The Association between the Substitution of Red Meat with Legumes and the Risk of Primary Liver Cancer in the UK Biobank: A Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Assessment
2.3. Liver Cancer Assessment
2.4. Assessment of Confounders
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DAG | Directed acyclic graphs |
HCAs | Heterocyclic amines |
HCC | Hepatocellular carcinoma |
ICC | Intrahepatic cholangiocarcinoma |
IQR | Interquartile range |
NAFLD | Non-alcoholic fatty liver disease |
NOCs | N-Nitroso compounds |
TDI | Townsend deprivation index |
References
- Massarweh, N.N.; El-Serag, H.B. Epidemiology of Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. Cancer Control 2017, 24, 107327481772924. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease—Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Stepanova, M.; Younossi, Y.; Golabi, P.; Mishra, A.; Rafiq, N.; Henry, L. Epidemiology of chronic liver diseases in the USA in the past three decades. Gut 2019, 69, 564–568. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Ge, X.; Lu, J.; Xu, X.; Gao, J.; Wang, Q.; Song, C.; Zhang, Q.; Yu, C. Diet and Risk of Non-Alcoholic Fatty Liver Disease, Cirrhosis, and Liver Cancer: A Large Prospective Cohort Study in UK Biobank. Nutrients 2022, 14, 5335. [Google Scholar] [CrossRef] [PubMed]
- Estes, C.; Razavi, H.; Loomba, R.; Younossi, Z.; Sanyal, A.J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology 2017, 67, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Tavolari, S.; Brandi, G. Cholangiocarcinoma: Epidemiology and risk factors. Liver Int. 2019, 39, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Kirstein, M.M.; Vogel, A. Epidemiology and Risk Factors of Cholangiocarcinoma. Visc. Med. 2016, 32, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Bergquist, A.; von Seth, E. Epidemiology of cholangiocarcinoma. Best Pract. Res. Clin. Gastroenterol. 2015, 29, 221–232. [Google Scholar] [CrossRef]
- Wongjarupong, N.; Assavapongpaiboon, B.; Susantitaphong, P.; Cheungpasitporn, W.; Treeprasertsuk, S.; Rerknimitr, R.; Chaiteerakij, R. Non-alcoholic fatty liver disease as a risk factor for cholangiocarcinoma: A systematic review and meta-analysis. BMC Gastroenterol. 2017, 17, 149. [Google Scholar] [CrossRef]
- Corrao, S.; Natoli, G.; Argano, C. Nonalcoholic fatty liver disease is associated with intrahepatic cholangiocarcinoma and not with extrahepatic form: Definitive evidence from meta-analysis and trial sequential analysis. Eur. J. Gastroenterol. Hepatol. 2020, 33, 62–68. [Google Scholar] [CrossRef]
- Zhang, W.; Xiang, Y.; Li, H.; Yang, G.; Cai, H.; Ji, B.; Gao, Y.; Zheng, W.; Shu, X. Vegetable-based dietary pattern and liver cancer risk: Results from the Shanghai Women’s and Men’s Health Studies. Cancer Sci. 2013, 104, 1353–1361. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, D.; Feng, N.; Chen, G.; Liu, J.; Chen, G.; Zhu, Y. Increased Intake of Vegetables, But Not Fruit, Reduces Risk for Hepatocellular Carcinoma: A Meta-analysis. Gastroenterology 2014, 147, 1031–1042. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yang, W.; Petrick, J.L.; Liao, L.M.; Wang, W.; He, N.; Campbell, P.T.; Zhang, Z.F.; Giovannucci, E.; McGlynn, K.A.; et al. Higher intake of whole grains and dietary fiber are associated with lower risk of liver cancer and chronic liver disease mortality. Nat. Commun. 2021, 12, 6388. [Google Scholar] [CrossRef]
- Bhurwal, A.; Ratta, P.; Yoshitake, S.; Pioppo, L.; Reja, D.; Dellatore, P.; Rustgi, V. Inverse Association of Coffee with Liver Cancer Development: An Updated Systematic Review and Meta-analysis. J. Gastrointest. Liver Dis. 2020, 29, 221278185. [Google Scholar] [CrossRef]
- Rebello, C.J.; Greenway, F.L.; Finley, J.W. A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. Obes. Rev. 2014, 15, 392–407. [Google Scholar] [CrossRef]
