Deficiency of Energy and Nutrient and Gender Differences among Chinese Adults: China Nutrition and Health Survey (2015–2017)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Samples
2.2. Data Collection and Measurements
2.3. Data Processing and Data Analysis
2.4. Statistical Analysis
3. Results
3.1. Characteristics of Participants
3.2. Energy Intake Results
3.3. Macro- and Micronutrient Intake
3.4. Associations between Micronutrient Intakes and Gender
3.5. Association between Demographic Features, Nutritional Status and Inadequate Micronutrient
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Region | Province | Urban | Rural | Total |
---|---|---|---|---|
Eastern region | Beijing | 903 | 551 | 1454 |
Tianjin | 697 | 364 | 1061 | |
Hebei | 943 | 1612 | 2555 | |
Liaoning | 1286 | 861 | 2147 | |
Shanghai | 1431 | 297 | 1728 | |
Jiangsu | 2050 | 1071 | 3121 | |
Zhejiang | 817 | 1546 | 2363 | |
Fujian | 842 | 1395 | 2237 | |
Shandong | 1266 | 1994 | 3260 | |
Guangdong | 1711 | 1351 | 3062 | |
Hainan | 267 | 1190 | 1457 | |
Central Region | Shanxi | 410 | 1121 | 1531 |
Jilin | 738 | 986 | 1724 | |
Heilongjiang | 576 | 1496 | 2072 | |
Anhui | 1050 | 1595 | 2645 | |
Jiangxi | 955 | 1462 | 2417 | |
Henan | 1617 | 1103 | 2720 | |
Hubei | 989 | 978 | 1967 | |
Hunan | 1037 | 1847 | 2884 | |
Western Region | Inner Mongolia | 583 | 824 | 1407 |
Guangxi | 651 | 1550 | 2201 | |
Chongqing | 611 | 885 | 1496 | |
Sichuan | 867 | 1755 | 2622 | |
Guizhou | 321 | 1158 | 1479 | |
Yunnan | 482 | 1575 | 2057 | |
Tibet | 129 | 592 | 721 | |
Shaanxi | 769 | 1033 | 1802 | |
Gansu | 335 | 1466 | 1801 | |
Qinghai | 269 | 801 | 1070 | |
Ningxia | 337 | 819 | 1156 | |
Xinjiang | 729 | 822 | 1551 |
Age Groups | Gender | Region | Total | ||
---|---|---|---|---|---|
Eastern | Central | Western | |||
18–49 y | Male | 4197 | 2967 | 3871 | 11,035 |
Female | 5408 | 3959 | 4893 | 14,260 | |
50–64 y | Male | 4398 | 3272 | 3194 | 10,864 |
Female | 5256 | 3890 | 3687 | 12,833 | |
65–79 y | Male | 2364 | 1854 | 1715 | 5933 |
Female | 2224 | 1673 | 1679 | 5576 | |
≥80 y | Male | 310 | 184 | 180 | 674 |
Female | 288 | 161 | 144 | 593 | |
Total | 24,445 | 17,960 | 19,363 | 61,768 |
Macronutrients (g/day) | Micronutrients | EER (kcal/day) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vitamins (mg/day) | Minerals (mg/day) | ||||||||||||
Carbs | Protein | Fat a | Fiber b | A c | B1 | B2 | B3 | C | Calcium * | Iron | Sodium * | Low Level of Physical Activity | |
Age group | |||||||||||||
Adults (18–49 y)
| 120 120 | 65 55 | 25 25 | 25 25 | 560 (3000) 480 (3000) | 1.2 1.0 | 1.2 1.0 | 12 (35) 10 (35) | 85 (2000) 100 (2000) | 650 (2000) 650 (2000) | 9 (42) 15 (42) | 1500 (2000) 1500 (2000) | 2250 1800 |
