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in Health and Diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Cho, I.; Blaser, M.J. The Human Microbiome: At the Interface of Health and Disease. Nat. Rev. Genet. 2012, 13, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.J.; Vangay, P.; Al-Ghalith, G.A.; Hillmann, B.M.; Ward, T.L.; Shields-Cutler, R.R.; Kim, A.D.; Shmagel, A.K.; Syed, A.N.; Walter, J.; et al. Daily Sampling Reveals Personalized Diet-Microbiome Associations in Humans. Cell Host Microbe 2019, 25, 789–802.e5. [Google Scholar] [CrossRef]
- Cryan, J.F.; Mazmanian, S.K. Microbiota–Brain Axis: Context and Causality. Science (1979) 2022, 376, 938–939. [Google Scholar] [CrossRef] [PubMed]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet Rapidly and Reproducibly Alters the Human Gut Microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef]
- Carlson, J.L.; Erickson, J.M.; Lloyd, B.B.; Slavin, J.L. Health Effects and Sources of Prebiotic Dietary Fiber. Curr. Dev. Nutr. 2018, 2, nzy005. [Google Scholar] [CrossRef]
- Cani, P.D.; Bibiloni, R.; Knauf, C.; Waget, A.; Neyrinck, A.M.; Delzenne, N.M.; Burcelin, R. Changes in Gut Microbiota Control Metabolic Endotoxemia-Induced Inflammation in High-Fat Diet–Induced Obesity and Diabetes in Mice. Diabetes 2008, 57, 1470–1481. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, N.; Su, X.; Gao, Y.; Yang, R. Gut-Microbiota-Derived Metabolites Maintain Gut and Systemic Immune Homeostasis. Cells 2023, 12, 793. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Lin, K.; Li, K.; Deng, X.; Li, C. Reshaped Fecal Gut Microbiota Composition by the Intake of High Molecular Weight Persimmon Tannin in Normal and High-Cholesterol Diet-Fed Rats. Food Funct. 2018, 9, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Xu, M.; Li, Q.; Wang, T.; Zhang, B.; Zhao, H.; Fu, J. The Beneficial Effects of Polysaccharide Obtained from Persimmon (Diospyros Kaki L.) on the Proliferation of Lactobacillus and Gut Microbiota. Int. J. Biol. Macromol. 2021, 182, 1874–1882. [Google Scholar] [CrossRef] [PubMed]
- Hwang, K.C.; Shin, H.Y.; Kim, W.J.; Seo, M.S.; Kim, H. Effects of a High-Molecular-Weight Polysaccharides Isolated from Korean Persimmon on the Antioxidant, Anti-Inflammatory, and Antiwrinkle Activity. Molecules 2021, 26, 1600. [Google Scholar] [CrossRef]
- Dong, W.; Yang, Z. Association of Dietary Fiber Intake with Myocardial Infarction and Stroke Events in US Adults: A Cross-Sectional Study of NHANES 2011–2018. Front. Nutr. 2022, 9, 936926. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.S.F.; Walker, A.W.; Louis, P.; Parkhill, J.; Vermeiren, J.; Bosscher, D.; Duncan, S.H.; Flint, H.J. Modulation of the Human Gut Microbiota by Dietary Fibres Occurs at the Species Level. BMC Biol. 2016, 14, 3. [Google Scholar] [CrossRef]
- Lindstad, L.J.; Lo, G.; Leivers, S.; Lu, Z.; Michalak, L.; Pereira, G.V.; Røhr, Å.K.; Martens, E.C.; McKee, L.S.; Louis, P.; et al. Human Gut Faecalibacterium prausnitzii Deploys a Highly Efficient Conserved System to Cross-Feed on β-Mannan-Derived Oligosaccharides. mBio 2021, 12, e0362820. [Google Scholar] [CrossRef] [PubMed]
- Louis, P.; Hold, G.L.; Flint, H.J. The Gut Microbiota, Bacterial Metabolites and Colorectal Cancer. Nat. Rev. Microbiol. 2014, 12, 661–672. [Google Scholar] [CrossRef]
- Human Microbiome Project Consortium. Structure, Function and Diversity of the Healthy Human Microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef]
- Russell, W.R.; Burkitt, M.J.; Scobbie, L.; Chesson, A. Radical Formation and Coupling of Hydroxycinnamic Acids Containing 1,2-Dihydroxy Substituents. Bioorganic Chem. 2003, 31, 206–215. [Google Scholar] [CrossRef]
- Zhang, Z.; Kou, X.; Fugal, K.; McLaughlin, J. Comparison of HPLC Methods for Determination of Anthocyanins and Anthocyanidins in Bilberry Extracts. J. Agric. Food Chem. 2004, 52, 688–691. [Google Scholar] [CrossRef]