- Scalbert, A.; Morand, C.; Manach, C.; Rémésy, C. Absorption and metabolism of polyphenols in the gut and impact on health. Biomed. Pharmacother. 2002, 56, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Bouchenak, M.; Lamri-Senhadji, M. Nutritional Quality of Legumes, and Their Role in Cardiometabolic Risk Prevention: A Review. J. Med. Food 2013, 16, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Vucenik, I.; Shamsuddin, A.M. Protection Against Cancer by Dietary IP6 and Inositol. Nutr. Cancer 2006, 55, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Campos-Vega, R.; Loarca-Piña, G.; Oomah, B.D. Minor components of pulses and their potential impact on human health. Food Res. Int. 2010, 43, 461–482. [Google Scholar] [CrossRef]
- Viguiliouk, E.; Glenn, A.J.; Nishi, S.K.; Chiavaroli, L.; Seider, M.; Khan, T.; Bonaccio, M.; Iacoviello, L.; Mejia, S.B.; Jenkins, D.J.A.; et al. Associations between Dietary Pulses Alone or with Other Legumes and Cardiometabolic Disease Outcomes: An Umbrella Review and Updated Systematic Review and Meta-analysis of Prospective Cohort Studies. Adv. Nutr. 2019, 10, S308–S319. [Google Scholar] [CrossRef]
- Jin, S.; Je, Y. Nuts and legumes consumption and risk of colorectal cancer: A systematic review and meta-analysis. Eur. J. Epidemiol. 2022, 37, 569–585. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, W.; Li, T.; Liu, Y.; Simon, T.G.; Sui, J.; Wu, K.; Giovannucci, E.L.; Chan, A.T.; Zhang, X. Meat intake and risk of hepatocellular carcinoma in two large US prospective cohorts of women and men. Int. J. Epidemiol. 2019, 48, 1863–1871. [Google Scholar] [CrossRef]
- Bouvard, V.; Loomis, D.; Guyton, K.; Grosse, Y.; Ghissassi, F.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef]
- UN. Food and Climate Change: Healthy Diets for a Healthier Planet. Available online: https://www.un.org/en/climatechange/science/climate-issues/food (accessed on 21 May 2024).
- Zhang, S.; Yan, Y.; Meng, G.; Zhang, Q.; Liu, L.; Wu, H.; Gu, Y.; Wang, X.; Zhang, J.; Sun, S.; et al. Protein foods from animal sources and risk of nonalcoholic fatty liver disease in representative cohorts from North and South China. J. Intern. Med. 2022, 293, 340–353. [Google Scholar] [CrossRef]
- Bock, N.; Langmann, F.; Ibsen, D.B.; Johnston, L.W.; Dahm, C.C. Protocol: Legume consumption and risk of primary liver cancer. Zenodo 2024, 1–5. [Google Scholar] [CrossRef]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef] [PubMed]
- UK Biobank. Order of Data Collection. Available online: https://biobank.ndph.ox.ac.uk/ukb/ukb/docs/Orderofdatacollection.pdf (accessed on 21 May 2024).
- UK Biobank. 24-Hour Dietary Recall Questionnaire (Oxford WebQ). Available online: https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/DietWebQ.pdf (accessed on 21 May 2024).
- Piernas, C.; Perez-Cornago, A.; Gao, M.; Young, H.; Pollard, Z.; Mulligan, A.; Lentjes, M.; Carter, J.; Bradbury, K.; Key, T.J.; et al. Describing a new food group classification system for UK biobank: Analysis of food groups and sources of macro- and micronutrients in 208,200 participants. Eur. J. Nutr. 2021, 60, 2879–2890. [Google Scholar] [CrossRef]
- Liu, B.; Young, H.; Crowe, F.L.; Benson, V.S.; Spencer, E.A.; Key, T.J.; Appleby, P.N.; Beral, V. Development and evaluation of the Oxford WebQ, a low-cost, web-based method for assessment of previous 24 h dietary intakes in large-scale prospective studies. Public Health Nutr. 2011, 14, 1998–2005. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, D.C.; Hardie, L.J.; Frost, G.S.; Alwan, N.A.; Bradbury, K.E.; Carter, M.; Elliott, P.; Evans, C.E.L.; Ford, H.E.; Hancock, N.; et al. Validation of the Oxford WebQ Online 24-Hour Dietary Questionnaire Using Biomarkers. Am. J. Epidemiol. 2019, 188, 1858–1867. [Google Scholar] [CrossRef]
