Effect of Intake of Bifidobacteria and Dietary Fiber on Resting Energy Expenditure: A Randomized, Placebo-Controlled, Double-Blind, Parallel-Group Comparison Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Management of Participants
2.3. Test Foods
2.4. Experimental Design
2.5. Indirect Calorimetry
2.6. Anthropometric Measurements and Body Composition
2.7. Fecal Samples
2.8. Fecal Short-Chain Fatty Acids
2.9. Fecal DNA Extraction
2.10. Fecal Bifidobacteria
2.11. Statistical Analysis
3. Results
3.1. Subjects (Analysis Target Population)
3.2. Dietary Composition
3.3. Indirect Calorimetry
3.4. Fecal Bifidobacteria
3.5. Fecal Short-Chain Fatty Acids
3.6. Anthropometric Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 25 April 2024).
- GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef] [PubMed]
- Okunogbe, A.; Nugent, R.; Spencer, G.; Powis, J.; Ralston, J.; Wilding, J. Economic impacts of overweight and obesity: Current and future estimates for 161 countries. BMJ Glob. Health 2022, 7, e009773. [Google Scholar] [CrossRef] [PubMed]
- Rocha, T.X.; Melson, E.; Zamora, J.; Fernandez-Felix, B.M.; Arlt, W.; Thangaratinam, S. Sex-specific obesity and cardiometabolic disease risks in low- and middle-income countries: A meta-analysis involving 3,916,276 individuals. J. Clin. Endocrinol. Metab. 2024, 109, 1145–1153. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.J.X.; Geisler, C. From the past to future: From energy expenditure to energy intake to energy expenditure. Eur. J. Clin. Nutr. 2017, 71, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Westerterp, K.R. Diet induced thermogenesis. Nutr. Metab. 2004, 1, 5. [Google Scholar] [CrossRef] [PubMed]
- Ravussin, E. Physiology. A NEAT way to control weight? Science 2005, 307, 530–531. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.; Smith, S.; Linderman, J.; Courville, A.B.; Brychta, R.J.; Dieckmann, W.; Werner, C.D.; Chen, K.Y.; Celi, F.S. Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes 2014, 63, 3686–3698. [Google Scholar] [CrossRef] [PubMed]
- Yoneshiro, T.; Aita, S.; Matsushita, M.; Kayahara, T.; Kameya, T.; Kawai, Y.; Iwanaga, T.; Saito, M. Recruited brown adipose tissue as an antiobesity agent in humans. J. Clin. Investig. 2013, 123, 3404–3408. [Google Scholar] [CrossRef] [PubMed]
- Kajimura, S.; Saito, M. A new era in brown adipose tissue biology: Molecular control of brown fat development and energy homeostasis. Annu. Rev. Physiol. 2014, 76, 225–249. [Google Scholar] [CrossRef]
- Saito, M.; Yoneshiro, T.; Matsushita, M. Activation and recruitment of brown adipose tissue by cold exposure and food ingredients in humans. Best Pract. Res. Clin. Endocrinol. Metab. 2016, 30, 537–547. [Google Scholar] [CrossRef]