Adults (50–64y)
| 120 120 | 65 55 | 25 25 | 25 25 | 560 (3000) 480 (3000) | 1.2 1.0 | 1.2 1.0 | 12 (35) 10 (35) | 85 (2000) 100 (2000) | 800 (2000) 800 (2000) | 9 (42) 15 (42) | 1400 (1900) 1400 (1900) | 2100 1750 |
Adults (65–79 y)
| 120 120 | 65 55 | 25 25 | 25 25 | 560 (3000) 480 (3000) | 1.2 1.0 | 1.2 1.0 | 11 (35) 9 (35) | 85 (2000) 100 (2000) | 800 (2000) 800 (2000) | 9 (42) 15 (42) | 1400 (1800) 1400 (1800) | 2050 1500 |
Adults (≥80y)
| 120 120 | 65 55 | 25 25 | 25 25 | 560 (3000) 480 (3000) | 1.2 1.0 | 1.2 1.0 | 11 (30 8 (30) | 85 (2000) 100 (2000) | 800 (2000) 800 (2000) | 9 (42) 15 (42) | 1300 (1700) 1300 (1700) | 1900 1500 |
References
- Lamers, Y. Approaches to improving micronutrient status assessment at the population level. Proc. Nutr. Soc. 2019, 78, 170–176. [Google Scholar] [CrossRef]
- MacFarlane, A.J.; Greene-Finestone, L.S.; Shi, Y. Vitamin B-12 and homocysteine status in a folate-replete population: Results from the Canadian Health Measures Survey. Am. J. Clin. Nutr. 2011, 94, 1079–1087. [Google Scholar] [CrossRef]
- Ginsberg, H.N. Niacin in the metabolic syndrome: More risk than benefit? Nat. Clin. Pract. Endocrinol. Metab. 2006, 2, 300–301. [Google Scholar] [CrossRef]
- Li, D.; Sun, W.P.; Zhou, Y.M.; Liu, Q.G.; Zhou, S.S.; Luo, N.; Bian, F.N.; Zhao, Z.G.; Guo, M. Chronic niacin overload may be involved in the increased prevalence of obesity in US children. World J. Gastroenterol. 2010, 16, 2378–2387. [Google Scholar] [CrossRef]
- Simcox, J.A.; McClain, D.A. Iron and diabetes risk. Cell Metab. 2013, 17, 329–341. [Google Scholar] [CrossRef]
- Report on Chinese residents’ chronic diseases and nutrition (2022). J. Nutr. 2020, 42, 521.
- General Office of the State Council. National Nutrition Program (2017–2030). Available online: https://www.gov.cn/zhengce/content/2017-07/13/content_5210134.htm (accessed on 7 September 2023).
- Huang, Q.; Wang, L.; Jiang, H.; Wang, H.; Zhang, B.; Zhang, J.; Jia, X.; Wang, Z. Intra-Individual Double Burden of Malnutrition among Adults in China: Evidence from the China Health and Nutrition Survey 2015. Nutrients 2020, 12, 2811. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, L.; Gao, L.; Pan, A.; Xue, H. Health policy and public health implications of obesity in China. Lancet. Diabetes Endocrinol. 2021, 9, 446–461. [Google Scholar] [CrossRef]
- Yu, D.; Zhao, L.; Ju, L.; Guo, Q.; Fang, H.; Xu, X.; Li, S.; Piao, W.; Cheng, X.; Cai, S.; et al. Status of energy and primary nutrients intake among Chinese population in 2015–2017. Food Nutr. China 2021, 27, 5–10. [Google Scholar] [CrossRef]
