Myostatin and Activin A as Biomarkers of Sarcopenia in Inflammatory Bowel Disease Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study and Control Groups
2.2. Anthropometry
2.3. Physical Activity
2.4. Collection of Blood Samples and Serum Markers of Nutritional Status
2.5. Statistical Analysis
3. Results
3.1. Study Group Characteristics
3.2. Levels of MSTN and Act A
3.3. Levels of MSTN and Act A and Nutritional Status of IBD Patients
3.4. Assessment of Sarcopenia Risk in IBD Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Green, N.; Miller, T.; Suskind, D.; Lee, D. A review of dietary therapy for IBD and a vision for the future. Nutrients 2019, 11, 947. [Google Scholar] [CrossRef]
- Hemperly, A.; Vande Casteele, N. Clinical Pharmacokinetics and Pharmacodynamics of Infliximab in the Treatment of Inflammatory Bowel Disease. Clin. Pharmacokinet. 2018, 57, 929–942. [Google Scholar] [CrossRef] [PubMed]
- Mak, W.Y.; Zhao, M.; Ng, S.C.; Burisch, J. The epidemiology of inflammatory bowel disease: East meets west. J. Gastroenterol. Hepatol. 2020, 35, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Marcil, V.; Levy, E.; Amre, D.; Bitton, A.; Sant’Anna, A.M.G.A.; Szilagy, A.; Sinnett, D.; Seidman, E.G. A Cross-Sectional Study on Malnutrition in Inflammatory Bowel Disease: Is There a Difference Based on Pediatric or Adult Age Grouping? Inflamm. Bowel. Dis. 2020, 26, 160. [Google Scholar] [CrossRef] [PubMed]
- Jabłońska, B.; Mrowiec, S. Nutritional Status and Its Detection in Patients with Inflammatory Bowel Diseases. Nutrients 2023, 15, 1991. [Google Scholar] [CrossRef] [PubMed]
- Valentini, L.; Schaper, L.; Buning, C.; Hengstermann, S.; Koernicke, T.; Tillinger, W.; Guglielmi, F.W.; Norman, K.; Buhner, S.; Ockenga, J.; et al. Malnutrition and impaired muscle strength in patients with Crohn’s disease and ulcerative colitis in remission. Nutrition 2008, 24, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Valentini, L.; Schulzke, J.D. Mundane, yet challenging: The assessment of malnutrition in inflammatory bowel disease. Eur. J. Int. Med. 2011, 22, 13–15. [Google Scholar] [CrossRef] [PubMed]
- Vidarsdottir, J.B.; Johannsdottir, S.E.; Thorsdottir, I.; Bjornsson, E.; Ramel, A. A cross-sectional study on nutrient intake and -status in inflammatory bowel disease patients. Nutr. J. 2016, 15, 61. [Google Scholar] [CrossRef] [PubMed]
- Scaldaferri, F.; Pizzoferrato, M.; Lopetuso, L.R.; Musca, T.; Ingravalle, F.; Sicignano, L.L.; Mentella, M.; Miggiano, G.; Mele, M.C.; Gaetani, E.; et al. Nutrition and IBD: Malnutrition and/or Sarcopenia? A Practical Guide. Gastroenterol. Res. Pract. 2017, 2017, 8646495. [Google Scholar] [CrossRef]
- Ryan, A.S.; Li, G. Skeletal muscle myostatin gene expression and sarcopenia in overweight and obese middle-aged and older adults. JCSM Clin. Rep. 2021, 6, 137–142. [Google Scholar] [CrossRef]
- Ryan, E.; McNicholas, D.; Creavin, B.; Kelly, M.E.; Walsh, T.; Beddy, D. Sarcopenia and Inflammatory Bowel Disease: A Systematic Review. Inflamm. Bowel Dis. 2018, 25, 67–73. [Google Scholar] [CrossRef]
- Echeverria, I.; Besga, A.; Sanz, B.; Amasene, M.; Hervás, G.; Barroso, J.; Rodriguez-Larrad, A.; Irazusta, J. Identification of frailty and sarcopenia in hospitalised older people. Eur. J. Clin. Investig. 2021, 51, e13420. [Google Scholar] [CrossRef] [PubMed]
- Nardone, O.M.; de Sire, R.; Petito, V.; Testa, A.; Villani, G.; Scaldaferri, F.; Castiglione, F. Inflammatory Bowel Diseases and Sarcopenia: The Role of Inflammation and Gut Microbiota in the Development of Muscle Failure. Front. Immunol. 2021, 12, 694217. [Google Scholar] [CrossRef] [PubMed]
- Stéphane, M.; Schneider, M.D.; Wiroth, J.D.; Zeanandin, G.; Arab, K.; Hébuterne, X. Sarcopenia is prevalent in patients with Crohn’s disease in clinical remission. Inflamm. Bowel Dis. 2008, 14, 1562–1568. [Google Scholar] [CrossRef]