- Gao, Z.; Yin, J.; Zhang, J.; Ward, R.E.; Martin, R.J.; Lefevre, M.; Cefalu, W.T.; Ye, J. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009, 58, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- Hanatani, S.; Motoshima, H.; Takaki, Y.; Kawasaki, S.; Igata, M.; Matsumura, T.; Kondo, T.; Senokuchi, T.; Ishii, N.; Kawashima, J.; et al. Acetate alters expression of genes involved in beige adipogenesis in 3T3-L1 cells and obese KK-Ay mice. J. Clin. Biochem. Nutr. 2016, 59, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Canfora, E.E.; van der Beek, C.M.; Jocken, J.W.E.; Goossens, G.H.; Holst, J.J.; Olde Damink, S.W.M.; Lenaerts, K.; Dejong, C.H.C.; Blaak, E.E. Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: A randomized crossover trial. Sci. Rep. 2017, 7, 2360. [Google Scholar] [CrossRef] [PubMed]
- Tremaroli, V.; Bäckhed, F. Functional interactions between the gut microbiota and host metabolism. Nature 2012, 489, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Flint, H.J.; Duncan, S.H.; Scott, K.P.; Louis, P. Links between diet, gut microbiota composition and gut metabolism. Proc. Nutr. Soc. 2015, 74, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Kong, Q.; Cui, S.; Li, X.; Gu, Z.; Zhao, J.; Zhang, H.; Chen, W.; Wang, G. Bifidobacterium adolescentis isolated from different hosts modifies the intestinal microbiota and displays differential metabolic and immunomodulatory properties in mice fed a high-fat diet. Nutrients 2021, 13, 1017. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhong, X.; Lin, S.; Xu, H.; Liang, X.; Wang, Y.; Xu, J.; Wang, K.; Guo, X.; Wang, J.; et al. Limosilactobacillus reuteri and caffeoylquinic acid synergistically promote adipose browning and ameliorate obesity-associated disorders. Microbiome 2022, 10, 226. [Google Scholar] [CrossRef] [PubMed]
- Jin, A.; Kan, Z.; Tan, Q.; Shao, J.; Han, Q.; Chang, Y.; An, N.; Yi, M. Supplementation with food-derived oligopeptides promotes lipid metabolism in young male cyclists: A randomized controlled crossover trial. J. Int. Soc. Sports Nutr. 2023, 20, 2254741. [Google Scholar] [CrossRef] [PubMed]
- van der Beek, C.M.; Canfora, E.E.; Kip, A.M.; Gorissen, S.H.M.; Olde Damink, S.W.M.; van Eijk, H.M.; Holst, J.J.; Blaak, E.E.; Dejong, C.H.C.; Lenaerts, K. The prebiotic inulin improves substrate metabolism and promotes short-chain fatty acid production in overweight to obese men. Metabolism 2018, 87, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Ishizuka, A.; Tomizuka, K.; Aoki, R.; Nishijima, T.; Saito, Y.; Inoue, R.; Ushida, K.; Mawatari, T.; Ikeda, T. Effects of administration of Bifidobacterium animalis subsp. lactis GCL2505 on defecation frequency and bifidobacterial microbiota composition in humans. J. Biosci. Bioeng. 2012, 113, 587–591. [Google Scholar] [CrossRef]