- Wei, X.; Yu, D.; Ju, L.; Cheng, X.; Zhao, L. Analysis of the Correlation between Eating Away from Home and BMI in Adults 18 Years and Older in China: Data from the CNNHS 2015. Nutrients 2021, 14, 146. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Guang, W.; Chang, P. Chinese Food Composition Table 2004; Peking University Medical Press: Beijing, China, 2005. [Google Scholar]
- Yang, Y. Chinese Food Composition Table; Peking University Medical Press: Beijing, China, 2009. [Google Scholar]
- Chinese Society of Nutrition. Dietary Nutrient Reference Intakes for Chinese Residents (2013); Science Press: Beijing, China, 2013. [Google Scholar]
- Awuchi, C.; Victory, I.; Ikechukwu, A.; Echeta, C. Health Benefits of Micronutrients (Vitamins and Minerals) and their Associated Deficiency Diseases: A Systematic Review. Int. J. Food Sci. 2020, 3, 1–32. [Google Scholar] [CrossRef]
- Farag, M.A.; Hamouda, S.; Gomaa, S.; Agboluaje, A.A.; Hariri, M.L.M.; Yousof, S.M. Dietary Micronutrients from Zygote to Senility: Updated Review of Minerals’ Role and Orchestration in Human Nutrition throughout Life Cycle with Sex Differences. Nutrients 2021, 13, 3740. [Google Scholar] [CrossRef]
- Chinese Society of Nutrition. Dietary Guidelines for Chinese Residents (2022); People’s Medical Publishing House: Beijing, China, 2022. [Google Scholar]
- Rhodes, E.C.; Suchdev, P.S.; Narayan, K.M.V.; Cunningham, S.; Weber, M.B.; Tripp, K.; Mapango, C.; Ramakrishnan, U.; Hennink, M.; Williams, A.M. The Co-Occurrence of Overweight and Micronutrient Deficiencies or Anemia among Women of Reproductive Age in Malawi. J. Nutr. 2020, 150, 1554–1565. [Google Scholar] [CrossRef]
- Bennett, E.; Peters, S.A.E.; Woodward, M. Sex differences in macronutrient intake and adherence to dietary recommendations: Findings from the UK Biobank. BMJ Open 2018, 8, e020017. [Google Scholar] [CrossRef]
- Abassi, M.M.; Sassi, S.; El Ati, J.; Ben Gharbia, H.; Delpeuch, F.; Traissac, P. Gender inequalities in diet quality and their socioeconomic patterning in a nutrition transition context in the Middle East and North Africa: A cross-sectional study in Tunisia. Nutr. J. 2019, 18, 18. [Google Scholar] [CrossRef]
- Sudo, N.; Sekiyama, M.; Watanabe, C.; Bokul, A.T.; Ohtsuka, R. Gender differences in food and energy intake among adult villagers in northwestern Bangladesh: A food frequency questionnaire survey. Int. J. Food Sci. Nutr. 2004, 55, 499–509. [Google Scholar] [CrossRef]
- Oncini, F.; Guetto, R. Cultural capital and gender differences in health behaviours: A study on eating, smoking and drinking patterns. Health Sociol. Rev. 2018, 27, 15–30. [Google Scholar] [CrossRef]
