Dietary Profile of Patients with Inflammatory Bowel Disease in Clinical Remission—A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Issues
2.2. Selection of Participants
2.2.1. Patients (IBD Group)
2.2.2. Healthy Controls (HC Group)
2.3. Demographic and Clinical Variables
2.4. Food Consumption Pattern
2.5. Food Consumption Adequacy
2.6. Statistical Analysis
3. Results
3.1. Descriptive Data
3.2. Dietary Patterns
3.3. Dietary Adequacy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ananthakrishnan, A.N.; Bernstein, C.N.; Iliopoulos, D.; Macpherson, A.; Neurath, M.F.; Ali, R.A.R.; Vavricka, S.R.; Fiocchi, C. Environmental triggers in IBD: A review of progress and evidence. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 39–49. [Google Scholar] [CrossRef] [PubMed]
- AGA Patient Information Section. Inflammatory Bowel Disease. Clin. Gastroenterol. Hepatol. 2017, 15, A21. [Google Scholar] [CrossRef]
- Kudelka, M.R.; Stowell, S.R.; Cummings, R.D.; Neish, A.S. Intestinal epithelial glycosylation in homeostasis and gut microbiota interactions in IBD. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 597–617. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Cheon, J.H. Incidence and Prevalence of Inflammatory Bowel Disease across Asia. Yonsei Med. J. 2021, 62, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Harris, K.G.; Chang, E.B. The intestinal microbiota in the pathogenesis of inflammatory bowel diseases: New insights into complex disease. Clin. Sci. 2018, 132, 2013–2028. [Google Scholar] [CrossRef] [PubMed]
- GBD 2017 Inflammatory Bowel Disease Collaborators. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Seyedian, S.S.; Nokhostin, F.; Malamir, M.D. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. J. Med. Life 2019, 12, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Huang, C.; Xu, J.; Xu, H.; Liu, L.; Zhao, H.; Wang, J.; Huang, W.; Peng, W.; Chen, Y.; et al. Gut Microbiota Is a Potential Biomarker in Inflammatory Bowel Disease. Front. Nutr. 2022, 8, 818902. [Google Scholar] [CrossRef] [PubMed]
- Scaldaferri, F.; Pizzoferrato, M.; Lopetuso, L.R.; Musca, T.; Ingravalle, F.; Sicignano, L.L.; Gasbarrini, A. Nutrition and IBD: Malnutrition and/or Sarcopenia? A Practical Guide. Gastroenterol. Res. Pract. 2017, 2017, 8646495. [Google Scholar] [CrossRef]
- Nardone, O.M.; de Sire, R.; Petito, V.; Testa, A.; Villani, G.; Scaldaferri, F.; Castiglione, F. Inflammatory Bowel Diseases and Sarcopenia: The Role of Inflammation and Gut Microbiota in the Development of Muscle Failure. Front. Immunol. 2021, 12, 694217. [Google Scholar] [CrossRef]
- Cioffi, I.; Imperatore, N.; Di Vincenzo, O.; Pagano, M.C.; Santarpia, L.; Pellegrini, L.; Pasanisi, F. Evaluation of Nutritional Adequacy in Adult Patients With Crohn’s Disease: A Cross-Sectional Study. Eur. J. Nutr. 2020, 59, 3647–3658. [Google Scholar] [CrossRef] [PubMed]