- Thompson, A.S.; Tresserra-Rimbau, A.; Karavasiloglou, N.; Jennings, A.; Cantwell, M.; Hill, C.; Perez-Cornago, A.; Bondonno, N.P.; Murphy, N.; Rohrmann, S.; et al. Association of Healthful Plant-based Diet Adherence With Risk of Mortality and Major Chronic Diseases Among Adults in the UK. JAMA Netw. Open 2023, 6, e234714. [Google Scholar] [CrossRef]
- Heianza, Y.; Zhou, T.; Sun, D.; Hu, F.B.; Qi, L. Healthful plant-based dietary patterns, genetic risk of obesity, and cardiovascular risk in the UK biobank study. Clin. Nutr. 2021, 40, 4694–4701. [Google Scholar] [CrossRef] [PubMed]
- Satija, A.; Bhupathiraju, S.N.; Spiegelman, D.; Chiuve, S.E.; Manson, J.E.; Willett, W.; Rexrode, K.M.; Rimm, E.B.; Hu, F.B. Healthful and Unhealthful Plant-Based Diets and the Risk of Coronary Heart Disease in U.S. Adults. J. Am. Coll. Cardiol. 2017, 70, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Satija, A.; Bhupathiraju, S.N.; Rimm, E.B.; Spiegelman, D.; Chiuve, S.E.; Borgi, L.; Willett, W.C.; Manson, J.E.; Sun, Q.; Hu, F.B. Plant-Based Dietary Patterns and Incidence of Type 2 Diabetes in US Men and Women: Results from Three Prospective Cohort Studies. PLoS Med. 2016, 13, e1002039. [Google Scholar] [CrossRef] [PubMed]
- Thompson, F.E.; Subar, A.F. Dietary Assessment Methodology; Elsevier: Amsterdam, The Netherlands, 2013; pp. 5–46. [Google Scholar] [CrossRef]
- Gurinović, M.; Zeković, M.; Milešević, J.; Nikolić, M.; Glibetić, M. Nutritional Assessment; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- UK Biobank. Health Outcomes Overview. Available online: https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/HealthOutcomesOverview.pdf (accessed on 21 May 2024).
- UK Biobank. Data Providers and Dates of Data Availability. Available online: https://biobank.ndph.ox.ac.uk/ukb/exinfo.cgi?src=Data_providers_and_dates (accessed on 21 May 2024).
- Ibsen, D.B.; Laursen, A.S.D.; Würtz, A.M.L.; Dahm, C.C.; Rimm, E.B.; Parner, E.T.; Overvad, K.; Jakobsen, M.U. Food substitution models for nutritional epidemiology. Am. J. Clin. Nutr. 2021, 113, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Tomova, G.; Gilthorpe, M.; Tennant, P. Theory and performance of substitution models for estimating relative causal effects in nutritional epidemiology. Am. J. Clin. Nutr. 2022, 116, 1379–1388. [Google Scholar] [CrossRef] [PubMed]
- Landau, W.M. The targets R package: A dynamic Make-like function-oriented pipeline toolkit for reproducibility and high-performance computing. J. Open Source Softw. 2021, 6, 2959. [Google Scholar] [CrossRef]
- Knuppel, A.; Papier, K.; Fensom, G.K.; Appleby, P.N.; Schmidt, J.A.; Tong, T.Y.N.; Travis, R.C.; Key, T.J.; Perez-Cornago, A. Meat intake and cancer risk: Prospective analyses in UK Biobank. Int. J. Epidemiol. 2020, 49, 1540–1552. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Chen, W.; Zhou, Y.; Xu, L.; Sun, X.; Mao, Y.; Ye, D. Associations between food groups and liver cancer: A systematic review and meta-analysis of observational studies. Nutr. J. 2023, 22, 30. [Google Scholar] [CrossRef] [PubMed]
- Di, Y.; Ding, L.; Gao, L.; Huang, H. Association of meat consumption with the risk of gastrointestinal cancers: A systematic review and meta-analysis. BMC Cancer 2023, 23, 782. [Google Scholar] [CrossRef]
- Yu, J.; Liu, Z.; Liang, D.; Li, J.; Ma, S.; Wang, G.; Chen, W. Meat Intake and the Risk of Hepatocellular Carcinoma: A Meta-Analysis of Observational Studies. Nutr. Cancer 2022, 74, 3340–3350. [Google Scholar] [CrossRef]
- Jeney, V.; Balla, J.; Yachie, A.; Varga, Z.; Vercellotti, G.; Eaton, J.; Balla, G. Pro-oxidant and cytotoxic effects of circulating heme. Blood 2002, 100, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Felton, J.; Malfatti, M.; Knize, M.; Salmon, C.; Hopmans, E.; Wu, R. Health risks of heterocyclic amines. Mutat. Res. Mol. Mech. Mutagen. 1997, 376, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hecht, S. Metabolic Activation and DNA Interactions of Carcinogenic N-Nitrosamines to Which Humans Are Commonly Exposed. Int. J. Mol. Sci. 2022, 23, 4559. [Google Scholar] [CrossRef] [PubMed]