- Tanaka, Y.; Takami, K.; Nishijima, T.; Aoki, R.; Mawatari, T.; Ikeda, T. Short- and long-term dynamics in the intestinal microbiota following ingestion of Bifidobacterium animalis subsp. lactis GCL2505. Biosci. Microbiota Food Health 2015, 34, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Aoki, R.; Kamikado, K.; Suda, W.; Takii, H.; Mikami, Y.; Suganuma, N.; Hattori, M.; Koga, Y. A proliferative probiotic Bifidobacterium strain in the gut ameliorates progression of metabolic disorders via microbiota modulation and acetate elevation. Sci. Rep. 2017, 7, 43522. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, H.; Kamikado, K.; Aoki, R.; Suganuma, N.; Nishijima, T.; Nakatani, A.; Kimura, I. Bifidobacterium animalis subsp. lactis GCL2505 modulates host energy metabolism via the short-chain fatty acid receptor GPR43. Sci. Rep. 2020, 10, 4158. [Google Scholar] [CrossRef] [PubMed]
- Azuma, N.; Mawatari, T.; Saito, Y.; Tsukamoto, M.; Sampei, M.; Iwama, Y. Effect of continuous ingestion of bifidobacteria and dietary fiber on improvement in cognitive function: A randomized, double-blind, placebo-controlled trial. Nutrients 2023, 15, 4175. [Google Scholar] [CrossRef] [PubMed]
- Azuma, N.; Saito, Y.; Nishijima, T.; Aoki, R.; Nishihira, J. Effect of daily ingestion of Bifidobacterium and dietary fiber on vascular endothelial function: A randomized, double-blind, placebo-controlled, parallel-group comparison study. Biosci. Biotechnol. Biochem. 2023, 88, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Mensink, M.A.; Frijlink, H.W.; van der Voort Maarschalk, K.; Hinrichs, W.L.J. I Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydr. Polym. 2015, 130, 405–419. [Google Scholar] [CrossRef] [PubMed]
- Baba, Y.; Saito, Y.; Kadowaki, M.; Azuma, N.; Tsuge, D. Effect of continuous ingestion of bifidobacteria and inulin on reducing body fat: A randomized, double-blind, placebo-controlled, parallel-group comparison study. Nutrients 2023, 15, 5025. [Google Scholar] [CrossRef]
- Suzuki, N.; Baba, A.; Kakinuma, T.; Sano, Y.; Tanaka, M.; Ouchi, S.; Watanabe, T.; Yamamoto, K. A novel dietary questionnaire: The Calorie and Nutrition Diary (CAND). New Food Indust. 2019, 61, 721–732. [Google Scholar]
- Kolida, S.; Meyer, D.; Gibson, G.R. A Double-Blind Placebo-Controlled Study to Establish the Bifidogenic Dose of Inulin in Healthy Humans. Eur. J. Clin. Nutr. 2007, 61, 1189–1195. [Google Scholar] [CrossRef] [PubMed]
- Morishima, S.; Aoi, W.; Kawamura, A.; Kawase, T.; Takagi, T.; Naito, Y.; Tsukahara, T.; Inoue, R. Intensive, prolonged exercise seemingly causes gut dysbiosis in female endurance runners. J. Clin. Biochem. Nutr. 2021, 68, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Tourlousse, D.M.; Narita, K.; Miura, T.; Sakamoto, M.; Ohashi, A.; Shiina, K.; Matsuda, M.; Miura, D.; Shimamura, M.; Ohyama, Y.; et al. Validation and standardization of DNA extraction and library construction methods for metagenomics-based human fecal microbiome measurements. Microbiome 2021, 9, 95. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Nakamura, Y.; Terahara, M.; Yanagi, T.; Nakahara, S.; Furukawa, O.; Tsutsui, H.; Inoue, R.; Tsukahara, T.; Koshida, S. Poor bifidobacterial colonization is associated with late provision of colostrum and improved with probiotic supplementa-tion in low birth weight infants. Nutrients 2019, 11, 839. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, I.P.; Elliott, S.A.; Siervo, M.; Padwal, R.; Bertoli, S.; Battezzati, A.; Prado, C.M. Is obesity associated with altered energy expenditure? Adv. Nutr. 2016, 7, 476–487. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, A.; Kobayashi, T.; Sakai, F.; Kadooka, Y.; Kawasaki, Y. Lactobacillus gasseri SBT2055 suppresses fatty acid release through enlargement of fat emulsion size in vitro and promotes fecal fat excretion in healthy Japanese subjects. Lipids Health Dis. 2015, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Kondo, S.; Xiao, J.-Z.; Satoh, T.; Odamaki, T.; Takahashi, S.; Sugahara, H.; Yaeshima, T.; Iwatsuki, K.; Kamei, A.; Abe, K. Antiobesity effects of Bifidobacterium breve strain B-3 supplementation in a mouse model with high-fat diet-induced obesity. Biosci. Biotechnol. Biochem. 2010, 74, 1656–1661. [Google Scholar] [CrossRef] [PubMed]
- Aronsson, L.; Huang, Y.; Parini, P.; Korach-André, M.; Håkansson, J.; Gustafsson, J.-Å.; Pettersson, S.; Arulampalam, V.; Rafter, J. Decreased fat storage by Lactobacillus paracasei is associated with increased levels of angiopoietin-like 4 protein (ANGPTL4). PLoS ONE 2010, 5, e13087. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Yun, J.M.; Kim, M.K.; Kwon, O.; Cho, B. Lactobacillus gasseri BNR17 supplementation reduces the visceral fat accumulation and waist circumference in obese adults: A randomized, double-blind, placebo-controlled trial. J. Med. Food 2018, 21, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Nelson, K.M.; Weinsier, R.L.; Long, C.L.; Schutz, Y. Prediction of resting energy expenditure from fat-free mass and fat mass. Am. J. Clin. Nutr. 1992, 56, 848–856. [Google Scholar] [CrossRef] [PubMed]
- Frings-Meuthen, P.; Henkel, S.; Boschmann, M.; Chilibeck, P.D.; Alvero Cruz, J.R.; Hoffmann, F.; Möstl, S.; Mittag, U.; Mulder, E.; Rittweger, N.; et al. Resting energy expenditure of master athletes: Accuracy of predictive equations and primary determinants. Front. Physiol. 2021, 12, 641455. [Google Scholar] [CrossRef] [PubMed]
- Frączek, B.; Grzelak, A.; Klimek, A.T. Analysis of daily energy expenditure of elite athletes in relation to their sport, the measurement method and energy requirement norms. J. Hum. Kinet. 2019, 70, 81–92. [Google Scholar] [CrossRef]
- Compher, C.; Frankenfield, D.; Keim, N.; Roth-Yousey, L.; Evidence Analysis Working Group. Best practice methods to apply to measurement of resting metabolic rate in adults: A systematic review. J. Am. Diet. Assoc. 2006, 106, 881–903. [Google Scholar] [CrossRef] [PubMed]
- Anzawa, D.; Mawatari, T.; Tanaka, Y.; Yamamoto, M.; Genda, T.; Takahashi, S.; Nishijima, T.; Kamasaka, H.; Suzuki, S.; Kuriki, T. Effects of synbiotics containing Bifidobacterium animalis subsp. lactis GCL2505 and inulin on intestinal bifidobacteria: A randomized, placebo-controlled, crossover study. Food Sci. Nutr. 2019, 7, 1828–1837. [Google Scholar] [CrossRef] [PubMed]