- Nishikawa, H.; Enomoto, H.; Ishii, A.; Iwata, Y.; Miyamoto, Y.; Ishii, N.; Yuri, Y.; Hasegawa, K.; Nakano, C.; Nishimura, T.; et al. Elevated serum myostatin level is associated with worse survival in patients with liver cirrhosis. J. Cachex. Sarcop. Muscle 2017, 8, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, H.; Nakamura, S.; Miyazaki, T.; Kakimoto, K.; Fukunishi, S.; Asai, A.; Nishiguchi, S.; Higuchi, K. Inflammatory Bowel Disease and Sarcopenia: Its Mechanism and Clinical Importance. J. Clin. Med. 2021, 10, 4214. [Google Scholar] [CrossRef]
- Gumucio, J.P.; Mendias, C.L. Atrogin-1, MuRF-1, and sarcopenia. Endocrine 2013, 43, 12–21. [Google Scholar] [CrossRef]
- Dhaliwal, A.; Quinlan, J.I.; Overthrow, K.; Greig, C.; Lord, J.M.; Armstrong, M.J.; Cooper, S.C. Sarcopenia in Inflammatory Bowel Disease: A Narrative Overview. Nutrients 2021, 13, 656. [Google Scholar] [CrossRef] [PubMed]
- Pizzoferrato, M.; de Sire, R.; Ingravalle, F.; Mentella, M.C.; Petito, V.; Martone, A.M.; Landi, F.; Miggiano, G.A.D.; Mele, M.C.; Lopetuso, L.R.; et al. Characterization of Sarcopenia in an IBD Population Attending an Italian Gastroenterology Tertiary Center. Nutrients 2019, 11, 2281. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Aran, L.; Bulli, G.; Curcio, F.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Sarcopenia: Assessment of disease burden and strategies to improve outcomes. Clin. Interv. Aging 2018, 13, 913–927. [Google Scholar] [CrossRef]
- Abdelrahman, Z.; Wang, X.; Wang, D.; Zhang, T.; Zhang, Y.; Wang, X.; Chen, Z. Identification of novel pathways and immune profiles related to sarcopenia. Front. Med. 2023, 10, 928285. [Google Scholar] [CrossRef]
- Da Costa Teixeira, L.A.; Avelar, N.C.P.; Peixoto, M.F.D.; Parentoni, A.N.; Santos, J.M.D.; Pereira, F.S.M.; Danielewicz, A.L.; Leopoldino, A.A.O.; Costa, S.P.; Arrieiro, A.N.; et al. Inflammatory biomarkers at different stages of Sarcopenia in older women. Sci. Rep. 2023, 13, 10367. [Google Scholar] [CrossRef] [PubMed]
- Zupo, R.; Moroni, A.; Castellana, F.; Gasparri, C.; Catino, F.; Lampignano, L.; Perna, S.; Clodoveo, M.L.; Sardone, R.; Rondanelli, M. A Machine-Learning Approach to Target Clinical and Biological Features Associated with Sarcopenia: Findings from Northern and Southern Italian Aging Populations. Metabolites 2023, 13, 565. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K.; Akerström, T.C.; Nielsen, A.R.; Fischer, C.P. Role of myokines in exercise and metabolism. J. Appl. Physiol. 2007, 103, 1093–1098. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K. Exercise-induced myokines and their role in chronic diseases. Brain. Behav. Immun. 2011, 25, 811–816. [Google Scholar] [CrossRef]
- Halmos, T.; Suba, I. The secretory function of skeletal muscles and its role in energy metabolism and utilization. Orv. Hetil. 2014, 155, 1469–1477. [Google Scholar] [CrossRef] [PubMed]
- Skrzypczak, D.; Skrzypczak-Zielińska, M.; Ratajczak, A.E.; Szymczak-Tomczak, A.; Eder, P.; Słomski, R.; Dobrowolska, A.; Krela-Kaźmierczak, I. Myostatin and Follistatin-New Kids on the Block in the Diagnosis of Sarcopenia in IBD and Possible Therapeutic Implications. Biomedicines 2021, 9, 1301. [Google Scholar] [CrossRef] [PubMed]
- Omosule, C.L.; Joseph, D.; Weiler, B.; Gremminger, V.L.; Silvey, S.; Jeong, Y.; Rafique, A.; Krueger, P.; Kleiner, S.; Phillips, C.L. Combinatorial Inhibition of Myostatin and Activin a Improves Femoral Bone Properties in the G610C Mouse Model of Osteogenesis Imperfecta. J. Bone Miner. Res. 2022, 37, 938–953. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Catherino, W.H.; Protic, O.; Janjusevic, M.; Gray, P.C.; Giannubilo, S.R.; Ciavattini, A.; Lamanna, P.; Tranquilli, A.L.; Petraglia, F.; et al. Role of activin-A and myostatin and their signaling pathway in human myometrial and leiomyoma cell function. J. Clin. Endocrinol. Metab. 2014, 99, E775–E785. [Google Scholar] [CrossRef]
