Early Mediterranean-Based Nutritional Intervention Reduces the Rate of Gestational Diabetes in Overweight and Obese Pregnant Women: A Post-Hoc Analysis of the San Carlos Gestational Prevention Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patients
2.3. Studied Variables
2.3.1. Clinical and Demographic Characteristics
2.3.2. Laboratory Parameters
2.3.3. Lifestyle and Data Collection
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, C.; Xu, X.; Yan, Y. Estimated global overweight and obesity burden in pregnant women based on panel data model. PLoS ONE 2018, 13, e0202183. [Google Scholar] [CrossRef] [PubMed]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [PubMed]
- Barazzoni, R.; Gortan Cappellari, G.; Ragni, M.; Nisoli, E. Insulin resistance in obesity: An overview of fundamental alterations. Eat. Weight Disord. 2018, 23, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Giannubilo, S.R.; Licini, C.; Picchiassi, E.; Tarquini, F.; Coata, G.; Fantone, S.; Tossetta, G.; Ciavattini, A.; Castellucci, M.; Giardina, I.; et al. First Trimester HtrA1 Maternal Plasma Level and Spontaneous Preterm Birth. J. Matern. Fetal. Neonatal. Med. 2022, 35, 780–784. [Google Scholar] [CrossRef] [PubMed]
- Zehravi, M.; Maqbool, M.; Ara, I. Correlation between Obesity, Gestational Diabetes Mellitus, and Pregnancy Outcomes: An Overview. Int. J. Adolesc. Med. Health 2021, 33, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Paredes, C.; Hsu, R.C.; Tong, A.; Johnson, J.R. Obesity and Pregnancy. Neoreviews 2021, 22, e78–e87. [Google Scholar] [CrossRef] [PubMed]
- Parrettini, S.; Caroli, A.; Torlone, E. Nutrition and Metabolic Adaptations in Physiological and Complicated Pregnancy: Focus on Obesity and Gestational Diabetes. Front. Endocrinol. 2020, 11, 611929. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, H.D.; Catalano, P.; Zhang, C.; Desoye, G.; Mathiesen, E.R.; Damm, P. Gestational diabetes mellitus. Nat. Rev. Dis. Primers 2019, 5, 47. [Google Scholar] [CrossRef] [PubMed]
- Farahvar, S.; Walfisch, A.; Sheiner, E. Gestational diabetes risk factors and long-term consequences for both mother and offspring: A literature review. Expert Rev. Endocrinol. Metab. 2019, 14, 63–74. [Google Scholar] [CrossRef]
- Ye, W.; Luo, C.; Huang, J.; Li, C.; Liu, Z.; Liu, F. Gestational diabetes mellitus and adverse pregnancy outcomes: Systematic review and meta-analysis. BMJ 2022, 377, e067946. [Google Scholar] [CrossRef] [PubMed]
- Owens, L.A.; O’Sullivan, E.P.; Kirwan, B.; Avalos, G.; Gaffney, G.; Dunne, F.; ATLANTIC DIP Collaborators. ATLANTIC DIP: The impact of obesity on pregnancy outcome in glucose-tolerant women. Diabetes Care 2010, 33, 577–579. [Google Scholar] [CrossRef] [PubMed]