- Massironi, S.; Viganò, C.; Palermo, A.; Pirola, L.; Mulinacci, G.; Allocca, M.; Peyrin-Biroulet, L.; Danese, S. Inflammation and malnutrition in inflammatory bowel disease. Lancet Gastroenterol Hepatol. 2023, 8, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Yamashiro, Y. Gut Microbiota in Health and Disease. Ann. Nutr. Metab. 2018, 71, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Khalili, H.; Chan, S.S.M.; Lochhead, P.; Ananthakrishnan, A.N.; Hart, A.R.; Chan, A.T. The role of diet in the aetiopathogenesis of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Magro, F.; Gionchetti, P.; Eliakim, R.; Ardizzone, S.; Armuzzi, A.; Barreiro-de Acosta, M.; Burisch, J.; Gecse, K.B.; Hart, A.L.; European Crohn’s and Colitis Organisation [ECCO]; et al. Third European evi-dence-based consensus on diagnosis and management of ulcerative colitis. Part 1: Definitions, diagnosis, extra-intestinal manifestations, pregnancy, cancer surveillance, surgery, and ileo-anal pouch disorders. J. Crohn’s Colitis 2017, 11, 649–670. [Google Scholar] [CrossRef] [PubMed]
- Gomollón, F.; Dignass, A.; Annese, V.; Tilg, H.; Van Assche, G.; Lindsay, J.O.; Peyrin-Biroulet, L.; Cullen, G.J.; Daperno, M.; Kucharzik, T.; et al. 3rd European evidence-based consensus on the diagnosis and management of Crohn’s disease 2016: Part 1:Diagnosis and medical management. J. Crohn’s Colitis 2017, 11, 3–25. [Google Scholar] [CrossRef] [PubMed]
- Harvey, R.F.; Bradshaw, M.J. Measuring Crohn’s disease activity. Lancet 1980, 1, 1134–1135. [Google Scholar] [CrossRef]
- Sandborn, W.J.; van Assche, G.; Reinisch, W.; Colombel, J.; D’haens, G.; Wolf, D.C.; Kron, M.; Tighe, M.B.; Lazar, A.; Thakkar, R.B. Adalimumab induces and maintains clinical remission in patients with moderate-to-severe ulcerative colitis. Gastroenterology 2012, 142, 257–265. [Google Scholar] [CrossRef]
- Balestrieri, P.; Ribolsi, M.; Guarino, M.P.L.; Emerenziani, S.; Altomare, A.; Cicala, M. Nutritional Aspects in Inflammatory Bowel Diseases. Nutrients 2020, 12, 372. [Google Scholar] [CrossRef]
- Fisberg, R.M.; Marchioni, D.M.L.; Colucci, A.C.A. Avaliação do consumo alimentar e da ingestão de nutrientes na prática clínica. Arq. Bras. De Endocrinol. Metabol. 2009, 53, 5. [Google Scholar] [CrossRef]
- Brazilian Institute of Geography and Statistics (IBGE). Table of Measures Referred to the Foods Consumed in Brazil; IBGE: Rio de Janeiro, Brazil, 2011. [Google Scholar]
- Giuntini, E.B.; Lajolo, F.M.; Menezes, E.W. Tabela Brasileira de Composição de Alimentos TBCA-USP (Versões 3 e 4) no contexto internacional. Arch. Latinoam. Nutr. 2006, 56, 366–374. [Google Scholar]
- Pinheiro, A.B.V.; Lacerda, E.M.D.A.; Benzecry, E.H.; Gomes, M.C.D.S.; Costa, V.M.D. Tabela Para Avaliação de Consumo Alimentar Em Medidas Caseiras, 5th ed.; Editora Atheneu: São Paulo, Brazil, 2008; 131p. [Google Scholar]
- NEPA—UNICAMP. Tabela Brasileira de Composição de Alimentos (TACO), 1st ed.; NEPA—UNICAMP: Campinas, Brazil, 2004. [Google Scholar]
- United States Department of Agriculture (USDA). National Nutrient Database for Standard Reference; Food Composition Table; USDA: Washington, DC, USA, 2012. [Google Scholar]
- The Multiple Source Method (MSM). Department of Epidemiology of the German Institute of Human Nutrition Potsdam-Rehbrücke (DiFE). 2011. Available online: https://nugo.dife.de/msm (accessed on 1 June 2023).