- Rodgers, B.D.; Ward, C.W. Myostatin/Activin Receptor Ligands in Muscle and the Development Status of Attenuating Drugs. Endocr. Rev. 2022, 43, 329–365. [Google Scholar] [CrossRef]
- Mafi, F.; Biglari, S.; Ghardashi Afousi, A.; Gaeini, A.A. Improvement in Skeletal Muscle Strength and Plasma Levels of Follistatin and Myostatin Induced by an 8-Week Resistance Training and Epicatechin Supplementation in Sarcopenic Older Adults. J. Aging. Phys. Act. 2019, 27, 384–391. [Google Scholar] [CrossRef]
- White, T.A.; LeBrasseur, N.K. Myostatin and sarcopenia: Opportunities and challenges—A mini-review. Gerontology 2014, 60, 289–293. [Google Scholar] [CrossRef]
- Choi, K.; Jang, H.Y.; Ahn, J.M.; Hwang, S.H.; Chung, J.W.; Choi, Y.S.; Kim, J.W.; Jang, E.S.; Choi, G.H.; Jeong, S.H. The association of the serum levels of myostatin, follistatin, and interleukin-6 with sarcopenia, and their impacts on survival in patients with hepatocellular carcinoma. Clin. Mol. Hepatol. 2020, 26, 492–505. [Google Scholar] [CrossRef]
- Ginevičienė, V.; Utkus, A.; Pranckevičienė, E.; Semenova, E.A.; Hall, E.C.R.; Ahmetov, I.I. Perspectives in Sports Genomics. Biomedicines 2022, 10, 298. [Google Scholar] [CrossRef] [PubMed]
- Smołucha, G.; Kozubska-Sobocińska, A.; Koseniuk, A.; Żukowski, K.; Lisowski, M.; Grajewski, B. Polymorphism of the Myostatin (MSTN) Gene in Landes and Kielecka Geese Breeds. Animals 2019, 10, 10. [Google Scholar] [CrossRef]
- Grade, C.V.C.; Mantovani, C.S.; Alvares, L.E. Myostatin gene promoter: Structure, conservation and importance as a target for muscle modulation. J. Anim. Sci. Biotechnol. 2019, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Hellberg, M.; Hellmark, T.; Höglund, P.; Clyne, N. Muscle mass and plasma myostatin after exercise training: A substudy of Renal Exercise (RENEXC)—A randomized controlled trial. Nephrol. Dial. Transplant. 2021, 36, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Biesemann, N.; Mendler, L.; Kostin, S.; Wietelmann, A.; Borchardt, T.; Braun, T. Myostatin induces interstitial fibrosis in the heart via TAK1 and p38. Cell Tissue Res. 2015, 361, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Heineke, J.; Auger-Messier, M.; Xu, J.; Sargent, M.; York, A.; Welle, S.; Molkentin, J.D. Genetic deletion of myostatin from the heart prevents skeletal muscle atrophy in heart failure. Circulation 2010, 121, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Lodberg, A. Principles of the activin receptor signaling pathway and its inhibition. Cytok. Growth Fact. Rev. 2021, 60, 1–17. [Google Scholar] [CrossRef]
- Romańczuk, K.; Mierzejewski, B.; Michalska, Z.; Florkowska, A. W zdrowiu i chorobie—mikroRNA w funkcjonowaniu mięśni szkieletowych. Adv. Biochem. 2021, 67, 420–435. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.J.; Li, Y.; Tai, G.X.; Xu, G.Y.; Zhang, P.Y.; Yang, Y.; Lao, F.X.; Liu, Z.H. Effects of activin A on the activities of the mouse peritoneal macrophages. Cell Mol. Immunol. 2005, 2, 63–67. [Google Scholar] [PubMed]
- Ding, H.; Zhang, G.; Sin, K.W.; Liu, Z.; Lin, R.K.; Li, M.; Li, Y.P. Activin A induces skeletal muscle catabolism via p38β mitogen-activated protein kinase. J. Cach. Sarcop. Muscle 2017, 8, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Omosule, C.L.; Joseph, D.; Weiler, B.; Gremminger, V.L.; Silvey, S.; Lafaver, B.N.; Jeong, Y.; Kleiner, S.; Phillips, C.L. Whole-Body Metabolism and the Musculoskeletal Impacts of Targeting Activin A and Myostatin in Severe Osteogenesis Imperfecta. JBMR Plus 2023, 7, e10753. [Google Scholar] [CrossRef] [PubMed]