- Birkeland, E.; Gharagozlian, S.; Birkeland, K.I.; Valeur, J.; Måge, I.; Rud, I.; Aas, A.-M. Prebiotic effect of inulin-type fructans on faecal microbiota and short-chain fatty acids in type 2 diabetes: A randomised controlled trial. Eur. J. Nutr. 2020, 59, 3325–3338. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.; Hermes, G.D.A.; Canfora, E.E.; Smidt, H.; Masclee, A.A.M.; Zoetendal, E.G.; Blaak, E.E. Distal colonic transit is linked to gut microbiota diversity and microbial fermentation in humans with slow colonic transit. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 318, G361–G369. [Google Scholar] [CrossRef] [PubMed]
- Kimura, I.; Inoue, D.; Maeda, T.; Hara, T.; Ichimura, A.; Miyauchi, S.; Kobayashi, M.; Hirasawa, A.; Tsujimoto, G. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl. Acad. Sci. USA 2011, 108, 8030–8035. [Google Scholar] [CrossRef]
- Lu, Y.; Fan, C.; Li, P.; Lu, Y.; Chang, X.; Qi, K. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota. Sci. Rep. 2016, 6, 37589. [Google Scholar] [CrossRef]
- Ortiz-Alvarez, L.; Acosta, F.M.; Xu, H.; Sanchez-Delgado, G.; Vilchez-Vargas, R.; Link, A.; Plaza-Díaz, J.; Llamas, J.M.; Gil, A.; Labayen, I.; et al. Fecal microbiota composition is related to brown adipose tissue 18F-fluorodeoxyglucose uptake in young adults. J. Endocrinol. Investig. 2023, 46, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Frayn, K.N. Calculation of substrate oxidation rates in vivo from gaseous exchange. J. Appl. Physiol. 1983, 55, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Brooks, G.A. Importance of the “crossover” concept in exercise metabolism. Clin. Exp. Pharmacol. Physiol. 1997, 24, 889–895. [Google Scholar] [CrossRef]
- Wishnofsky, M. Caloric equivalents of gained or lost weight. Am. J. Clin. Nutr. 1958, 6, 542–546. [Google Scholar] [CrossRef] [PubMed]
- Webster, J.D.; Hesp, R.; Garrow, J.S. The composition of excess weight in obese women estimated by body density, total body water and total body potassium. Hum. Nutr. Clin. Nutr. 1984, 38, 299–306. [Google Scholar] [PubMed]
- Huang, P.L. A comprehensive definition for metabolic syndrome. Dis. Model. Mech. 2009, 2, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Itoh, H. What is ‘metabolic domino effect’?—New concept in lifestyle-related diseases. Nihon Rinsho. Jpn. J. Clin. Med. 2003, 61, 1837–1843. [Google Scholar]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Human gut microbes associated with obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef] [PubMed]
- Ridaura, V.K.; Faith, J.J.; Rey, F.E.; Cheng, J.; Duncan, A.E.; Kau, A.L.; Griffin, N.W.; Lombard, V.; Henrissat, B.; Bain, J.R.; et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013, 341, 1241214. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Anzawa, D.; Takami, K.; Ishizuka, A.; Mawatari, T.; Kamikado, K.; Sugimura, H.; Nishijima, T. Effect of Bifidobacterium animalis ssp. lactis GCL2505 on visceral fat accumulation in healthy Japanese adults: A randomized controlled trial. Biosci. Microbiota Food Health 2016, 35, 163–171. [Google Scholar] [CrossRef]