- Padovani, R.M.; Amaya-Farfan, J.; Colugnati, F.A.B.; Domene, S.M.A. Dietary reference intakes: Aplicabilidade das tabelas em estudos nutricionais. Rev. Nutr. 2006, 19, 741–760. [Google Scholar] [CrossRef]
- Cohen, A.B.; Lee, D.; Long, M.D.; Kappelman, M.D.; Martin, C.F.; Sandler, R.S.; Lewis, J.D. Dietary patterns and self-reported associations of diet with symptoms of inflammatory bowel disease. Dig Dis. Sci. 2013, 58, 1322–1328. [Google Scholar] [CrossRef] [PubMed]
- Kaazan, P.; Tan, Z.; Maiyani, P.; Mickenbecker, M.; Edwards, S.; McIvor, C.; Andrews, J.M. Weight and BMI Patterns in a Biologicals-Treated IBD Cohort. Dig Dis. Sci. 2022, 67, 5628–5636. [Google Scholar] [CrossRef] [PubMed]
- Mareschal, J.; Douissard, J.; Genton, L. Physical activity in inflammatory bowel disease: Benefits, challenges and perspectives. Curr. Opin. Clin. Nutr. Metab. Care 2022, 25, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Schreiner, P.; Martinho-Grueber, M.; Studerus, D.; Vavricka, S.R.; Tilg, H.; Biedermann, L. on behalf of Swiss IBD net, an official working group of the Swiss Society of Gastroenterology. Nutrition in Inflammatory Bowel Disease. Digestion 2020, 101 (Suppl. S1), 120–135. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, A.; Quinlan, J.I.; Overthrow, K.; Greig, C.; Lord, J.M.; Armstrong, M.J.; Cooper, S.C. Sarcopenia in Inflammatory Bowel Disease: A Narrative Overview. Nutrients 2021, 13, 656. [Google Scholar] [CrossRef] [PubMed]
- Potcovaru, C.G.; Filip, P.V.; Neagu, O.M.; Diaconu, L.S.; Salmen, T.; Cinteză, D.; Pantea Stoian, A.; Bobirca, F.; Berteanu, M.; Pop, C. Diagnostic Criteria and Prognostic Relevance of Sarcopenia in Patients with Inflammatory Bowel Disease-A Systematic Review. J. Clin. Med. 2023, 12, 4713. [Google Scholar] [CrossRef]
- Ding, N.S.; Tassone, D.; Al Bakir, I.; Wu, K.; Thompson, A.J.; Connell, W.R.; Malietzis, G.; Lung, P.; Singh, S.; Choi, C.R.; et al. Systematic Review: The Impact and Importance of Body Composition in Inflammatory Bowel Disease. J. Crohns Colitis 2022, 16, 1475–1492. [Google Scholar] [CrossRef]
- Bryant, R.V.; Trott, M.J.; Bartholomeusz, F.D.; Andrews, J.M. Systematic review: Body composition in adults with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2013, 38, 213–225. [Google Scholar] [CrossRef]
- Ryan, E.; McNicholas, D.; Creavin, B.; Kelly, M.E.; Walsh, T.; Beddy, D. Sarcopenia and Inflammatory Bowel Disease: A Systematic Review. Inflamm. Bowel Dis. 2019, 25, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Song, S.; Song, Y. High-Carbohydrate Diets and Food Patterns and Their Associations with Metabolic Disease in the Korean Population. Yonsei Med. J. 2018, 59, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Yueying, C.; Yu Fan, W.; Jun, S. Anemia and iron deficiency in Crohn’s disease. Expert Rev. Gastroenterol. Hepatol. 2020, 14, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Massironi, S.; Cavalcoli, F.; Rausa, E.; Invernizzi, P.; Braga, M.; Vecchi, M. Understanding short bowel syndrome: Current status and future perspectives. Dig Liver Dis. 2020, 52, 253–261. [Google Scholar] [CrossRef] [PubMed]
- FAO/OMS. Fiber Dietary Recommendation. Disponível Em. Available online: https://www.who.int/dietphysicalactivity/fruit/en/ (accessed on 2 April 2022).