- Morianos, I.; Tsitsopoulou, A.; Potaris, K.; Valakos, D.; Fari, O.; Vatsellas, G.; Bostantzoglou, C.; Photiades, A.; Gaga, M.; Xanthou, G.; et al. Activin-A impedes the establishment of CD4+ T cell exhaustion and enhances anti-tumor immunity in the lung. J. Exp. Clin. Cancer Res. 2021, 40, 295. [Google Scholar] [CrossRef] [PubMed]
- Harada, M.; Morikawa, M.; Ozawa, T.; Kobayashi, M.; Tamura, Y.; Takahashi, K.; Tanabe, M.; Tada, K.; Seto, Y.; Miyazono, K.; et al. Palbociclib enhances activin-SMAD-induced cytostasis in estrogen receptor-positive breast cancer. Cancer Sci. 2019, 110, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Gajendran, M.; Loganathan, P.; Catinella, A.P.; Hashash, J.G. A comprehensive review and update on Crohn’s disease. Dis. Mon. 2018, 64, 20–57. [Google Scholar] [CrossRef] [PubMed]
- Glinkowski, S.; Marcinkowska, D. Ulcerative colitis: Assessment of disease activity based on contemporary scales. New Med. 2018, 25, 123–137. [Google Scholar] [CrossRef]
- Krzymińska-Siemaszko, R.; Czepulis, N.; Suwalska, A.; Dworak, L.B.; Fryzowicz, A.; Madej-Dziechciarow, B.; Wieczorowska-Tobis, K. The significance of body mass index in calculating the cut-off points for low muscle mass in the elderly: Methodological issues. Biomed. Res. Int. 2014, 2014, 450396. [Google Scholar] [CrossRef]
- Alley, D.; Shardell, M.; Peters, K.; McLean, R.R.; Dam, T.T.; Kenny, A.M.; Fragala, M.S.; Harris, T.B.; Kiel, D.P.; Guralnik, J.M.; et al. Grip strength cutpoints for the identification of clinically relevant weakness. J. Gerontol. A. Biol. Sci. Med. Sci. 2014, 69, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Biernat, E.; Stupnicki, R.; Gajewski, A.K. Międzynarodowy Kwestionariusz Aktywności Fizycznej (IPAQ)—Wersja polska. Wych. Fizycz. Sport 2007, 51, 47–54. [Google Scholar]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compedium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 32, 498–516. [Google Scholar] [CrossRef]
- Kumar, A.; Davuluri, G.; Silva, R.N.E.; Engelen, M.P.K.J.; Ten Have, G.A.M.; Prayson, R.; Deutz, N.E.P.; Dasarathy, S. Ammonia lowering reverses sarcopenia of cirrhosis by restoring skeletal muscle proteostasis. Hepatology 2017, 65, 2045–2058. [Google Scholar] [CrossRef] [PubMed]
- Tsien, C.; Garber, A.; Narayanan, A.; Shah, S.N.; Barnes, D.; Eghtesad, B.; Fung, J.; McCullough, A.J.; Dasarathy, S. Post-liver transplantation sarcopenia in cirrhosis: A prospective evaluation. J. Gastroenterol. Hepatol. 2014, 29, 1250–1257. [Google Scholar] [CrossRef] [PubMed]
- Chew, J.; Tay, L.; Lim, J.P.; Leung, B.P.; Yeo, A.; Yew, S.; Ding, Y.Y.; Lim, W.S. Serum Myostatin and IGF-1 as Gender-Specific Biomarkers of Frailty and Low Muscle Mass in Community-Dwelling Older Adults. J. Nutr. Health Aging 2019, 23, 979–986. [Google Scholar] [CrossRef]
- Peng, L.N.; Lee, W.J.; Liu, L.K.; Lin, M.H.; Chen, L.K. Healthy community-living older men differ from women in associations between myostatin levels and skeletal muscle mass. J. Cachexia Sarcop. Muscle 2018, 9, 635–642. [Google Scholar] [CrossRef]
- Ishida, J.; Konishi, M.; Saitoh, M.; Anker, M.; Anker, S.D.; Springer, J. Myostatin signaling is up-regulated in female patients with advanced heart failure. Int. J. Cardiol. 2017, 238, 37–42. [Google Scholar] [CrossRef]
- Consitt, L.A.; Clark, B.C. The Vicious Cycle of Myostatin Signaling in Sarcopenic Obesity: Myostatin Role in Skeletal Muscle Growth, Insulin Signaling and Implications for Clinical Trials. J. Frailty Aging 2018, 7, 21–27. [Google Scholar] [CrossRef]
- Alexopoulos, T.; Vasilieva, L.; Kontogianni, M.D.; Tenta, R.; Georgiou, A.; Stroumpouli, E.; Mani, I.; Alexopoulou, A. Myostatin in combination with creatine phosphokinase or albumin may differentiate patients with cirrhosis and sarcopenia. Am. J. Physiol. Gastrointest. Liver Physiol. 2021, 321, G543–G551. [Google Scholar] [CrossRef]