- Catalano, P.M.; McIntyre, H.D.; Cruickshank, J.K.; McCance, D.R.; Dyer, A.R.; Metzger, B.E.; Lowe, L.P.; Trimble, E.R.; Coustan, D.R.; Hadden, D.R.; et al. The hyperglycemia and adverse pregnancy outcome study: Associations of GDM and obesity with pregnancy outcomes. Diabetes Care 2012, 35, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Assaf-Balut, C.; Familiar, C.; García de la Torre, N.; Rubio, M.A.; Bordiú, E.; Del Valle, L.; Lara, M.; Ruiz, T.; Ortolá, A.; Crespo, I.; et al. Gestational diabetes mellitus treatment reduces obesity-induced adverse pregnancy and neonatal outcomes: The St. Carlos gestational study. BMJ Open Diabetes Res. Care 2016, 4, e000314. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, E.; Gomersall, J.C.; Tieu, J.; Han, S.; Crowther, C.A.; Middleton, P. Combined diet and exercise interventions for preventing gestational diabetes mellitus. Cochrane Database Syst. Rev. 2017, 11, CD010443. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Jin, J.; Hu, K.-L.; Wu, Y.; Zhang, D. Prevention of Gestational Diabetes Mellitus and Gestational Weight Gain Restriction in Overweight/Obese Pregnant Women: A Systematic Review and Network Meta-Analysis. Nutrients 2022, 14, 2383. [Google Scholar] [CrossRef] [PubMed]
- Koivusalo, S.B.; Rönö, K.; Klemetti, M.M.; Roine, R.P.; Lindström, J.; Erkkola, M.; Kaaja, R.J.; Pöyhönen-Alho, M.; Tiitinen, A.; Huvinen, E.; et al. Gestational Diabetes Mellitus Can Be Prevented by Lifestyle Intervention: The Finnish Gestational Diabetes Prevention Study (RADIEL): A Randomized Controlled Trial. Diabetes Care 2016, 39, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Al Wattar, B.H.; Dodds, J.; Placzek, A.; Beresford, L.; Spyreli, E.; Moore, A.; Gonzalez Carreras, F.J.; Austin, F.; Murugesu, N.; Roseboom, T.J.; et al. Mediterranean-style diet in pregnant women with metabolic risk factors (ESTEEM): A pragmatic multicentre randomised trial. PLoS Med. 2019, 16, e1002857. [Google Scholar] [CrossRef] [PubMed]
- Bruno, R.; Petrella, E.; Bertarini, V.; Pedrielli, G.; Neri, I.; Facchinetti, F. Adherence to a lifestyle programme in overweight/obese pregnant women and effect on gestational diabetes mellitus: A randomized controlled trial. Matern. Child. Nutr. 2017, 13, e12333. [Google Scholar] [CrossRef]
- Herring, S.J.; Cruice, J.F.; Bennett, G.G.; Rose, M.Z.; Davey, A.; Foster, G.D. Preventing excessive gestational weight gain among African American women: A randomized clinical trial. Obesity 2016, 24, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.; Alwan, N.A.; West, J.; Brown, S.; McKinlay, C.J.; Farrar, D.; Crowther, C.A. Lifestyle interventions for the treatment of women with gestational diabetes. Cochrane Database Syst. Rev. 2017, 5, CD011970. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, A.; Donovan, L.E.; Vallee, R.; Yamamoto, J.M. Evidenced-Based Nutrition for Gestational Diabetes Mellitus. Curr. Diab. Rep. 2019, 19, 94. [Google Scholar] [CrossRef] [PubMed]