- Neacsu, M.; Christie, J.S.; Duncan, G.J.; Vaughan, N.J.; Russell, W.R. Buckwheat, Fava Bean and Hemp Flours Fortified with Anthocyanins and Other Bioactive Phytochemicals as Sustainable Ingredients for Functional Food Development. Nutraceuticals 2022, 2, 150–161. [Google Scholar] [CrossRef]
- Russell, W.R.; Scobbie, L.; Labat, A.; Duthie, G.G. Selective Bio-availability of Phenolic Acids from Scottish Strawberries. Mol. Nutr. Food Res. 2009, 53. [Google Scholar] [CrossRef]
- Neacsu, M.; Vaughan, N.J.; Perri, V.; Duncan, G.J.; Walker, R.; Coleman, M.; Russell, W.R. Nutritional and Chemical Profiling of UK-Grown Potato Bean (Apios americana Medik) Reveal Its Potential for Diet Biodiversification and Revalorisation. J. Food Compos. Anal. 2021, 98, 103821. [Google Scholar] [CrossRef]
- Miyazaki, K.; Martin, J.C.; Marinsek-Logar, R.; Flint, H.J. Degradation and Utilization of Xylans by the Rumen Anaerobe Prevotella bryantii (Formerly P. ruminicola subsp. Brevis) B14. Anaerobe 1997, 3, 373–381. [Google Scholar] [CrossRef]
- Pirt, S. Principles of Microbe and Cell Cultivation; Blackwell Scientific: Oxford, UK, 1975. [Google Scholar]
- Richardson, A.J.; Calder, A.G.; Stewart, C.S.; Smith, A. Simultaneous Determination of Volatile and Non-Volatile Acidic Fermentation Products of Anaerobes by Capillary Gas Chromatography. Lett. Appl. Microbiol. 1989, 9, 5–8. [Google Scholar] [CrossRef]
- Rampersad, S.N. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors 2012, 12, 12347–12360. [Google Scholar] [CrossRef]
- Witol, A.; Lemire, M.; Dudonné, S.; Walshe-Roussel, B.; Desjardins, Y.; Cuerrier, A.; Harris, C.S. Profiling the Phenolic Acids, Flavonoids and Tannins in Skunk Currants (Ribes glandulosum) of Northern Québec, Canada. J. Berry Res. 2018, 8, 119–127. [Google Scholar] [CrossRef]
- da Silva, A.P.G.; Zia, S.; John, O.D.; de Souza, M.C.; da Silva, L.C.; Sganzela, W.G. Delphinidin: Sources, Biosynthesis, Bioavailability, Bioactivity, and Pharmacology. In Handbook of Dietary Flavonoids; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–31. [Google Scholar]
- Husain, A.; Chanana, H.; Khan, S.A.; Dhanalekshmi, U.M.; Ali, M.; Alghamdi, A.A.; Ahmad, A. Chemistry and Pharmacological Actions of Delphinidin, a Dietary Purple Pigment in Anthocyanidin and Anthocyanin Forms. Front. Nutr. 2022, 9, 746881. [Google Scholar] [CrossRef]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef]
- Salazar-Bermeo, J.; Moreno-Chamba, B.; Martínez-Madrid, M.C.; Saura, D.; Valero, M.; Martí, N. Potential of Persimmon Dietary Fiber Obtained from Byproducts as Antioxidant, Prebiotic and Modulating Agent of the Intestinal Epithelial Barrier Function. Antioxidants 2021, 10, 1668. [Google Scholar] [CrossRef]
- Emran, T.B.; Islam, F.; Mitra, S.; Paul, S.; Nath, N.; Khan, Z.; Das, R.; Chandran, D.; Sharma, R.; Lima, C.M.G.; et al. Pectin: A Bioactive Food Polysaccharide with Cancer Preventive Potential. Molecules 2022, 27, 7405. [Google Scholar] [CrossRef]
- Palko-Łabuz, A.; Maksymowicz, J.; Sobieszczańska, B.; Wikiera, A.; Skonieczna, M.; Wesołowska, O.; Środa-Pomianek, K. Newly Obtained Apple Pectin as an Adjunct to Irinotecan Therapy of Colorectal Cancer Reducing E. coli Adherence and β-Glucuronidase Activity. Cancers 2021, 13, 2952. [Google Scholar] [CrossRef]
- Lordan, C.; Thapa, D.; Ross, R.P.; Cotter, P.D. Potential for Enriching Next-Generation Health-Promoting Gut Bacteria through Prebiotics and Other Dietary Components. Gut Microbes 2020, 11, 1–20. [Google Scholar] [CrossRef]
- Sokol, H.; Pigneur, B.; Watterlot, L.; Lakhdari, O.; Bermúdez-Humarán, L.G.; Gratadoux, J.-J.; Blugeon, S.; Bridonneau, C.; Furet, J.-P.; Corthier, G.; et al. Faecalibacterium prausnitzii Is an Anti-Inflammatory Commensal Bacterium Identified by Gut Microbiota Analysis of Crohn Disease Patients. Proc. Natl. Acad. Sci. USA 2008, 105, 16731–16736. [Google Scholar] [CrossRef]