- Yamada, S.; Tsuruya, K.; Yoshida, H.; Tokumoto, M.; Ueki, K.; Ooboshi, H.; Kitazono, T. Factors Associated with the Serum Myostatin Level in Patients Undergoing Peritoneal Dialysis: Potential Effects of Skeletal Muscle Mass and Vitamin D Receptor Activator Use. Calcif. Tissue Int. 2016, 99, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, H.; Hervás, G.; Rezola-Pardo, C.; Ruiz-Litago, F.; Iturburu, M.; Yanguas, J.J.; Gil, S.M.; Rodriguez-Larrad, A.; Irazusta, J. Serum Myostatin Levels Are Higher in Fitter, More Active, and Non-Frail Long-Term Nursing Home Residents and Increase after a Physical Exercise Intervention. Gerontology 2019, 65, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Bergen, H.R.; Farr, J.N.; Vanderboom, P.M.; Atkinson, E.J.; White, T.A.; Singh, R.J.; Khosla, S.; LeBrasseur, N.K. Myostatin as a mediator of sarcopenia versus homeostatic regulator of muscle mass: Insights using a new mass spectrometry-based assay. Skelet. Muscle 2015, 5, 21. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Masuda, S.; Yamakage, H.; Inoue, T.; Ohue-Kitano, R.; Yokota, S.; Kusakabe, T.; Wada, H.; Sanada, K.; Ishii, K.; et al. Role of serum myostatin in the association between hyperinsulinemia and muscle atrophy in Japanese obese patients. Diabet. Res. Clin. Pract. 2018, 142, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.L.; Bonomi, L.; Ungerleider, N.; Zina, J.; Kimura, F.; Mukherjee, A.; Sidis, Y.; Schneyer, A. Follistatin and follistatin like-3 differentially regulate adiposity and glucose homeostasis. Obesity 2011, 19, 1940–1949. [Google Scholar] [CrossRef] [PubMed]
- Laurent, M.R.; Dedeyne, L.; Dupont, J.; Mellaerts, B.; Dejaeger, M.; Gielen, E. Age-related bone loss and sarcopenia in men. Maturitas 2019, 122, 51–56. [Google Scholar] [CrossRef]
- Cauley, J.A. An Overview of Sarcopenic Obesity. J. Clinic Densit. 2015, 18, 499–505. [Google Scholar] [CrossRef]
- Cauley, J.A. Physical activity and skeletal health in adults. Lancet Diab. Endocrinol. 2020, 8, 150–162. [Google Scholar] [CrossRef]
- Chen, L.-K.; Arai, H. Recent Advances in Sarcopenia Research in Asia: 2016 Update from the Asian Working Group for Sarcopenia. J. Am. Med. Dir. Assoc. 2016, 17, E1–E767. [Google Scholar] [CrossRef] [PubMed]
- Huber, S.; Stahl, F.R.; Schrader, J.; Lüth, S.; Presser, K.; Carambia, A.; Flavell, R.A.; Werner, S.; Blessing, M.; Herkel, J.; et al. Activin a promotes the TGF-beta-induced conversion of CD4+CD25- T cells into Foxp3+ induced regulatory T cells. J. Immunol. 2009, 182, 4633–4640. [Google Scholar] [CrossRef]
- Hübner, G.; Brauchle, M.; Gregor, M.; Werner, S. Activin A: A novel player and inflammatory marker in inflammatory bowel disease? Lab. Investig. 1997, 77, 311–318. [Google Scholar]
- Dignass, A.; Jung, S.; Harder-d’Heureuse, J.; Wiedenmann, B. Functional relevance of activin A in the intestinal epithelium. Scand. J. Gastroenterol. 2002, 37, 936–943. [Google Scholar] [CrossRef] [PubMed]
- Sonoyama, K.; Rutatip, S.; Kasai, T. Gene expression of activin, activin receptors, and follistatin in intestinal epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2000, 278, G89–G97. [Google Scholar] [CrossRef] [PubMed]
- Aboelai, K.A.; Rushdi, M.; Waly, N.E.; Mohamed, A.M.A. Evaluation of fecal activin-a as a novel biomarker for early diagnosis of ulcerative colitis using experimental murine animal model. Assiut Vet. Med. J. 2023, 69, 28–35. [Google Scholar] [CrossRef]