- Schetz, M.; De Jong, A.; Deane, A.M.; Druml, W.; Hemelaar, P.; Pelosi, P.; Pickkers, P.; Reintam-Blaser, A.; Roberts, J.; Sakr, Y.; et al. Obesity in the critically ill: A narrative review. Intensive Care Med. 2019, 45, 757–769. [Google Scholar] [CrossRef]
- Poslusna, K.; Ruprich, J.; de Vries, J.H.; Jakubikova, M.; van’t Veer, P. Misreporting of energy and micronutrient intake estimated by food records and 24 hour recalls, control and adjustment methods in practice. Br. J. Nutr. 2009, 101 (Suppl. S2), S73–S85. [Google Scholar] [CrossRef]
- Garden, L.; Clark, H.; Whybrow, S.; Stubbs, R.J. Is misreporting of dietary intake by weighed food records or 24-hour recalls food specific? Eur. J. Clin. Nutr. 2018, 72, 1026–1034. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The Double Burden of Malnutrition Policy Brief; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Yu, D.; He, Y.; Guo, Q.; Fang, H.; Xu, X.; Fang, Y.; Li, J.; Zhao, L. Trends of energy and nutrients intake among Chinese population in 2002–2012. J. Hyg. Res. 2016, 45, 527–533. [Google Scholar] [CrossRef]
- Thomas-Valdés, S.; Tostes, M.; Anunciação, P.C.; da Silva, B.P.; Sant’Ana, H.M.P. Association between vitamin deficiency and metabolic disorders related to obesity. Crit. Rev. Food Sci. Nutr. 2017, 57, 3332–3343. [Google Scholar] [CrossRef]
- Damms-Machado, A.; Weser, G.; Bischoff, S.C. Micronutrient deficiency in obese subjects undergoing low calorie diet. Nutr. J. 2012, 11, 34. [Google Scholar] [CrossRef]
- Ma, Q.; Li, R.; Wang, L.; Yin, P.; Wang, Y.; Yan, C.; Ren, Y.; Qian, Z.; Vaughn, M.G.; McMillin, S.E.; et al. Temporal trend and attributable risk factors of stroke burden in China, 1990–2019: An analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2021, 6, e897–e906. [Google Scholar] [CrossRef]
- Ostchega, Y.; Fryar, C.D.; Nwankwo, T.; Nguyen, D.T. Hypertension Prevalence among Adults Aged 18 and over: United States, 2017–2018; NCHS Data Brief; U.S. Department of Health and Human Services: Washington, DC, USA, 2020; pp. 1–8. [Google Scholar]
- World Health Organization. Global Report on Hypertension: The Race against a Silent Killer; WHO: Geneva, Switzerland; New York, NY, USA, 2023. [Google Scholar]
- He, L. Characteristics and application of dietary investigation methods. Foreign Med. (Health Branch) 2003, 6, 368–371. [Google Scholar]
18–49 y (n = 25,295) | 50–64 y (n = 23,697) | 65–79 y (n = 11,509) | ≥80 y (n = 1267) | |||||
---|---|---|---|---|---|---|---|---|
Male (n = 11,035) | Female (n = 14,260) | Male (n = 10,864) | Female (n = 12,833) | Male (n = 5933) | Female (n = 5576) | Male (n = 674) | Female (n = 593) | |