- Seyyedsalehi, M.; Mohebbi, E.; Tourang, F.; Sasanfar, B.; Boffetta, P.; Zendehdel, K. Association of Dietary Nitrate, Nitrite, and N-Nitroso Compounds Intake and Gastrointestinal Cancers: A Systematic Review and Meta-Analysis. Toxics 2023, 11, 190. [Google Scholar] [CrossRef] [PubMed]
- Dahm, C.; Langmann, F.; Nannsen, A.; Ibsen, D. Role of dietary fibres in cardiometabolic diseases. Curr. Opin. Clin. Nutr. Metab. Care 2024, 27, 355–360. [Google Scholar] [CrossRef]
- Hu, J.; Wang, J.; Li, Y.; Xue, K.; Kan, J. Use of Dietary Fibers in Reducing the Risk of Several Cancer Types: An Umbrella Review. Nutrients 2023, 15, 2545. [Google Scholar] [CrossRef]
Cohort | Liver Cancer | |
---|---|---|
Characteristic 1 | N = 126,744 | N = 173 |
Age, years | 60 (53, 65) | 64.0 (60.0, 68.0) |
Sex | ||
Female | 70,659 (56%) | 65 (38%) |
Male | 56,085 (44%) | 108 (62%) |
Educational level 2 | ||
High | 59,416 (47%) | 76 (44%) |
Intermediate | 41,817 (33%) | 52 (30%) |
Low | 25,472 (20%) | 45 (26%) |
Missing | 39 | |
Townsend deprivation index | −2.4 (−3.8, 0.0) | −2.6 (−3.7, −0.7) |
Missing | 149 | |
Living alone | 22,658 (18%) | 34 (20%) |
Missing | 171 | |
Physical activity 3 | ||
Above | 58,111 (46%) | 61 (35%) |
Below | 50,712 (40%) | 79 (46%) |
Unknown | 17,921 (14%) | 33 (19%) |
Smoking | ||
Never | 72,583 (57%) | 75 (43%) |
Ever | 54,122 (43%) | 98 (57%) |
Missing | 39 | |
Alcohol intake, g/day | 11 (0, 26) | 11 (0, 29) |
Waist circumference, cm | 88 (79, 97) | 98 (89, 107) |
Missing | 168 |
Cohort | Liver Cancer | |
---|---|---|
Daily Food Intake 1 | N = 126,744 | N = 173 |
Total food intake | ||
Energy, kJ | 8430 (7179, 9856) | 8579 (7413, 10,048) |
Weight, g | 3144 (2720, 3621) | 3162 (2737, 3659) |
Food groups, g/day | ||
Legumes | 11 (0, 34) | 8 (0, 35) |
Red and processed meat | 53 (15, 86) | 60 (30, 95) |
Red meat | 30 (0, 60) | 45 (0, 73) |
Processed meat | 9 (0, 30) | 8 (0, 31) |
Other animal-based foods 2 | 475 (361, 603) | 448 (322, 604) |
Healthy plant-based foods 3 | 1806 (1454, 2198) | 1791 (1365, 2158) |
Unhealthy plant-based foods 4 | 472 (324, 662) | 491 (365, 698) |
Alcoholic beverages | 132 (0, 342) | 144 (0, 375) |
Model 1 1 | Model 2 2 | |
---|---|---|
15 g/day of Legumes Replacing: | HR (95% CI) | HR (95% CI) |
Total red meat | 0.99 (0.93–1.05) | 1.02 (0.96–1.08) |
Unprocessed red meat | 0.97 (0.91–1.03) | 1.00 (0.94–1.06) |
Processed red meat | 1.04 (0.94–1.15) | 1.09 (0.99–1.21) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bock, N.; Langmann, F.; Johnston, L.W.; Ibsen, D.B.; Dahm, C.C. The Association between the Substitution of Red Meat with Legumes and the Risk of Primary Liver Cancer in the UK Biobank: A Cohort Study. Nutrients 2024, 16, 2383. https://doi.org/10.3390/nu16152383
Bock N, Langmann F, Johnston LW, Ibsen DB, Dahm CC. The Association between the Substitution of Red Meat with Legumes and the Risk of Primary Liver Cancer in the UK Biobank: A Cohort Study. Nutrients. 2024; 16(15):2383. https://doi.org/10.3390/nu16152383
Chicago/Turabian StyleBock, Niels, Fie Langmann, Luke W. Johnston, Daniel B. Ibsen, and Christina C. Dahm. 2024. "The Association between the Substitution of Red Meat with Legumes and the Risk of Primary Liver Cancer in the UK Biobank: A Cohort Study" Nutrients 16, no. 15: 2383. https://doi.org/10.3390/nu16152383
APA StyleBock, N., Langmann, F., Johnston, L. W., Ibsen, D. B., & Dahm, C. C. (2024). The Association between the Substitution of Red Meat with Legumes and the Risk of Primary Liver Cancer in the UK Biobank: A Cohort Study. Nutrients, 16(15), 2383. https://doi.org/10.3390/nu16152383