- Kuo, C.S.; Lu, Y.W.; Hsu, C.Y.; Chang, C.C.; Chou, R.H.; Liu, L.K.; Chen, L.K.; Huang, P.H.; Chen, J.W.; Lin, S.J. Increased activin A levels in prediabetes and association with carotid intima-media thickness: A cross-sectional analysis from I-Lan Longitudinal Aging Study. Sci. Rep. 2018, 8, 9957. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.L.; Chou, R.H.; Lu, Y.W.; Liu, C.T.; Huang, P.H.; Lin, S.J. Serum Activin A Levels and Renal Outcomes After Coronary Angiography. Sci. Rep. 2020, 10, 3365. [Google Scholar] [CrossRef]
- Yndestad, A.; Ueland, T.; Øie, E.; Florholmen, G.; Halvorsen, B.; Attramadal, H.; Simonsen, S.; Frøland, S.S.; Gullestad, L.; Christensen, G.; et al. Elevated levels of activin A in heart failure: Potential role in myocardial remodeling. Circulation 2004, 109, 1379–1385. [Google Scholar] [CrossRef]
- Yndestad, A.; Larsen, K.O.; Oie, E.; Ueland, T.; Smith, C.; Halvorsen, B.; Sjaastad, I.; Skjønsberg, O.H.; Pedersen, T.M.; Anfinsen, O.G.; et al. Elevated levels of activin A in clinical and experimental pulmonary hypertension. J. Appl. Physiol. 2009, 106, 1356–1364. [Google Scholar] [CrossRef]
- Morianos, I.; Trochoutsou, A.I.; Papadopoulou, G.; Semitekolou, M.; Banos, A.; Konstantopoulos, D.; Manousopoulou, A.; Kapasa, M.; Wei, P.; Lomenick, B.; et al. Activin-A limits Th17 pathogenicity and autoimmune neuroinflammation via CD39 and CD73 ectonucleotidases and Hif1-α-dependent pathways. Proc. Natl. Acad. Sci. USA 2020, 117, 12269–12280. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, S.; Guo, Z.; Bi, Y.; Zhou, M.; Li, P.; Seyedsadr, M.; Xu, X.; Li, J.L.; Markovic-Plese, S.; et al. The TGF-β superfamily cytokine Activin-A is induced during autoimmune neuroinflammation and drives pathogenic Th17 cell differentiation. Immunity 2021, 54, 308–323.e6. [Google Scholar] [CrossRef]
- Loumaye, A.; de Barsy, M.; Nachit, M.; Lause, P.; Frateur, L.; van Maanen, A.; Trefois, P.; Gruson, D.; Thissen, J.P. Role of Activin A and myostatin in human cancer cachexia. J. Clin. Endocrinol. Metab. 2015, 100, 2030–2038. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Resta, S.; Jung, B.; Barrett, K.E.; Sarvetnick, N. Upregulation of activin signaling in experimental colitis. Am. J. Physiol. Gastrointest. Liver. Physiol. 2009, 297, G768–G780. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, J.L.; Lu, J.; Song, Y.; Kwak, K.S.; Jiao, Q.; Rosenfeld, R.; Chen, Q.; Boone, T.; Simonet, W.S.; et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 2010, 142, 531–543. [Google Scholar] [CrossRef]
- Chen, J.L.; Walton, K.L.; Winbanks, C.E.; Murphy, K.T.; Thomson, R.E.; Makanji, Y.; Qian, H.; Lynch, G.S.; Harrison, C.A.; Gregorevic, P. Elevated expression of activins promotes muscle wasting and cachexia. FASEB J. 2014, 28, 1711–1723. [Google Scholar] [CrossRef]
- Gilson, H.; Schakman, O.; Kalista, S.; Lause, P.; Tsuchida, K.; Thissen, J.P. Follistatin induces muscle hypertrophy through satellite cell proliferation and inhibition of both myostatin and activin. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E157–E164. [Google Scholar] [CrossRef]
- Busquets, S.; Toledo, M.; Orpí, M.; Massa, D.; Porta, M.; Capdevila, E.; Padilla, N.; Frailis, V.; López-Soriano, F.J.; Han, H.Q.; et al. Myostatin blockage using actRIIB antagonism in mice bearing the Lewis lung carcinoma results in the improvement of muscle wasting and physical performance. J. Cach. Sarcop. Muscle 2012, 3, 37–43. [Google Scholar] [CrossRef]
- Morton, H.; Pedley, K.C.; Stewart, R.J.C.; Coad, J. Inflammatory Bowel Disease: Are Symptoms and Diet Linked? Nutrients 2020, 12, 2975. [Google Scholar] [CrossRef]
- Casalechi, M.; Coimbra, B.B.; Rocha, D.M.; Carvalho, F.R.; Clarizia, A.D.; Assis, W.A.; Aguiar, R.A.L.P.; Reis, F.M. Serum and urine levels of activin A in primigravidae and multigravidae: A prospective cross-sectional study. Women Health 2021, 61, 745–750. [Google Scholar] [CrossRef]