Demographics | ||||||||
Region; n (%) | ||||||||
Eastern | 4197 (38.0) | 5408 (37.9) | 4398 (40.5) | 5256 (41.0) | 2364 (39.8) | 2224 (39.9) | 310 (46.0) | 288 (48.6) |
Central | 2967 (26.9) | 3959 (27.8) | 3272 (30.1) | 3890 (30.3) | 1854 (31.2) | 1673 (30.0) | 184 (27.3) | 161 (27.2) |
Western | 3871 (35.1) | 4893 (34.3) | 3194 (29.4) | 3687 (28.7) | 1715 (28.9) | 1679 (30.1) | 180 (26.7) | 144 (24.3) |
Urban/rural; n (%) | ||||||||
Urban | 4389 (39.8) | 5827 (40.9) | 4366 (40.2) | 5297 (41.3) | 2611 (44.0) | 2591 (46.5) | 310 (46.0) | 277 (46.7) |
rural | 6646 (60.2) | 8433 (59.1) | 6498 (59.8) | 7536 (58.7) | 3322 (56.0) | 2985 (53.5) | 364 (54.0) | 316 (53.3) |
Anthropometrics | ||||||||
Weight (kg); mean (SD) | 68.9 (12.1) | 58.8 (10.0) | 66.7 (11.0) | 59.2 (10.1) | 63.3 (11.0) | 56.1 (10.3) | 60.2 (11.1) | 51.3 (10.5) |
Height (cm); mean (SD) | 168.2 (6.6) | 156.9 (5.9) | 165.6 (6.5) | 154.6 (6.0) | 163.2 (6.6) | 151.7 (6.4) | 161.1 (6.9) | 148.4 (7.3) |
BMI categories; n (%) | ||||||||
p-value a | <0.0001 | <0.0001 | <0.0001 | 0.2995 | ||||
Underweight | 400 (3.6) | 632 (4.4) | 267 (2.5) | 379 (3.0) | 303 (5.1) | 293 (5.3) | 50 (7.4) | 48 (8.1) |
Normal | 5068 (45.9) | 7385 (51.8) | 5038 (46.4) | 5301 (41.3) | 2970 (50.1) | 2460 (44.1) | 368 (54.6) | 335 (56.5) |
Overweight | 3891 (35.3) | 4433 (31.1) | 4129 (38.0) | 4957 (38.6) | 2054 (34.6) | 1970 (35.3) | 201 (29.8) | 151 (25.5) |
Obese | 1676 (15.2) | 1810 (12.7) | 1430 (13.2) | 2196 (17.1) | 606 (10.2) | 853 (15.3) | 55 (8.2) | 59 (9.9) |
Dietary intake; median (IQR) | ||||||||
Energy (kcal) | 2060.8 (808.3) | 1690.1 (652.7) | 1975.5 (783.6) | 1655.7 (633.8) | 1809.1 (717.5) | 1524.5 (589.9) | 1608.3 (612.3) | 1380.3 (555.6) |
Macronutrients (g) | ||||||||
Carbohydrates | 259.3 (121.3) | 221.9 (99.5) | 256.5 (120.3) | 225.6 (98.9) | 242.8 (110.1) | 211.2 (94.3) | 216 (93.8) | 188.5 (87.5) |
Protein | 61.6 (29.8) | 50 (24.0) | 58 (27.6) | 48.2 (23.6) | 52.6 (25.5) | 44.3 (22.1) | 47.3 (22.7) | 39.5 (21.6) |
Fat | 80.1 (51.9) | 63.7 (40.6) | 74 (48.8) | 60 (39.7) | 64.7 (43.3) | 52.7 (35.3) | 57.7 (38.3) | 49.9 (34.1) |
Dietary fiber | 8.9 (6.0) | 8.1 (5.3) | 9 (6.1) | 8.2 (5.5) | 8.4 (5.8) | 7.6 (5.2) | 7.4 (5.4) | 6.2 (4.0) |
18–49 y | 50–64 y | 65–79 y | ≥80 y | |
---|---|---|---|---|
Total | 15,309 (60.5) | 13,694 (57.8) | 6594 (57.3) | 849 (67.0) |
Male | 6881 (44.9) | 6267 (45.8) | 3930 (59.6) | 495 (58.3) |
Female | 8428 (55.1) | 7427 (54.2) | 2664 (40.4) | 354 (41.7) |
p-values a | <0.001 | 0.77 | <0.001 | <0.001 |