- Aoki, R.; Tsuchida, S.; Arai, Y.; Ohno, K.; Nishijima, T.; Mawatari, T.; Mikami, Y.; Ushida, K. Effect of Bifidobacterium animalis subsp. lactis GCL2505 on the physiological function of intestine in a rat model. Food Sci. Nutr. 2016, 4, 782–790. [Google Scholar] [CrossRef] [PubMed]
Active | Placebo | |
---|---|---|
Energy, kcal/100 g | 60.2 | 47.7 |
Moisture, g/100 g | 82.3 | 87.0 |
Protein, g/100 g | 2.8 | 2.8 |
Fat, g/100 g | 0.1 | 0.1 |
Carbohydrate, g/100 g | 14.9 | 9.1 |
Ash, g/100 g | 1.1 | 1.1 |
Active Group | Placebo Group | p-Value | |
---|---|---|---|
Age, years | 47.75 (11.07) | 47.75 (9.68) | 1.00 |
Female, n (%) | 16 (80.00) | 16 (80.00) | 1.00 |
Height, cm | 160.18 (6.44) | 157.50 (6.45) | 0.20 |
Body weight, kg | 68.61 (8.37) | 66.86 (6.21) | 0.46 |
Body mass index, kg/m2 | 26.65 (1.47) | 26.90 (1.02) | 0.53 |
Systolic blood pressure, mmHg | 120.40 (18.19) | 123.95 (15.50) | 0.51 |
Diastolic blood pressure, mmHg | 79.95 (13.22) | 80.90 (10.32) | 0.80 |
White blood cell count, /µL | 6130.00 (1475.80) | 6000.00 (1069.68) | 0.75 |
Red blood cell count, ×10⁴/µL | 470.00 (31.98) | 463.90 (38.73) | 0.59 |
Hemoglobin, g/dL | 13.77 (1.31) | 13.64 (1.26) | 0.75 |
Hematocrit, % | 44.18 (3.45) | 43.65 (3.29) | 0.62 |
Platelet count, ×10⁴/μL | 26.20 (5.01) | 29.27 (5.84) | 0.08 |
Total serum protein, g/dL | 7.06 (0.37) | 7.09 (0.33) | 0.79 |
Aspartate aminotransferase, U/L | 21.20 (11.73) | 22.35 (12.84) | 0.77 |
Alanine aminotransferase, U/L | 22.50 (19.03) | 22.95 (17.02) | 0.94 |
Total bilirubin, mg/dL | 0.68 (0.33) | 0.69 (0.28) | 0.96 |
γ-Glutamyl transpeptidase, U/L | 35.05 (50.11) | 26.80 (15.07) | 0.49 |
Blood urea nitrogen, mg/dL | 12.93 (3.66) | 11.29 (1.71) | 0.08 |
Creatinine, mg/dL | 0.70 (0.13) | 0.68 (0.07) | 0.55 |
Uric acid, mg/dL | 5.29 (1.10) | 5.64 (1.25) | 0.35 |
Sodium (Na), mEq/L | 142.25 (2.12) | 141.60 (2.01) | 0.33 |
Chlorine (Cl), mEq/L | 102.60 (1.27) | 102.25 (2.02) | 0.52 |
Potassium (K), mEq/L | 4.15 (0.23) | 4.07 (0.28) | 0.33 |
Serum amylase, U/L | 80.40 (52.48) | 75.50 (26.09) | 0.71 |
Total cholesterol, mg/dL | 215.80 (45.89) | 225.75 (34.27) | 0.44 |
HDL cholesterol, mg/dL | 57.65 (12.52) | 55.70 (13.67) | 0.64 |
LDL cholesterol, mg/dL | 131.20 (40.90) | 139.20 (34.01) | 0.51 |
Triglycerides, mg/dL | 118.30 (46.71) | 134.20 (59.54) | 0.35 |
Glucose, mg/dL | 88.40 (5.78) | 93.05 (6.21) | 0.02 |
HbA1c (NGSP), % | 5.41 (0.21) | 5.47 (0.31) | 0.48 |
Compliance rate of the test sample, % * | 99.1 (3.5) | 102.7 (7.1) | - |
0 Week | 2 Weeks | 4 Weeks | ||
---|---|---|---|---|
Energy, kcal | Active | 2430.02 (1999.86, 2860.17) | 2201.98 (1821.45, 2582.50) | 2270.44 (1886.14, 2654.74) |