- Filardi, T.; Panimolle, F.; Crescioli, C.; Lenzi, A.; Morano, S. Gestational Diabetes Mellitus: The Impact of Carbohydrate Quality in Diet. Nutrients 2019, 11, 1549. [Google Scholar] [CrossRef] [PubMed]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 15. Management of Diabetes in Pregnancy: Standards of Care in Diabetes—2023. Diabetes Care 2022, 46 (Suppl. S1), S254–S266. [Google Scholar] [CrossRef]
- Rasmussen, L.; Poulsen, C.W.; Kampmann, U.; Smedegaard, S.B.; Ovesen, P.G.; Fuglsang, J. Diet and Healthy Lifestyle in the Management of Gestational Diabetes Mellitus. Nutrients 2020, 12, 3050. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E. The role of the Mediterranean diet on weight loss and obesity-related diseases. Rev. Endocr. Metab. Disord. 2020, 21, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Muscogiuri, G.; Verde, L.; Sulu, C.; Katsiki, N.; Hassapidou, M.; Frias-Toral, E.; Cucalón, G.; Pazderska, A.; Yumuk, V.D.; Colao, A.; et al. Mediterranean Diet and Obesity-related Disorders: What is the Evidence? Curr. Obes. Rep. 2022, 11, 287–304. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Willett, W.C. The Mediterranean diet and health: A comprehensive overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef] [PubMed]
- Schröder, H.; Fitó, M.; Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventós, R.; Ros, E.; Salaverría, I.; Fiol, M.; et al. A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. J. Nutr. 2011, 141, 1140–1145. [Google Scholar] [CrossRef] [PubMed]
- Assaf-Balut, C.; de la Torre, N.G.; Durán, A.; Fuentes, M.; Bordiú, E.; del Valle, L.; Familiar, C.; Ortolá, A.; Jiménez, I.; Herraiz, M.A.; et al. A Mediterranean diet with additional extra virgin olive oil and pistachios reduces the incidence of gestational diabetes mellitus (GDM): A randomized controlled trial: The St. Carlos GDM prevention study. PLoS ONE 2017, 12, e0185873. [Google Scholar] [CrossRef]
- Huang, S.; Magny-Normilus, C.; McMahon, E.; Whittemore, R. Systematic Review of Lifestyle Interventions for Gestational Diabetes Mellitus in Pregnancy and the Postpartum Period. J. Obstet. Gynecol. Neonatal Nurs. 2022, 51, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Absalom, G.; Zinga, J.; Margerison, C.; van der Pligt, P. Associations of Dietetic Management with Maternal and Neonatal Health Outcomes in Women Diagnosed with Gestational Diabetes: A Retrospective Cohort Study. J. Hum. Nutr. Diet. 2019, 32, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Wang, L.; Chen, J.; Liu, L.; Wu, X. Effects of Individual Dietary Intervention on Blood Glucose Level and Pregnancy Outcomes in Patients with Gestational Diabetes Mellitus: A Retrospective Cohort Study. Ann. Palliat. Med. 2021, 10, 9692701–9699701. [Google Scholar] [CrossRef] [PubMed]
- Machado, C.; Monteiro, S.; Oliveira, M.J.; Grupo de Estudo de Diabetes e Gravidez da Sociedade Portuguesa de Diabetologia. Impact of Overweight and Obesity on Pregnancy Outcomes in Women with Gestational Diabetes—Results from a Retrospective Multicenter Study. Arch. Endocrinol. Metab. 2020, 64, 45–51. [Google Scholar] [CrossRef]