18–49 y (n = 25,295) | 50–64 y (n = 23,697) | 65–79 y (n = 11,509) | ≥80 y (n = 1267) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Male (n = 11,035) | Female (n = 14,260) | Male (n = 10,864) | Female (n = 12,833) | Male (n = 5933) | Female (n = 5576) | Male (n = 674) | Female (n = 593) | |||||
n (%) | n (%) | p a | n (%) | n (%) | p a | n (%) | n (%) | p a | n (%) | n (%) | p a | |
Macronutrients(g) * | ||||||||||||
Carbohydrates | 203 (1.8) | 530 (3.7) | <0.0001 | 190 (1.7) | 449 (3.5) | <0.0001 | 144 (2.4) | 297 (5.3) | <0.0001 | 30 (4.5) | 61 (10.3) | <0.0001 |
RNI-Protein | 6243 (56.6) | 8689 (60.9) | <0.0001 | 6871 (63.2) | 8230 (64.1) | 0.1575 | 4296 (72.4) | 4044 (72.5) | 0.8888 | 535 (79.4) | 463 (78.1) | 0.5726 |
%E-Fat | 5857 (53.1) | 8302 (58.2) | <0.0001 | 6237 (57.4) | 8066 (62.9) | <0.0001 | 3701 (62.4) | 3728 (66.9) | <0.0001 | 427 (63.4) | 386 (65.1) | 0.5193 |
Dietary fiber d | 10,691 (96.9) | 13,955 (97.9) | <0.0001 | 10,517 (96.8) | 12,503 (97.4) | 0.0042 | 5776 (97.4) | 5492 (98.5) | <0.0001 | 663 (98.4) | 585 (98.7) | 0.6792 |
Vitamins | ||||||||||||
A | ||||||||||||
Insufficient intake b | 8683 (78.7) | 10,706 (75.1) | <0.0001 | 8413 (77.4) | 9537 (74.3) | <0.0001 | 4609 (77.7) | 4211 (75.5) | 0.0061 | 519 (77) | 460 (77.6) | 0.8095 |
Excessive intake c | 66 (0.6) | 67 (0.5) | 0.1619 | 69 (0.6) | 55 (0.4) | 0.0281 | 18 (0.3) | 10 (0.2) | 0.177 | 1 (0.1) | 0 (0) | 0.2611 |
B1 (Thiamin) e | ||||||||||||
Insufficient intake b | 9018 (81.7) | 11,845 (83.1) | 0.0053 | 9180 (84.5) | 10,809 (84.2) | 0.5671 | 5348 (90.1) | 4958 (88.9) | 0.0321 | 637 (94.5) | 553 (93.3) | 0.3505 |
B2 (Riboflavin) e | ||||||||||||
Insufficient intake b | 10,131 (91.8) | 12,917 (90.6) | 0.0007 | 10,105 (93.0) | 11,682 (91.0) | <0.0001 | 5627 (94.8) | 5192 (93.1) | <0.0001 | 638 (94.7) | 550 (92.7) | 0.1606 |
B3 (Niacin) | ||||||||||||
Insufficient intake b | 3771 (34.2) | 5074 (35.6) | 0.0198 | 4182 (38.5) | 4808 (37.5) | 0.1041 | 2357 (39.7) | 1986 (35.6) | <0.0001 | 323 (47.9) | 182 (30.7) | <0.0001 |
Excessive intake c | 199 (1.8) | 86 (0.6) | <0.0001 | 140 (1.3) | 71 (0.6) | <0.0001 | 49 (0.8) | 22 (0.4) | 0.0031 | 6 (0.9) | 5 (0.8) | 0.9282 |
C | ||||||||||||
Insufficient intake b | 7352 (66.6) | 11,217 (78.7) | <0.0001 | 6906 (63.6) | 9846 (76.7) | <0.0001 | 3898 (65.7) | 4393 (78.8) | <0.0001 | 473 (70.2) | 509 (85.8) | <0.0001 |
Minerals | ||||||||||||
Calcium d | ||||||||||||
Insufficient intake b | 10,482 (95.0) | 13,777 (96.6) | <0.0001 | 10,564 (97.2) | 12,592 (98.1) | <0.0001 | 5779 (97.4) | 5471 (98.1) | 0.01 | 657 (97.5) | 581 (98.0) | 0.5537 |
Iron | ||||||||||||
Insufficient intake b | 73 (0.7) | 5059 (35.5) | <0.0001 | 73 (0.7) | 309 (2.4) | <0.0001 | 101 (1.7) | 275 (4.9) | <0.0001 | 28 (4.2) | 61 (10.3) | <0.0001 |