- Statovci, D.; Aguilera, M.; MacSharry, J.; Melgar, S. The Impact of Western Diet and Nutrients on the Microbiota and Immune Response at Mucosal Interfaces. Front. Immunol. 2017, 8, 838. [Google Scholar] [CrossRef] [PubMed]
- Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut microbiota functions: Metabolism of nutrients and other food components. Eur. J. Nutr. 2018, 57, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Precup, G.; Vodnar, D.C. Gut Prevotella as a possible biomarker of diet and its eubiotic versus dysbiotic roles: A comprehensive literature review. Br. J. Nutr. 2019, 122, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Cronin, P.; Joyce, S.A.; O’Toole, P.W.; O’Connor, E.M. Dietary Fibre Modulates the Gut Microbiota. Nutrients 2021, 13, 1655. [Google Scholar] [CrossRef] [PubMed]
- MacMaster, M.J.; Damianopoulou, S.; Thomson, C.; Talwar, D.; Stefanowicz, F.; Catchpole, A.; Gerasimidis, K.; Gaya, D.R. A prospective analysis of micronutrient status in quiescent inflammatory bowel disease. Clin. Nutr. 2021, 40, 327–331. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, M.; Sartain, S.; Westoby, C.; Katarachia, V.; Wootton, S.A.; Cummings, J.R.F. Micronutrient Status in Adult Crohn’s Disease during Clinical Remission: A Systematic Review. Nutrients 2023, 15, 4777. [Google Scholar] [CrossRef]
- Liu, K.Y.; Nakatsu, C.H.; Jones-Hall, Y.; Kozik, A.; Jiang, Q. Vitamin e alpha- and gam-ma-tocopherol mitigate colitis, protect intestinal barrier function and modulate the gut microbiota in mice. Free Radic Biol. Med. 2021, 163, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Aghdassi, E.; Wendland, B.E.; Steinhart, A.H.; Wolman, S.L.; Jeejeebhoy, K.; Allard, J.P. Antioxidant vitamin supplementa-tion in crohn’s disease decreases oxidative stress. a randomized controlled trial. Am. J. Gastroenterol. 2003, 98, 348–353. [Google Scholar] [PubMed]
- Yamaguchi, T.; Hirota, K.; Nagahama, K.; Ohkawa, K.; Takahashi, T.; Nomura, T.; Sakaguchi, S. Control of immune responses by antigen-specific regulatory T cells expressing the folate receptor. Immunity 2007, 27, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Shafiee, N.H.; Manaf, Z.A.; Mokhtar, N.M.; Raja Ali, R.A. Anti-inflammatory diet and inflammatory bowel disease: What clinicians and patients should know? Intest. Res. 2021, 19, 171–185. [Google Scholar] [CrossRef] [PubMed]
Variable | HC (n = 45) | IBD (n = 40) | p-Value |
---|---|---|---|
Age (years) | 38.3 ± 15.1 | 44.8 ± 14.7 | 0.013 a |
Caucasian | 35 (77.8%) | 23 (57.0%) | 0.062 b |
Not-Caucasian | 10 (22.2%) | 17 (43.0%) | |
Male | 24 (53.3%) | 16 (40.0%) | 0.278 b |
Female | 21 (46.7%) | 24 (60.0%) | |
Weight (kg) | 68.2 ± 13.5 | 70.4 ± 14.2 | 0.440 a |
Height (cm) | 1.7 ± 0.1 | 1.7 ± 0.1 | 0.150 a |
BMI (kg/m2) | 23.7 ± 2.9 | 25.5 ± 4.1 | 0.048 a |
Underweight | 2 (4.4%) | 1 (2.5%) | 0.033 b |
Normal | 25 (55.6%) | 18 (45.0%) | |
Overweight | 18 (21. 2%) | 14 (35.0%) | |
Obesity | 0 (0.0%) | 7 (17.5%) | |