- Champion, M.L.; Harper, L.M. Gestational Weight Gain: Update on Outcomes and Interventions. Curr. Diab. Rep. 2020, 20, 11. [Google Scholar] [CrossRef] [PubMed]
- Simmons, D.; Immanuel, J.; Hague, W.M.; Teede, H.; Nolan, C.J.; Peek, M.J.; Flack, J.R.; McLean, M.; Wong, V.; Hibbert, E.; et al. Treatment of Gestational Diabetes Mellitus Diagnosed Early in Pregnancy. N. Engl. J. Med. 2023, 388, 2132–2144. [Google Scholar] [CrossRef] [PubMed]
- Chiefari, E.; Arcidiacono, B.; Foti, D.; Brunetti, A. Gestational diabetes mellitus: An updated overview. J. Endocrinol. Investig. 2017, 40, 899–909. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.-Y.; Shu, J.; Fu, X.-H.; Chen, X.-P.; Zhang, L.; Ji, M.-X.; Liu, X.-M.; Yu, T.-T.; Sheng, J.-Z.; Huang, H.-F. Improving the effectiveness of lifestyle interventions for gestational diabetes prevention: A meta-analysis and meta-regression. BJOG Int. J. Obstet. Gynaecol. 2019, 126, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Most, J.; Marlatt, K.L.; Altazan, A.D.; Redman, L.M. Advances in assessing body composition during pregnancy. Eur. J. Clin. Nutr. 2018, 72, 645–656. [Google Scholar] [CrossRef] [PubMed]
- Langley-Evans, S.C.; Pearce, J.; Ellis, S. Overweight, obesity and excessive weight gain in pregnancy as risk factors for adverse pregnancy outcomes: A narrative review. J. Hum. Nutr. Diet. Off. J. Br. Diet. Assoc. 2022, 35, 250–264. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, M.; Morton, J.; Teede, H.; Marquina, C.; Abushanab, D.; Magliano, D.J.; Callander, E.J.; Ademi, Z. Long-term cost-effectiveness of implementing a lifestyle intervention during pregnancy to reduce the incidence of gestational diabetes and type 2 diabetes. Diabetologia 2023, 66, 1223–1234. [Google Scholar] [CrossRef] [PubMed]
- Teede, H.J.; Bailey, C.; Moran, L.J.; Bahri Khomami, M.; Enticott, J.; Ranasinha, S.; Rogozinska, E.; Skouteris, H.; Boyle, J.A.; Thangaratinam, S.; et al. Association of Antenatal Diet and Physical Activity-Based Interventions with Gestational Weight Gain and Pregnancy Outcomes: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2022, 182, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Santana, M.V.; O’Brien, K.M.; Park, Y.M.M.; Sandler, D.P.; Weinberg, C.R. Persistence of Risk for Type 2 Diabetes after Gestational Diabetes Mellitus. Diabetes Care 2022, 45, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Christoph, M.; Hoffmann, G. Effects of Olive Oil on Markers of Inflammation and Endothelial Function-A Systematic Review and Meta-Analysis. Nutrients 2015, 7, 7651–7675. [Google Scholar] [CrossRef] [PubMed]