Placebo | 2234.22 (1971.28, 2497.17) | 2236.50 (1957.50, 2515.50) | 1943.19 (1624.80, 2261.58) | |
p-value | 0.45 | 0.89 | 0.21 | |
Protein, g | Active | 102.14 (82.54, 121.73) | 87.80 (70.33, 105.28) | 93.64 (75.36, 111.93) |
Placebo | 90.81 (78.16, 103.46) | 91.12 (77.40, 104.83) | 78.38 (64.20, 92.57) | |
p-value | 0.35 | 0.77 | 0.20 | |
Fat, g | Active | 93.48 (73.39, 113.56) | 79.80 (60.79, 98.81) | 85.86 (66.31, 105.40) |
Placebo | 80.75 (68.49, 93.01) | 79.75 (67.23, 92.27) | 64.54 (52.08, 77.00) | |
p-value | 0.30 | 1.00 | 0.08 | |
Carbohydrate, g | Active | 280.39 (234.10, 326.68) | 270.57 (233.45, 307.69) | 265.11 (230.95, 299.27) |
Placebo | 272.41 (242.12, 302.70) | 275.72 (238.19, 313.25) | 250.93 (211.18, 290.67) | |
p-value | 0.78 | 0.85 | 0.60 | |
Dietary fiber, g | Active | 15.42 (11.42, 19.42) | 14.06 (10.65, 17.48) | 14.73 (11.74, 17.71) |
Placebo | 15.09 (12.56, 17.62) | 14.82 (12.15, 17.48) | 14.69 (11.24, 18.13) | |
p-value | 0.89 | 0.74 | 0.99 |
0 Week | 2 Weeks | 4 Weeks | ||
---|---|---|---|---|
Resting energy expenditure, kcal/day | Active | 1326.8 (1262.9, 1390.7) | 1435.9 (1464.2, 1565.5) * | 1376.5 (1393.0, 1517.6) * |
Placebo | 1325.1 (1257.3, 1392.8) | 1345.5 (1362.5, 1463.5) | 1303.2 (1308.7, 1433.0) | |
Difference between groups | 1.8 (−94.4, 97.9) | 101.8 (39.2, 164.4) | 84.4 (3.2, 165.7) | |
p-value | 0.971 | 0.002 | 0.042 | |
Respiratory quotient | Active | 0.83 (0.81, 0.85) | 0.83 (0.81, 0.85) | 0.85 (0.82, 0.87) |
Placebo | 0.83 (0.82, 0.84) | 0.83 (0.81, 0.84) | 0.84 (0.80, 0.86) | |
Difference between groups | −0.01 (−0.03, 0.02) | 0.00 (−0.02, 0.03) | 0.01 (−0.02, 0.05) | |
p-value | 0.649 | 0.695 | 0.429 | |
Carbohydrate oxidation amount, mg/min | Active | 133.2 (111.57, 154.77) | 153.1 (138.6, 178.4) | 163.1 (138.7, 198.5) |
Placebo | 139.5 (123.95, 155.00) | 142.0 (121.9, 162.6) | 144.9 (115.0, 175.3) | |
Difference between groups | −6.3 (−33.9, 21.3) | 16.2 (−9.1, 41.6) | 23.4 (−17.2, 64.0) | |
p-value | 0.645 | 0.202 | 0.250 | |
Fat oxidation amount, mg/min | Active | 82.4 (72.74, 92.02) | 85.6 (83.6, 100.9) | 76.3 (73.8, 92.4) |
Placebo | 79.0 (71.01, 87.08) | 80.2 (78.8, 96.0) | 74.6 (72.5, 91.1) | |
Difference between groups | 3.3 (−9.6, 16.3) | 4.8 (−6.3, 15.9) | 1.3 (−10.8, 13.5) | |
p-value | 0.606 | 0.382 | 0.826 |
0 Week | 4 Weeks | ||
---|---|---|---|
Formic acid, mmol/kg wet feces | Active | 0.0 (0.0, 0.0) | 0.0 (−0.2, 0.2) |
Placebo | 0.0 (0.0, 0.0) | 0.2 (0.0, 0.5) | |
p-value | - | 0.156 | |
Acetic acid, mmol/kg wet feces | Active | 55.6 (43.7, 67.5) | 42.4 (34.7, 50.2) |
Placebo | 49.6 (40.3, 58.9) | 52.9 (45.1, 60.7) | |
p-value | 0.444 | 0.063 | |
Lactic acid, mmol/kg wet feces | Active | 0.4 (−0.4, 1.2) | 0.0 (−0.1, 0.1) |
Placebo | 0.3 (0.0, 0.6) | 0.0 (0.0, 0.1) | |
p-value | 0.759 | 0.335 | |
Propionic acid, mmol/kg wet feces | Active | 19.0 (14.4, 23.6) | 15.4 (12.1, 18.5) * |
Placebo | 18.6 (13.8, 23.4) | 20.9 (17.8, 24.2) | |