- Bertani, L.; Ribaldone, D.G.; Bellini, M.; Mumolo, M.G.; Costa, F. Inflammatory Bowel Diseases: Is There a Role for Nutritional Suggestions? Nutrients 2021, 13, 1387. [Google Scholar] [CrossRef]
- Cohen, A.B.; Lee, D.; Long, M.D.; Kappelman, M.D.; Martin, C.F.; Sandler, R.S.; Lewis, J.D. Dietary patterns and self-reported associations of diet with symptoms of inflammatory bowel disease. Dig. Dis. Sci. 2013, 58, 1322–1328. [Google Scholar] [CrossRef]
- Maconi, G.; Ardizzone, S.; Cucino, C.; Bezzio, C.; Russo, A.G.; Bianchi Porro, G. Pre-illness changes in dietary habits and diet as a risk factor for inflammatory bowel disease: A case-control study. World J. Gastroenterol. 2010, 16, 4297–4304. [Google Scholar] [CrossRef] [PubMed]
IBD n(%)/Mean ± SD | Controls n(%)/Mean ± SD | |
---|---|---|
CD | 48 (58.5) | - |
UC | 34 (41.5) | - |
Age [years] | 38.1 ± 11.6 | 38.6 ± 9.1 |
Female | 42 (51.2) | 15 (60) |
Current smokers | 14 (17.1) | 3 (12) |
Disease duration | 8.4 ± 5.7 | - |
Surgery history | 22 (26.8) | - |
Disease activity CD | ||
CDAI [0/1/2/3] | 17 (35.4)/10 (20.9)/17 (35.4)/4 (8.3) | - |
Montreal classification | ||
Age at diagnosis [A1/A2/A3] | 8 (16.7)/36 (75)/4 (8.3) | - |
Disease location [L1/L2/L3] | 17 (35.4)/7 (14.6)/24 (50) | - |
Disease behavior [B1/B2/B3] | 21 (43.8)/18 (37.5) /15 (3.2) | - |
Disease activity UC | ||
Partial Mayo Score [0/1/2/3] | 17 (50.0)/0 (0)/11 (32.4)/6 (17.6) | - |
Montreal classification | - | |
Disease location [E1/E2/E3] | 4 (11.8)/16 (47.0)/14 (41.2) | - |
Severity of relapse [S0/S1/S2/S3] | 12 (35.3)/10 (29.4)/11 (32.4)/3 (8.8) | - |
Medications | ||
Infliximab/vedolizumab | 66 (80.5) | - |
Immunosuppression | 33 (40.2) | - |
Steroids | 25 (30.5) | - |
5-ASA | 64 (78.0) | - |
Anthropometry | ||
BMI [kg/m2] | 24.2 ± 4.8 | 24.6 ± 3.9 |
<18.5 | 10 (12.2) | 3 (12) |
18.5–24.9 | 38 (46.3) | 11 (44) |
25.0–29.9 | 26 (31.7) | 9 (36) |
>30.0 | 8 (9.8) | 2 (8) |
Waist circumference [cm] | 88.9 ± 14.5 | 85.3 ± 9.1 |
Muscle mass [kg] | 43.4 ± 13.7 | 43.6 ± 9.6 |
Handgrip strength [kG] | 25.4 ± 10.9 | 30.7 ± 7.5 * |
MMI [kg/m2] | 8.1 ± 4.7 | 10.2 ± 3.3 * |
Sarcopenia [%] | 21 (25.6) | 2 (8) * |
Physical activity | ||
Low | 42 (51.2) | 14 (56) |
Normal | 25 (30.5) | 7 (28) |
High | 15 (18.3) | 4 (16) |
Statistical Parameter | p-Value * | ||||||
---|---|---|---|---|---|---|---|
Mean | SD | Me | Q1–Q3 | Min.–Max. | |||
Myostatin [pg/mL] | CD | 284 | 416 | 82 | 42–405 | 12–1680 | <0.0001 ** |
UC | 807 | 1094 | 160 | 69–1119 | 17–3631 | ||
Control | 1252 | 1420 | 430 | 365–2051 | 309–4157 | ||
Activin A [pg/mL] | CD | 59.06 | 61.34 | 33.75 | 31.55–47.20 | 28.30–313.20 | =0.0231 ** |
UC | 93.61 | 212.26 | 34.25 | 32.30–39.90 | 38.60–1173.60 | ||
Control | 160.48 | 159.02 | 36.10 | 32.30–368.200 | 29.30–400.70 |
Myostatin [pg/mL] Me [Q1–Q3] | Activin A [pg/mL] Me [Q1–Q3] | |
---|---|---|
Disease duration | ||
<5 | 95.9 [56.8–200.8] | 34.4 [31.9–39.5] |
5–10 | 120.8 [36.2–695.8] | 33.6 [32.1–37.4] |
>10 | 84.9 [53.4–1630.8] | 33.6 [31.9–54.2] |
p-value | 0.6439 | 0.8086 |
Biology therapy | ||
YES | 93.2 [49.5–672.0] | 30.8 [29.0–35.6] |
NO | 101.8 [50.9–560.6] | 33.1 [31.9–38.8] |
p-value | 0.9860 | 0.4944 |
Surgery history | ||
YES | 54.9 [45.1–200.8] | 32.7 [31.9–36.6] |
NO | 119.9 [64.8–767.6] | 34.5 [32.2–42.9] |
p-value | 0.1140 | 0.2717 |
Myostatin [pg/mL] Me [Q1–Q3] | Activin A [pg/mL] Me [Q1–Q3] | |
---|---|---|
UC patients | ||
Partial Mayo Score | ||
0 | 417.8 [52.5–1119.2] | 37.9 [29.9–46.3] |
2 | 450.8 [69.4–2432.6] | 32.9 [32.3–36.9] |
3 | 98.7 [76.9–311.0] | 34.2 [32.4–36.4] |
p-value | 0.8862 | 0.6958 |
Montreal Classification | ||
E1 | 1367.5 [276.8–2368.3] | 31.1 [29.7–290.4] |
E2 | 102.6 [69.4–1119.2] | 37.9 [32.3–43.2] |
E3 | 119.5 [71.2–898.0] | 33.6 [32.7–36.9] |