- Imamura, F.; Micha, R.; Wu, J.H.Y.; Otto, M.C.d.O.; Otite, F.O.; Abioye, A.I.; Mozaffarian, D. Effects of Saturated Fat, Polyunsaturated Fat, Monounsaturated Fat, and Carbohydrate on Glucose-Insulin Homeostasis: A Systematic Review and Meta-Analysis of Randomised Controlled Feeding Trials. PLoS Med. 2016, 13, e1002087. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Alonso, P.; Salas-Salvadó, J.; Baldrich-Mora, M.; Juanola-Falgarona, M.; Bulló, M. Beneficial Effect of Pistachio Consumption on Glucose Metabolism, Insulin Resistance, Inflammation, and Related Metabolic Risk Markers: A Randomized Clinical Trial. Diabetes Care 2014, 37, 3098–3105. [Google Scholar] [CrossRef] [PubMed]
Control (N = 246) | Intervention (N = 489) | p | |
---|---|---|---|
Age (years) | 31.8 ± 5.6 | 32.9 ± 5.1 | 0.067 |
Race/Ethnicity | |||
Caucasian | 121 (49.6) | 267 (54.7) | |
Latin American | 117 (48.0) | 206 (42.2) | |
Others | 8 (2.5) | 16 (3.1) | 0.103 |
Family history of T2D | 62 (25.3) | 155 (31.3) | |
MetS (>2 components) | 56 (22.9) | 114 (23.4) | 0.330 |
Previous history of GDM | 7 (2.8) | 24 (4.7) | |
Miscarriages | 93 (37.9) | 195 (39.9) | 0.137 |
Educational status: | |||
Elementary education | 32 (13.1) | 37 (7.6) | |
Secondary School | 93 (38.0) | 162 (33.2) | |
University Degree | 117 (47.8) | 278 (56.9) | |
UNK | 4 (1.2) | 11 (2.2) | 0.066 |
Employment | 187 (76.3) | 376 (77.0) | 0.355 |
Number of pregnancies: | |||
Primiparous | 90 (36.7) | 171 (35.1) | |
Second pregnancy | 66 (26.9) | 154 (31.6) | |
>2 pregnancies | 90 (36.8) | 164 (33.4) | 0.608 |
Smoker: | |||
Never | 152 (62.0) | 269 (55.1) | |
Current | 14 (5.7) | 42 (8.6) | 0.382 |
Body Weight (kg): | |||
Pre pregnancy | 72.7 ± 12.1 | 71.8 ± 11.2 | 0.336 |
At baseline | 75.5 ± 11.6 | 74.8 ± 10.4 | 0.365 |
BMI (kg/m2): | |||
Pre pregnancy | 27.8 ± 3.9 | 27.4 ± 3.6 | 0.223 |
At baseline | 28.9 ± 3.7 | 28.6 ± 3.3 | 0.209 |
Blood Pressure (mmHg): | |||
Systolic | 113 ± 9 | 113 ± 11 | 0.438 |
Diastolic | 69 ± 9 | 70 ± 9 | 0.484 |
FBG (mmol/L) | 4.5 ± 0.4 | 4.5 ± 0.3 | 0.380 |
Insulin | 22 ± 26 | 23 ± 26 | 0.567 |
HOMA-IR | 1.4 ± 1.8 | 1.5 ± 1.7 | 0.587 |
Cholesterol (mg/dl) | 175 ± 33 | 179 ± 33 | 0.330 |
Triglycerides | 94 ± 46 | 93 ± 48 | 0.806 |
HbA1c % | 5.1 ± 0.2 | 5.1 ± 0.3 | |
mmol/mol | 32 ± 0.8 | 32 ± 0.9 | 0.928 |
TSH mcUI/mL | 2.1 ± 1.3 | 2.1 ± 1.6 | 0.482 |
MEDAS Score | 4.7 ± 1.7 | 4.9 ± 1.7 | 0.221 |
Nutrition Score | 0.2 ± 3.2 | 0.2 ± 3.1 | 0.859 |
Physical Activity | −1.8 ± 0.9 | −1.8 ± 0.9 | 0.872 |
Maternal Outcomes | Control (N = 246) | Intervention (N = 489) | p |
---|---|---|---|
GDM n (%) | 78 (31.7) | 123 (25.1) | 0.037 |
75 g-OGTT 24–28 GW | |||
FBG (mmol/L) | 4.9 ± 0.4 | 4.7 ± 0.4 | 0.014 |
1 h Blood Glucose mmol/L | 7.1 ± 1.7 | 7.0 ± 1.7 | 0.839 |
2 h Blood Glucose mmol/L | 6.1 ± 1.5 | 6.1 ± 1.3 | 0.885 |
HbA1c | |||
24–28 GW% | 5.1 ± 0.3 | 4.9 ± 0.3 | 0.001 |
mmol/mol | 32 ± 0.9 | 30 ± 0.9 | |
36–38 GW% | 5.4 ± 0.4 | 5.2 ± 0.3 | 0.001 |
mmol/mol | 34 ± 0.9 | 33 ± 0.8 | |
FBG 36–38 GW (mmol/L) | 4.5 ± 0.4 | 4.4 ± 0.4 | 0.046 |
FSI (mcUI/mL) | |||
24–28 GW | 13 ± 5.7 | 10 ± 6 | 0.040 |
36–38 GW | 17 ± 12 | 14 ± 13 | 0.037 |
HOMA-IR | |||