p-value | 0.918 | 0.015 | |
n-Butyric acid, mmol/kg wet feces | Active | 9.5 (7.3, 11.7) | 7.4 (5.6, 9.2) |
Placebo | 7.9 (5.3, 10.6) | 8.6 (6.8, 10.4) | |
p-value | 0.377 | 0.378 | |
iso-Butyric acid, mmol/kg wet feces | Active | 0.9 (0.1, 1.7) | 0.3 (−0.2, 1.0) |
Placebo | 0.0 (0.0, 0.0) | 0.6 (0.0, 1.2) | |
p-value | 0.051 | 0.612 | |
Succinic acid, mmol/kg wet feces | Active | 1.0 (0.0, 2.1) | 1.4 (−0.1, 2.9) |
Placebo | 0.7 (0.2, 1.1) | 0.4 (−1.0, 1.9) | |
p-value | 0.547 | 0.356 | |
n-Valeric acid, mmol/kg wet feces | Active | 0.8 (−0.3, 1.9) | 0.4 (−0.1, 1.0) |
Placebo | 0.3 (−0.3, 0.9) | 0.3 (−0.2, 0.9) | |
p-value | 0.449 | 0.876 | |
iso-Valeric acid, mmol/kg wet feces | Active | 1.0 (0.1, 2.0) | 0.4 (−0.2, 1.0) |
Placebo | 0.0 (0.0, 0.0) | 0.6 (−0.1, 1.1) | |
p-value | 0.051 | 0.808 |
0 Week | 2 Weeks | 4 Weeks | ||
---|---|---|---|---|
Body weight, kg | Active | 68.6 (64.9, 72.3) | 69.0 (67.8, 69.3) | 68.9 (67.6, 69.2) |
Placebo | 66.9 (64.1, 69.6) | 67.1 (67.6, 68.9) | 67.1 (67.5, 69.0) | |
p-value | 0.459 | 0.526 | 0.726 | |
Body mass index, kg/m2 | Active | 26.6 (26.0, 27.3) | 26.8 (26.8, 27.3) | 26.7 (26.7, 27.2) |
Placebo | 26.9 (26.5, 27.3) | 27.0 (26.7, 27.2) | 27.0 (26.7, 27.2) | |
p-value | 0.528 | 0.753 | 0.965 | |
Body fat rate, % | Active | 37.6 (35.1, 40.2) | 37.9 (37.0, 38.9) | 37.7 (35.5, 40.0) |
Placebo | 37.4 (34.6, 40.2) | 37.3 (36.5, 38.5) | 35.6 (33.6, 38.1) | |
p-value | 0.903 | 0.291 | 0.213 | |
Muscle mass, kg | Active | 40.5 (37.3, 43.7) | 40.5 (40.1, 41.1) | 40.6 (39.1, 42.2) |
Placebo | 39.7 (36.7, 42.6) | 39.9 (40.3, 41.2) | 41.1 (40.4, 43.5) | |
p-value | 0.714 | 0.540 | 0.239 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baba, Y.; Azuma, N.; Saito, Y.; Takahashi, K.; Matsui, R.; Takara, T. Effect of Intake of Bifidobacteria and Dietary Fiber on Resting Energy Expenditure: A Randomized, Placebo-Controlled, Double-Blind, Parallel-Group Comparison Study. Nutrients 2024, 16, 2345. https://doi.org/10.3390/nu16142345
Baba Y, Azuma N, Saito Y, Takahashi K, Matsui R, Takara T. Effect of Intake of Bifidobacteria and Dietary Fiber on Resting Energy Expenditure: A Randomized, Placebo-Controlled, Double-Blind, Parallel-Group Comparison Study. Nutrients. 2024; 16(14):2345. https://doi.org/10.3390/nu16142345
Chicago/Turabian StyleBaba, Yuhei, Naoki Azuma, Yasuo Saito, Kazuma Takahashi, Risa Matsui, and Tsuyoshi Takara. 2024. "Effect of Intake of Bifidobacteria and Dietary Fiber on Resting Energy Expenditure: A Randomized, Placebo-Controlled, Double-Blind, Parallel-Group Comparison Study" Nutrients 16, no. 14: 2345. https://doi.org/10.3390/nu16142345
APA StyleBaba, Y., Azuma, N., Saito, Y., Takahashi, K., Matsui, R., & Takara, T. (2024). Effect of Intake of Bifidobacteria and Dietary Fiber on Resting Energy Expenditure: A Randomized, Placebo-Controlled, Double-Blind, Parallel-Group Comparison Study. Nutrients, 16(14), 2345. https://doi.org/10.3390/nu16142345