- Leylabadlo, H.E.; Ghotaslou, R.; Feizabadi, M.M.; Farajnia, S.; Moaddab, S.Y.; Ganbarov, K.; Khodadadi, E.; Tanomand, A.; Sheykhsaran, E.; Yousefi, B.; et al. The Critical Role of Faecalibacterium prausnitzii in Human Health: An Overview. Microb. Pathog. 2020, 149, 104344. [Google Scholar] [CrossRef]
- Alameddine, J.; Godefroy, E.; Papargyris, L.; Sarrabayrouse, G.; Tabiasco, J.; Bridonneau, C.; Yazdanbakhsh, K.; Sokol, H.; Altare, F.; Jotereau, F. Faecalibacterium prausnitzii Skews Human DC to Prime IL10-Producing T Cells Through TLR2/6/JNK Signaling and IL-10, IL-27, CD39, and IDO-1 Induction. Front. Immunol. 2019, 10, 143. [Google Scholar] [CrossRef]
- Singh, V.; Lee, G.; Son, H.; Koh, H.; Kim, E.S.; Unno, T.; Shin, J.-H. Butyrate Producers, “The Sentinel of Gut”: Their Intestinal Significance with and beyond Butyrate, and Prospective Use as Microbial Therapeutics. Front. Microbiol. 2023, 13, 1103836. [Google Scholar] [CrossRef]
- Klepinina, L.; Klepinin, A.; Truu, L.; Chekulayev, V.; Vija, H.; Kuus, K.; Teino, I.; Pook, M.; Maimets, T.; Kaambre, T. Colon cancer cell differentiation by sodium butyrate modulates metabolic plasticity of Caco-2 cells via alteration of phosphotransfer network. PLoS ONE 2021, 16, e0245348. [Google Scholar] [CrossRef]
- Mitsui, R.; Ono, S.; Karaki, S.; Kuwahara, A. Neural and non-neural mediation of propionate-induced contractile responses in the rat distal colon. Neurogastroenterol. Motil. 2005, 17, 585–594. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, L.; Yi, D.; Ding, B.; Chen, X.; Wang, Q.; Zhu, H.; Liu, Y.; Yin, Y.; Gong, J.; et al. Dietary supplementation with tributyrin alleviates intestinal injury in piglets challenged with intrarectal administration of acetic acid. Br. J. Nutr. 2014, 111, 1748–1758. [Google Scholar] [CrossRef]
- Gao, Z.; Yin, J.; Zhang, J.; Ward, R.E.; Martin, R.J.; Lefevre, M.; Cefalu, W.T.; Ye, J. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009, 58, 1509–1517. [Google Scholar] [CrossRef]
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef]
Compound (g/100 g) | Fiber-Rich Persimmon Fraction | |||
---|---|---|---|---|
RB | SH | RBF | SHF | |
Fructose | 18.47 ± 0.10 * | 8.62 ± 0.92 | 0 *** | 0 *** |
Glucose | 20.31 ± 1.23 *** | 4.83 ± 0.48 | 0 *** | 0 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Bermudo, L.; Moreno-Chamba, B.; Salazar-Bermeo, J.; Hayward, N.J.; Morris, A.; Duncan, G.J.; Russell, W.R.; Cárdenas, A.; Ortega, Á.; Escudero-López, B.; et al. Persimmon Fiber-Rich Ingredients Promote Anti-Inflammatory Responses and the Growth of Beneficial Anti-Inflammatory Firmicutes Species from the Human Colon. Nutrients 2024, 16, 2518. https://doi.org/10.3390/nu16152518
López-Bermudo L, Moreno-Chamba B, Salazar-Bermeo J, Hayward NJ, Morris A, Duncan GJ, Russell WR, Cárdenas A, Ortega Á, Escudero-López B, et al. Persimmon Fiber-Rich Ingredients Promote Anti-Inflammatory Responses and the Growth of Beneficial Anti-Inflammatory Firmicutes Species from the Human Colon. Nutrients. 2024; 16(15):2518. https://doi.org/10.3390/nu16152518
Chicago/Turabian StyleLópez-Bermudo, Lucía, Bryan Moreno-Chamba, Julio Salazar-Bermeo, Nicholas J. Hayward, Amanda Morris, Gary J. Duncan, Wendy R. Russell, Antonio Cárdenas, Ángeles Ortega, Blanca Escudero-López, and et al. 2024. "Persimmon Fiber-Rich Ingredients Promote Anti-Inflammatory Responses and the Growth of Beneficial Anti-Inflammatory Firmicutes Species from the Human Colon" Nutrients 16, no. 15: 2518. https://doi.org/10.3390/nu16152518
APA StyleLópez-Bermudo, L., Moreno-Chamba, B., Salazar-Bermeo, J., Hayward, N. J., Morris, A., Duncan, G. J., Russell, W. R., Cárdenas, A., Ortega, Á., Escudero-López, B., Berná, G., Martí Bruña, N., Duncan, S. H., Neacsu, M., & Martin, F. (2024). Persimmon Fiber-Rich Ingredients Promote Anti-Inflammatory Responses and the Growth of Beneficial Anti-Inflammatory Firmicutes Species from the Human Colon. Nutrients, 16(15), 2518. https://doi.org/10.3390/nu16152518