24–28 GW | 2.8 ± 1.9 | 2.4 ± 1.5 | 0.037 |
36–38 GW | 4.0 ± 2.7 | 3.7 ± 5.3 | 0.085 |
Nutritional treatment | 41 (52.6) | 66 (53.7) | |
Insulin requirements (total) | 37 (47.4) | 57 (46.3) | 0.192 |
Bolus | 6 (7.7) | 4 (3.2) | |
Basal | 22 (28.2) | 52 (42.2) | 0.030 |
Basal/Bolus | 9 (11.5) | 1 (0.1) | |
Weight gain (kg) | |||
to Baseline (8–10 GW) | 2.9 ± 4.3 | 2.8 ± 4.6 | 0.817 |
to 24–28 GW | 7.7 ± 5.4 | 7.3 ± 5.8 | 0.479 |
to 36–38 GW | 11.1 ± 8.5 | 11.6 ± 7.9 | 0.549 |
Adequate weight gain | |||
To 24–28 GW (<5 kg) | 78 (31.7) | 162 (33.1) | 0.273 |
To 36–38 GW (< 9 kg) | 66 (26.8) | 118 (24.1) | 0.798 |
BP (mm Hg) | |||
24–28 GW Systolic | 110 ± 10 | 110 ± 10 | 0.782 |
Diastolic | 66 ± 8 | 66 ± 8 | 0.939 |
36–38 GW Systolic | 119 ± 12 | 117 ± 11 | 0.069 |
Diastolic | 75 ± 9 | 72 ± 9 | 0.046 |
Pregnancy-induced | |||
Hypertension | 13 (5.2) | 28 (5.7) | 0.902 |
Preeclampsia | 5 (2.0) | 13 (2.7) | 0.698 |
Albuminuria | 8 (3.3) | 4 (0.1) | 0.019 |
Bacteriuria | 63 (25.6) | 105 (21.5) | 0.119 |
Urinary Tract Infection | 33 (13.4) | 27 (5.5) | 0.001 |
Delivery | |||
Vaginal eutocic | 142 (58.1) | 277 (56.7) | |
Instrumental | 45 (18.5) | 75 (15.9) | |
Cesarean section | 59 (23.4) | 137 (27.2) | 0.579 |
Emergency | 32 (54.3) | 59 (43.1) | 0.051 |
NEONATAL OUTCOMES | |||
GW at birth | 39.7 ± 1.3 | 39.4 ± 1.7 | 0.032 |
≤37 weeks | 7 (2.9) | 23 (4.7) | 0.415 |
≤34 weeks | 1 (0.5) | 3 (0.6) | 0.108 |
Birthweight (g) | 3302 ± 442 | 3283 ± 568 | 0.666 |
Centile | 51 ± 29 | 54 ± 29 | 0.303 |
Height (cm) | 49.4 ± 2.0 | 49.4 ± 2.2 | 0.970 |
Centile | 43 ± 30 | 45 ± 28 | 0.388 |
LGA > 90 centile | 12 (4.9) | 37 (7.6) | 0.109 |
SGA < 10 centile | 7 (2.8) | 30 (6.1) | 0.036 |
Ph | 7.27 ± 0.06 | 7.28 ± 0.08 | 0.161 |
≤7 | 12 (0.5) | 36 (0.7) | 0.783 |
1 min Apgar | 8.8 ± 0.8 | 8.7 ± 1.2 | 0.070 |
<7 | 4 (1.6) | 19 (3.9) | 0.669 |
5 min Apgar | 9.9 ± 0.4 | 9.7 ± 0.8 | 0.074 |
<7 | 3 (1.2) | 14 (2.8) | 0.496 |
Neonatal | |||
Hypoglycemia | 6 (2.4) | 7 (1.4) | 0.384 |
Respiratory distress | 4 (1.6) | 7 (1.4) | 0.570 |
Hyperbilirubinemia | 7 (2.8) | 17 (3.5) | 0.422 |
NICU | 12 (4.9) | 12 (2.5) | 0.108 |
CG (N = 141; 57%) | IG (312; 64%) | p (CG vs. IG) | ||||
---|---|---|---|---|---|---|
3-M PD | 3-Year PD | 3-M PD | 3-Year PD | 3-M PD | 3-Year PD | |
BW (kg) | 77.2 ± 11.1 | 77.7 ± 16.2 | 77.1 ± 10.9 | 75.0 ± 12.9 | 0.978 | 0.770 |
BMI (kg/m2) | 29.7 ± 3.9 | 29.3 ± 5.0 | 29.6 ± 3.8 | 28.3 ± 3.7 | 0.840 | 0.491 |
BW-Change (kg) | 5.8 ± 6.4 | 5.1 ±10.4 | 5.2 ± 7.1 | 3.6 ± 6.5 | 0.528 | 0.045 |
WC (cm) | 93 ± 8 | 93 ± 11 | 93 ± 9 | 92 ± 10 | 0.718 | 0.903 |
FM (kg) | Na | 30.4 ± 12.3 | Na | 29.4 ± 6.2 | --- | 0.652 |
sBP (mmHg) | 116 ± 15 | 117 ± 13 | 115 ± 13 | 114 ± 12 | 0.752 | 0.282 |
dBP (mmHg) | 75 ± 11 | 75 ± 10 | 74 ± 10 | 73 ± 8 | 0.672 | 0.336 |
T-Chol (mg/dL) | 203 ± 38 | 184 ± 29 | 199 ± 40 | 179 ±34 | 0.312 | 0.284 |
HDL-Chol | 59 ± 12 | 54 ± 15 | 60 ± 17 | 55 ± 11 | 0.811 | 0.449 |