Excessive intake c | 380 (3.4) | 255 (1.8) | <0.0001 | 310 (2.9) | 249 (1.9) | <0.0001 | 112 (1.9) | 60 (1.1) | 0.0003 | 3 (0.4) | 4 (0.7) | 0.5828 |
Sodium d | ||||||||||||
Insufficient intake b | 739 (6.7) | 870 (6.1) | 0.0541 | 652 (6.0) | 648 (5.0) | 0.0013 | 383 (6.5) | 323 (5.8) | 0.1387 | 47 (7.0) | 58 (9.8) | 0.0705 |
Excessive intake c | 10,072 (91.3) | 12,991 (91.1) | 0.632 | 9983 (91.9) | 11,893 (92.7) | 0.0239 | 5446 (91.8) | 5112 (91.7) | 0.8258 | 610 (90.5) | 513 (86.5) | 0.0254 |
Age Groups | Multivariate Analysis | ||||||
---|---|---|---|---|---|---|---|
Male | Female | ||||||
18–49 y (n = 25,295) | Region; n (%) | Inadequate | OR (95%-CI) | p-values | Inadequate | OR (95%-CI) | p-values |
Eastern Region | 2200 (34.4) | ref | 3281 (34.9) | ref | |||
Central Region | 1794 (28.0) | 1.4 (1.3,1.5) | <0.0001 | 2737 (29.1) | 1.5 (1.3,1.6) | <0.0001 | |
Western Region | 2411 (37.6) | 1.5 (1.4,1.6) | <0.0001 | 3373 (36.0) | 1.5 (1.3,1.6) | <0.0001 | |
Urban/rural; n (%) | |||||||
Urban | 2479 (38.7) | ref | 3828 (40.8) | ref | |||
rural | 3926 (61.3) | 1.1 (1.0,1.1) | 0.163 | 5563 (59.2) | 1.0 (0.9,1.0) | 0.2498 | |
BMI categories; n (%) | |||||||
Underweight | 236 (3.7) | 1.1 (0.9,1.4) | 0.3851 | 413 (4.4) | 1.0 (0.9,1.2) | 0.6932 | |
Normal | 2904 (45.3) | ref | 4789 (51.0) | ref | |||
Overweight | 2268 (35.4) | 1.1 (1.0,1.2) | 0.1759 | 2923 (31.1) | 1.0 (1.0,1.1) | 0.232 | |
Obese | 997 (15.6) | 1.1 (1.0,1.3) | 0.0274 | 1266 (13.5) | 1.3 (1.1,1.4) | <0.0001 | |
50–64 y (n = 23,697) | Region; n (%) | ||||||
Eastern Region | 2393 (37.2) | ref | 3027 (37.7) | ref | |||
Central Region | 1975 (30.6) | 1.3 (1.2,1.4) | <0.0001 | 2496 (31.1) | 1.3 (1.2,1.4) | <0.0001 | |
Western Region | 2070 (32.2) | 1.5 (1.4,1.7) | <0.0001 | 2499 (31.2) | 1.6 (1.4,1.7) | <0.0001 | |
Urban/rural; n (%) | |||||||
Urban | 2540 (39.5) | ref | 3256 (40.6) | ref | |||
rural | 3898 (60.5) | 1.0 (1.0,1.1) | 0.4215 | 4766 (59.4) | 1 (1.0,1.1) | 0.3593 | |
BMI categories; n (%) | |||||||
Underweight | 165 (2.6) | 1.2 (0.9,1.5) | 0.2644 | 213 (2.7) | 0.8 (0.7,1.0) | 0.0457 | |
Normal | 2939 (45.6) | 3225 (40.2) | |||||
Overweight | 2446 (38.0) | 1.1 (1.0,1.2) | 0.1778 | 3100 (38.6) | 1.1 (1.0,1.2) | 0.0339 | |
Obese | 888 (13.8) | 1.2 (1.1,1.4) | 0.0021 | 1484 (18.5) | 1.4 (1.2,1.5) | <0.0001 | |
65–79 y (n = 11,509) | Region; n (%) | ||||||
Eastern Region | 1221 (35.6) | ref | 1365 (37.2) | ref | |||
Central Region | 1101 (32.1) | 1.4 (1.2,1.5) | <0.0001 | 1128 (30.7) | 1.3 (1.1,1.5) | 0.0001 | |