Fat mass (%) | 27.2 ± 7.4 | 33.1 ± 8.1 | 0.001 a |
Muscle mass (%) | 72.78 ± 7.4 | 66.9 ± 8.1 | 0.001 a |
Tendency toward constipation | 3 (6.8%) | 2 (5.0%) | 0.022 b |
Ideal stool | 38 (86.4%) | 25 (62.5%) | |
Tendency toward diarrhea | 3 (6.8%) | 13 (32.5%) | |
Non-smoking | 45 (00.0%) | 37 (92.5%) | 0.100 c |
Smoking | 0 (0.0%) | 3 (7.5%) |
Energy/Nutrient | HC (n = 45) | IBD (n = 40) | p-Value |
---|---|---|---|
Energy (kcal) | 1893.5 ± 556.7 | 1738.8 ± 385.2 | 0.3877 |
Carbohydrates (g) | 214.9 ± 75.9 | 232.6 ± 51.8 | 0.0330 |
Fiber (g) | 20.4 ± 7.3 | 20.6 ± 7.3 | 0.6127 |
Protein (g) | 91.4 ± 26.8 | 70.7 ± 16.7 | 0.0001 |
Fat (g) | 73.3 ± 22.7 | 59.4 ± 14.3 | 0.0055 |
Saturated fat (g) | 25.8 ± 7.2 | 21.1 ± 5.8 | 0.0023 |
Monounsaturated fat (g) | 21.8 ± 5.9 | 17.3 ± 3.8 | 0.0003 |
Polyunsaturated fat (g) | 16.5 ± 5.9 | 13.6 ± 4.9 | 0.0239 |
Cholesterol (g) | 354.3 ± 185.5 | 245.6 ± 69.2 | 0.0005 |
Sodium (mg) | 3485.2 ± 966.7 | 3099.2 ± 947.9 | 0.0563 |
Calcium (g) | 696.7 ± 202.9 | 561.2 ± 200.9 | 0.0003 |
Iron (g) | 9.3 ± 2.8 | 8.3 ± 2.1 | 0.2730 |
Magnesium (mg) | 257.1 ± 69.5 | 218.1 ± 53.4 | 0.0180 |
Selenium (µg) | 23.7 ± 8.4 | 24.8 ± 7.7 | 0.1926 |
Vitamin C (mg) | 136.3 ± 71.4 | 104.6 ± 42.8 | 0.0651 |
Vitamin B1 (mg) | 1.0 ± 0.4 | 0.8 ± 0.2 | 0.0943 |
Vitamin B6 (mg) | 0.6 ± 0.2 | 0.7 ± 0.2 | 0.0135 |
Phosphorus (mg) | 538.7 ± 173.9 | 442. 3 ± 137.3 | 0.0032 |
Copper (mg) | 3.9 ± 7.2 | 0.7 ± 0.7 | 0.0000 |
Manganese (mg) | 0.9 ± 0.4 | 1.2 ± 1.3 | 0.5493 |
Potassium (mg) | 2502.9 ± 804.4 | 2017.8 ± 409.0 | 0.0057 |
Zinc (mg) | 10.1 ± 2.4 | 8.4 ± 2.3 | 0.0022 |
Vitamin B3 (mg) | 5.8 ± 2.6 | 4.81 ± 2.3 | 0.0671 |
Folic Acid (µg) | 107.4 ± 37.9 | 87.5 ± 28.8 | 0.0071 |
Vitamin E (mg) | 1.9 ± 0.4 | 1.8 ± 0.6 | 0.0917 |
Vitamin B12 (µg) | 2.1 ± 1.2 | 1.7 ± 0.7 | 0.2469 |
Vitamin D (µg) | 1.8 ± 0.9 | 1.9 ± 0.7 | 0.3009 |
Vitamin A (µg) | 354.0 ± 222.2 | 349.3 ± 249.2 | 0.7181 |
Female (n = 24) | Male (n = 16) | |||||
---|---|---|---|---|---|---|
Nutrients | EAR | Mean (SD) | %IN | EAR | Mean (SD) | %IN |
Carbohydrate (g) | ||||||
19 to 70 years or more | 130.0 | 219.8 (46.8) | 2.7 | 130.0 | 251.8 (54.4) | 1.3 |
Fiber (g) | ||||||
19–50 years | 25.0 | 18.7 (6.7) | 82.4 | 38.0 | 21.8 (7.4) | 98.5 |
51 years or more | 21.0 | 21.0 (8.8) | 51.6 | 30.0 | 22.6 (6.7) | 86.4 |
Protein (g) | ||||||
19 years or more | 46.0 | 62.4 (14.6) | 12.9 | 56.0 | 81.5 (13.0) | 2.5 |
Sodium (mg) | ||||||
19 to 71 years or more | 2300.0 | 2600.3 (667.3) | 32.6 | 2300.0 | 3487.7(810.8) | 2.8 |
Calcium (mg) | ||||||
19 to 45 years | 800.0 | 514.2 (105.4) | 99.7 | 800.0 | 730.4 (279.9) | 59.5 |
46 years or more | 1000.0 | 484.0 (122.9) | 100.0 | 1000.0 | 527.8 (194.7) | 99.2 |
Iron (mg) | ||||||
19 to 45 years | 8.1 | 7.9 (2.2) | 53.6 | 6 | 9.8 (1.7) | 1.5 |
46 years or more | 5.0 | 7.5 (1.5) | 5.5 | 6 | 8.3 (2.2) | 14.9 |
Magnesium (μg) | ||||||
19 to 30 years | 255.0 | 214.5 (68.8) | 71.9 | 330.0 | 203.1 (62.5) | 97.8 |