LDL-Chol | 128 ± 29 | 112 ± 25 | 118 ± 31 | 107 ± 28 | 0.007 | 0.116 |
TG (g/L) | 97 ± 50 | 96 ± 48 | 95 ± 53 | 93 ± 45 | 0.781 | 0.602 |
Apo-B (mg/dL) | 96 ± 23 | 90 ± 24 | 91 ± 25 | 86 ± 24 | 0.228 | 0.496 |
FSI (μIU/mL) | 9.1 ± 8.1 | 13.2 ± 16.2 | 8.4 ± 8.3 | 10.6 ± 7.8 | 0.485 | 0.255 |
HOMA-IR | 2.1 ± 1.8 | 3.9 ± 2.8 | 2.2 ± 2.8 | 3.4 ± 4.4 | 0.634 | 0.760 |
FSG (mmol/L) | 4.8 ± 0.5 | 5.1 ± 0.6 | 4.8 ± 0.4 | 5.0 ± 0.5 | 0.623 | 0.140 |
2 hOGTT (mmol/L) | Na | 5.8 ± 1.7 | Na | 5.4 ± 0.9 | ---- | 0.191 |
HbA1c-IFCC % | 5.3 ± 0.2 | 5.4 ± 0.3 | 5.3 ± 0.3 | 5.4 ± 0.3 | 0.915 | 0.728 |
cPR (mg/dL) | 0.42 ±0.49 | 0.65 ± 1.01 | 0.62 ± 0.82 | 0.63 ± 1.04 | 0.381 | 0.932 |
PA Score | −1.6 ± 0.7 | −1.8 ± 1.0 | −1.7 ± 0.9 | −1.6 ± 1.0 | 0.462 | 0.305 |
Nutrition Score | 3.5 ± 2.9 | 1.6 ± 3.1 | 3.8 ± 3.5 | 1.8 ± 3.6 | 0.558 | 0.710 |
MEDAS Score | 5.9 ± 1.9 | 6.5 ± 1.9 | 6.4 ± 1.7 | 6.9 ± 2.0 | 0.042 | 0.013 |
CG (141) vs. IG (312) | GDM (146) vs. NGT (307) | |||||
---|---|---|---|---|---|---|
% (N) | RR (95% CI) IG | p | % (n) | RR (95% CI) GDM | p | |
PANEL A. (3 MONTHS) | ||||||
GLYCEMIC STATUS | ||||||
IFG | 5.0 (7) vs. 4.5 (14) | 0.90 (0.36–2.28) | 0.496 | 7.5 (11) vs. 3.3 (10) | 1.44 (1.09–2.27) | 0.040 |
PREDIABETES (HBA1C ≥ 5.7%) | 5.0 (7) vs. 6.7 (21) | 1.43 (0.59–3.46) | 0.289 | 13.0 (19) vs. 2.9 (9) | 1.47 (1.01–2.13) | 0.008 |
METS COMPONENTS | ||||||
RAISED (WC ≥ 89.5 CM) | 71.3 (100) vs. 68.9 (215) | 1.04 (0.87–1.23) | 0.332 | 75.8 (111) vs. 66,5(204) | 1.36 (1.19–1.56) | 0.000 |
RAISED SBP ≥ 130 MM HG | 8.5 (12) vs. 10.5 (33) | 1.27 (0.62–2.60) | 0.316 | 19.2 (28) vs. 5.5 (17) | 1.22 (1.01–1.56) | 0.041 |
RAISED DBP ≥ 85 MM HG | 17.0 (24) vs. 14.2 (44) | 0.81 (0.41–1.60) | 0.326 | 28.8 (42) vs. 8.5 (26) | 1.44 (1.08–1.94) | 0.002 |
RAISED TRIG. ≥ 150 MG/DL | 11.6 (16) vs. 11.1 (34) | 0.96 (0.51–1.79) | 0.503 | 13.8 (20) vs. 9.8 (30) | 1.22 (1.00–1.54) | 0.032 |
REDUCED HDL-C < 50 mg/dL | 21.8 (22) vs. 21.7 (43) | 1.00 (0.56–1.78) | 0.550 | 22.3% (21) vs. 21.5% (44) | 1.02 (0.84–1.23) | 0.217 |
AGR | 7.8 (11) vs. 9.3 (29) | 1.25 (0.60–2.61) | 0.345 | 15.1 (22) vs. 5.9 (18) | 1.48 (1.11–2.01) | 0.001 |
RAISED HOMA-IR ≥ 3.5 | 12.2 (17) vs. 10.2 (31) | 0.81 (0.39–1.71) | 0.355 | 11.6 (17) vs. 10.1 (31) | 1.22 (0.93–1.60) | 0.069 |
>2 COMPONENTS OF METS | 11.4 (16) vs. 13.2 (41) | 1.19 (0.55–2.58) | 0.413 | 17.8 (26) vs. 10.1 (31) | 1.37 (1.00–1.96) | 0.035 |
PANEL B. (3 YEARS) | ||||||
GLYCEMIC STATUS | ||||||
IFG | 17.7 (25) vs. 9.6 (30) | 0.51 (0.28–0.92) | 0.019 | 21.9 (32) vs. 7.5 (23) | 1.84 (1.34–2.53) | >0.001 |
PREDIABETES (HbA1c ≥ 5.7%) | 8.5 (12) vs. 8.0 (25) | 1.23 (0.57–2.65) | 0.370 | 15.1 (22) vs. 4.9 (15) | 1.73 (1.15–2.60) | 0.001 |
IGT | 9.5 (14) vs. 0 | n.a | 9.6 (14) vs. 0 (0) | n. a | ||
METS COMPONENTS | ||||||
BMI ≥ 30 (kg/m2) | 41.1 (58) vs. 24.0 (75) | 0.45 (0.19–0.96) | 0.041 | 34.2 (50) vs. 27.0 (83) | 1.02 (0.76–2.32) | 0.547 |