Western Region | 1111 (32.3) | 1.7 (1.5,1.9) | <0.0001 | 1178 (32.1) | 1.5 (1.3,1.7) | <0.0001 | |
Urban/rural; n (%) | |||||||
Urban | 1457 (42.4) | ref | 1680 (45.8) | ref | |||
rural | 1976 (57.6) | 1.1 (1.0,1.2) | 0.0654 | 1991 (54.2) | 1.1 (0.9,1.2) | 0.3802 | |
BMI categories; n (%) | |||||||
Underweight | 170 (5.0) | 0.9 (0.7,1.2) | 0.4263 | 208 (5.7) | 1.3 (1.0,1.7) | 0.0389 | |
Normal | 1728 (50.3) | ref | 1580 (43.0) | ref | |||
Overweight | 1188 (34.6) | 1 (0.9,1.2) | 0.5345 | 1318 (35.9) | 1.2 (1.0,1.3) | 0.0235 | |
Obese | 347 (10.1) | 1 (0.9,1.3) | 0.637 | 565 (15.4) | 1.1 (1.0,1.3) | 0.1369 | |
≥80 y (n = 1267) | Region; n (%) | ||||||
Eastern Region | 189 (40.6) | ref | 194 (44.9) | ref | |||
Central Region | 138 (29.6) | 1.8 (1.2,2.7) | 0.005 | 127 (29.4) | 1.7 (1.1,2.7) | 0.0194 | |
Western Region | 139 (29.8) | 2.0 (1.3,3.1) | 0.0012 | 111 (25.7) | 1.5 (0.9,2.4) | 0.1084 | |
Urban/rural; n (%) | |||||||
Urban | 198 (42.5) | ref | 190 (44.0) | ref | |||
rural | 268 (57.5) | 1.4 (1.0,1.9) | 0.0747 | 242 (56.0) | 1.3 (0.9,1.9) | 0.1805 | |
BMI categories; n (%) | |||||||
Underweight | 39 (8.4) | 1.4 (0.7,2.9) | 0.3664 | 34 (7.9) | 0.6 (0.3,1.2) | 0.1697 | |
Normal | 263 (56.4) | ref | 261 (60.4) | ref | |||
Overweight | 128 (27.5) | 0.8 (0.6,1.2) | 0.3081 | 104 (24.1) | 0.7 (0.4,1.1) | 0.084 | |
Obese | 36 (7.7) | 0.9 (0.5,1.7) | 0.723 | 33 (7.6) | 0.4 (0.2,0.7) | 0.0014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, X.; Zhao, L.; Fang, H.; Chen, M.; Piao, W.; Ju, L.; Cai, S.; Yang, Y.; Li, Y.; Li, F.; et al. Deficiency of Energy and Nutrient and Gender Differences among Chinese Adults: China Nutrition and Health Survey (2015–2017). Nutrients 2024, 16, 2371. https://doi.org/10.3390/nu16142371
Wei X, Zhao L, Fang H, Chen M, Piao W, Ju L, Cai S, Yang Y, Li Y, Li F, et al. Deficiency of Energy and Nutrient and Gender Differences among Chinese Adults: China Nutrition and Health Survey (2015–2017). Nutrients. 2024; 16(14):2371. https://doi.org/10.3390/nu16142371
Chicago/Turabian StyleWei, Xiaoqi, Liyun Zhao, Hongyun Fang, Mulei Chen, Wei Piao, Lahong Ju, Shuya Cai, Yuxiang Yang, Yuge Li, Fusheng Li, and et al. 2024. "Deficiency of Energy and Nutrient and Gender Differences among Chinese Adults: China Nutrition and Health Survey (2015–2017)" Nutrients 16, no. 14: 2371. https://doi.org/10.3390/nu16142371
APA StyleWei, X., Zhao, L., Fang, H., Chen, M., Piao, W., Ju, L., Cai, S., Yang, Y., Li, Y., Li, F., Li, J., Nan, J., & Yu, D. (2024). Deficiency of Energy and Nutrient and Gender Differences among Chinese Adults: China Nutrition and Health Survey (2015–2017). Nutrients, 16(14), 2371. https://doi.org/10.3390/nu16142371