31 years or more | 265.0 | 209.4 (53.9) | 79.7 | 350.0 | 238.8 (47.9) | 99.0 |
Selenium (μg) | ||||||
19 to 71 years or more | 45.0 | 25.8 (8.7) | 98.6 | 45.0 | 23.4 (5.8) | 100.0 |
Vitamin C (mg) | ||||||
19 to 71 years | 60.0 | 108.3 (49.3) | 16.3 | 75.0 | 99.1 (31.3) | 22.4 |
Vitamin B1 (mg) | ||||||
19 to 71 years | 0.9 | 0.7 (0.2) | 81.1 | 0.9 | 0.9 (0.2) | 52.4 |
Vitamin B6 (mg) | ||||||
19 to 50 years | 1.1 | 0.8 (0.1) | 98.5 | 1.1 | 0.8 (0.1) | 98.1 |
51 years or more | 1.3 | 0.5 (0.1) | 100.0 | 1.4 | 0.7 (0.1) | 100.0 |
Phosphorus (mg) | ||||||
19 to 71 years | 580.0 | 403.3 (121.3) | 92.6 | 580.0 | 500.8 (142.7) | 70.9 |
Copper (mg) | ||||||
19 to 71 years | 700.0 | 797.9 (872.8) | 45.0 | 700.0 | 606.9 (275.0) | 62.9 |
Manganese (mg) | ||||||
19–71 years | 1.8 | 1.4 (1.5) | 61.0 | 2.3 | 0.9 (0.6) | 99.1 |
Zinc (mg) | ||||||
19 to 71 years | 6.8 | 7.1 (1.5) | 41.3 | 9.4 | 10.28 (1.92) | 29.1 |
Vitamin B3 (mg) | ||||||
19 to 71 years | 11.0 | 4.6 (2.5) | 99.4 | 12.0 | 5.2 (2.0) | 100.0 |
Folate (µg) | ||||||
19 to 71 years | 320.0 | 94.0 (28.2) | 100.0 | 320.0 | 77.9 (27.6) | 100.0 |
Vitamin E (mg) | ||||||
19 to 71 years | 12.0 | 1.8 (0.6) | 100.0 | 12.0 | 1.7 (0.6) | 100.0 |
Vitamin B12 (μg) | ||||||
19 to 71 years | 2.0 | 1.5 (0.5) | 79.9 | 2.0 | 2.1 (0.8) | 22.0 |
Vitamin D (μg) | ||||||
19 to 50 years | 5.0 | 2.1 (0.8) | 100.0 | 5.0 | 2.3 (0.5) | 100.0 |
51 to 70 years | 10.0 | 1.5 (0.3) | 100.0 | 10.0 | 1.6 (0.9) | 100.0 |
Vitamin A (µg) | ||||||
19 to 71 years | 500.0 | 352.8 (213.3) | 75.5 | 625.0 | 344.1 (302.7) | 82.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torrinhas, R.S.; da Rocha, I.M.G.; Fonseca, D.C.; Menezes, H.; Prudêncio, A.P.; Balmant, B.D.; Callado, L.; Damião, A.O.M.C.; Queiroz, N.; Waitzberg, D.L. Dietary Profile of Patients with Inflammatory Bowel Disease in Clinical Remission—A Preliminary Study. Nutrients 2024, 16, 2227. https://doi.org/10.3390/nu16142227
Torrinhas RS, da Rocha IMG, Fonseca DC, Menezes H, Prudêncio AP, Balmant BD, Callado L, Damião AOMC, Queiroz N, Waitzberg DL. Dietary Profile of Patients with Inflammatory Bowel Disease in Clinical Remission—A Preliminary Study. Nutrients. 2024; 16(14):2227. https://doi.org/10.3390/nu16142227
Chicago/Turabian StyleTorrinhas, Raquel Susana, Ilanna Marques Gomes da Rocha, Danielle Cristina Fonseca, Helena Menezes, Ana Paula Prudêncio, Bianca Depieri Balmant, Letícia Callado, Adérson Omar Mourão Cintra Damião, Natalia Queiroz, and Dan L. Waitzberg. 2024. "Dietary Profile of Patients with Inflammatory Bowel Disease in Clinical Remission—A Preliminary Study" Nutrients 16, no. 14: 2227. https://doi.org/10.3390/nu16142227
APA StyleTorrinhas, R. S., da Rocha, I. M. G., Fonseca, D. C., Menezes, H., Prudêncio, A. P., Balmant, B. D., Callado, L., Damião, A. O. M. C., Queiroz, N., & Waitzberg, D. L. (2024). Dietary Profile of Patients with Inflammatory Bowel Disease in Clinical Remission—A Preliminary Study. Nutrients, 16(14), 2227. https://doi.org/10.3390/nu16142227