RAISED (WC ≥ 89.5 cm) | 62.5 (88) vs. 44.6 (139) | 0.54 (0.31–0.94) | 0.022 | 75.0 (102) vs. 40.7 (125) | 1.22 (1.07–1.52) | 0.031 |
RAISED SBP ≥ 130 mm Hg | 13.5 (19) vs. 11.2 (35) | 0.90 (0.30–2.73) | 0.530 | 18.5 (27) vs. 8.8 (27) | 1.20 (0.75–1.93) | 0.298 |
RAISED DBP ≥ 85 mm Hg | 17.0 (24) vs. 5.1 (16) | 0.75 (0.51–1.12) | 0.227 | 9.6 (14) vs. 8.5 (26) | 1.00 (0.61–1.63) | 0.632 |
RAISED TRIG. ≥ 150 MG/dL | 11.3 (16) vs. 10.6 (33) | 0.94 (0.45–1.98) | 0.507 | 15.8 (23) vs. 8.5 (26) | 1.22 (0.93–1.61) | 0.069 |
REDUCED HDL-C < 50 mg/dL | 26.2 (37) vs. 23.4 (73) | 0.99 (0.65–1.52) | 0.524 | 43.8 (64) vs. 15.0 (46) | 1.12 (0.96–1.31) | 0.074 |
AGR | 21.9 (31) vs. 14.1 (44) | 0.69 (0.42–1.11) | 0.083 | 28.8 (42) vs. 10.7 (33) | 1.72 (1.33–2.23) | >0.001 |
RAISED HOMA-IR ≥ 3.5 | 12.8 (18) vs. 6.4 (20) | 1.00 (0.46–2.18) | 0.578 | 11.6 (17) vs. 6.8 (21) | 1.17 (0.84–1.63) | 0.227 |
>2 COMPONETS OF METS | 24.1 (34) vs. 8.0 (25) | 0.56 (0.33–0.94) | 0.003 | 22.6 (33) vs. 8.5 (26) | 1.62 (1.01–2.65) | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-O’Connor, R.; Ramos-Levi, A.; Melero, V.; Arnoriaga-Rodriguez, M.; Barabash, A.; Valerio, J.; del Valle, L.; de Miguel, P.; Diaz, A.; Familiar, C.; et al. Early Mediterranean-Based Nutritional Intervention Reduces the Rate of Gestational Diabetes in Overweight and Obese Pregnant Women: A Post-Hoc Analysis of the San Carlos Gestational Prevention Study. Nutrients 2024, 16, 2206. https://doi.org/10.3390/nu16142206
Martín-O’Connor R, Ramos-Levi A, Melero V, Arnoriaga-Rodriguez M, Barabash A, Valerio J, del Valle L, de Miguel P, Diaz A, Familiar C, et al. Early Mediterranean-Based Nutritional Intervention Reduces the Rate of Gestational Diabetes in Overweight and Obese Pregnant Women: A Post-Hoc Analysis of the San Carlos Gestational Prevention Study. Nutrients. 2024; 16(14):2206. https://doi.org/10.3390/nu16142206
Chicago/Turabian StyleMartín-O’Connor, Rocío, Ana Ramos-Levi, Veronica Melero, María Arnoriaga-Rodriguez, Ana Barabash, Johanna Valerio, Laura del Valle, Paz de Miguel, Angel Diaz, Cristina Familiar, and et al. 2024. "Early Mediterranean-Based Nutritional Intervention Reduces the Rate of Gestational Diabetes in Overweight and Obese Pregnant Women: A Post-Hoc Analysis of the San Carlos Gestational Prevention Study" Nutrients 16, no. 14: 2206. https://doi.org/10.3390/nu16142206
APA StyleMartín-O’Connor, R., Ramos-Levi, A., Melero, V., Arnoriaga-Rodriguez, M., Barabash, A., Valerio, J., del Valle, L., de Miguel, P., Diaz, A., Familiar, C., Moraga, I., Duran, A., Cuesta, M., Torrejón, M. J., Martínez-Novillo, M., Marcuello, C., Pazos, M., Rubio, M. A., Matía Matin, P., & Calle-Pascual, A. L. (2024). Early Mediterranean-Based Nutritional Intervention Reduces the Rate of Gestational Diabetes in Overweight and Obese Pregnant Women: A Post-Hoc Analysis of the San Carlos Gestational Prevention Study. Nutrients, 16(14), 2206. https://doi.org/10.3390/nu16142206