p-value | 0.7418 | 0.4253 |
S0 | 417.8 [44.1–2233.9] | 37.9 [33.3–173.1] |
S1 | 501.2 [77.9–1119.2] | 32.3 [31.5–39.9] |
S2 | 99.8 [69.4–1265.1] | 35.8 [32.7–39.5] |
S3 | 183.9 [56.8–311.0] | 34.2 [33.6–34.9] |
p-value | 0.7625 | 0.3358 |
CD patients | ||
Age at onset (years) | ||
A1 < 16 | 84.2 [50.4–151.0] | 37.0 [34.2–51.6] |
A2 17–40 | 84.9 [42.1–656.2] | 33.5 [30.9–50.8] |
A3 > 40 | 44.5 [33.7–665.8] | 32.8 [31.1–138.8] |
p-value | 0.6266 | 0.3525 |
Localization | ||
L1 Ileum | 77.9 [36.2–171.8] | 33.7 [30.9–51.1] |
L2 Colon | 319.2 [67.5–1016.1] | 33.1 [32.3–115.8] |
L3 Ileum + colon | 78.3 [40.5–179.9] | 34.4 [31.9–43.6] |
p-value | 0.2964 | 0.9434 |
Course of the disease | ||
B1 No stenoses or fistulas | 71.0 [41.3–672.0] | 33.8 [30.9–115.8] |
B2 Stenoses | 61.7 [35.1–120.3] | 32.4 [31.5–36.6] |
B3 Fistulas | 71.9 [42.1–174.2] | 34.4 [32.0–35.5] |
Perianal lesions | 99.9 [58.7–572.0] | 32.5 [30.5–50.8] |
p-value | 0.1319 | 0.9293 |
CDAI | ||
<150 | 84.9 [53.4–672.0] | 35.1 [32.6–115.8] |
150–220 | 67.5 [32.8–174.2] | 32.6 [31.5–36.6] |
221–450 | 78.3 [40.5–179.9] | 34.4 [30.8–37.5] |
>450 | 95.9 [55.9–176.8] | 47.1 [30.3–122.8] |
p-value | 0.8282 | 0.1216 |
Myostatin [pg/mL] Me [Q1–Q3] | Activin A [pg/mL] Me [Q1–Q3] | |
---|---|---|
BMI | ||
<18.5 | 99.2 [52.5–372.0] | 31.9 [29.1–37.5] |
18.5–24.9 | 88.6 [49.5–482.0] | 31.2 [30.9–46.3] |
>25 | 131.2 [99.5–350.2] | 34.3 [31.9–39.5] |
p-value | 0.0369 * | 0.0132 * |
Waist circumference | ||
Normal | 102.6 [52.5–695.8] | 33.9 [31.9–39.9] |
High | 71.9 [44.1–656.2] | 33.6 [32.0–54.2] |
p-value | 0.5437 | 0.6571 |
Fatty tissue | ||
Low | 31.1 [14.9–280.9] | 35.1 [32.5–39.7] |
Normal | 20.2 [9.6–77.5] | 32.3 [30.5–39.9] |
High | 17.1 [10.4–109.3] | 33.5 [32.0–46.3] |
p-value | 0.2525 | 0.2674 |
Sarcopenia | ||
Yes | 80.6 [42.1–179.9] | 32.1 [29.0–33.6] |
No | 186.2 [69.4–890.0] | 35.2 [32.9–36.9] |
p-value | 0.0364 | 0.0132 |
MMI | ||
Low | 88.1 [50.2–220] | 31.9 [29.1–33.1] |
Normal | 219 [69.3–595.2] | 34.2 [32.5–36.5] |
p-value | 0.0317 | 0.0221 |
HGS | ||
Low | 64.0 [40.0–256.1] | 32.0 [28.9–33.1] |
Normal | 149.7 [69.4–383.9] | 33.9 [31.8–35.9] |
p-value | 0.0256 | 0.0301 |
Physical activity | ||
Low | 90.6 [69.4–417.8] | 34.3 [32.2–37.1] |
Normal | 99.2 [35.6–485.4] | 33.3 [30.9–45.3] |
High | 78.3 [53.4–1119.2] | 33.0 [31.7–36.9] |
p-value | 0.4678 | 0.4487 |
Characteristic | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
Odds Ratio | 95% CI | p Value | Odds Ratio | 95% CI | p Value | |
Age | 0.564 | 0.334–1.974 | 0.5567 | 0.7761 | ||
Sex | 0.441 | 0.398–1.045 | 0.4421 | 0.6589 | ||
BMI | 0.789 | 0.438–0.991 | 0.0187 | 0.0491 | ||
Myostatin | 0.881 | 0.412–0.997 | 0.0221 | 0.736 | 0.439–0.906 | 0.0273 |
Activin A | 0.784 | 0.541–1.112 | 0.0302 | 0.665 | 0.379–0.974 | 0.0229 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godala, M.; Gaszyńska, E.; Walczak, K.; Małecka-Wojciesko, E. Myostatin and Activin A as Biomarkers of Sarcopenia in Inflammatory Bowel Disease Patients. Nutrients 2024, 16, 810. https://doi.org/10.3390/nu16060810
Godala M, Gaszyńska E, Walczak K, Małecka-Wojciesko E. Myostatin and Activin A as Biomarkers of Sarcopenia in Inflammatory Bowel Disease Patients. Nutrients. 2024; 16(6):810. https://doi.org/10.3390/nu16060810
Chicago/Turabian StyleGodala, Małgorzata, Ewelina Gaszyńska, Konrad Walczak, and Ewa Małecka-Wojciesko. 2024. "Myostatin and Activin A as Biomarkers of Sarcopenia in Inflammatory Bowel Disease Patients" Nutrients 16, no. 6: 810. https://doi.org/10.3390/nu16060810
APA StyleGodala, M., Gaszyńska, E., Walczak, K., & Małecka-Wojciesko, E. (2024). Myostatin and Activin A as Biomarkers of Sarcopenia in Inflammatory Bowel Disease Patients. Nutrients, 16(6), 810. https://doi.org/10.3390/nu16060810