Based on Network Pharmacology and Molecular Docking, the Active Components, Targets, and Mechanisms of Flemingia philippinensis in Improving Inflammation Were Excavated
Abstract
:1. Introduction
2. Materials and Methods
2.1. Searching for the Active Ingredients of Flemingia philippinensis
2.2. Target Prediction for the Active Ingredients of Flemingia philippinensis
2.3. Screening for Potential Targets of the Anti-Inflammatory Effects of Flemingia philippinensis
2.4. Analysis of Protein Interaction Network and Screening for Key Targets
2.5. Construction of the Network Diagram of Flemingia philippinensis–Active Ingredients–Targets for Improving Inflammation
2.6. GO Enrichment Analysis and KEGG Pathway Analysis
2.7. Molecular Docking Analysis
3. Results
3.1. Active Ingredients of Flemingia philippinensis
3.2. Prediction of the Potential Targets for Anti-Inflammatory Improvement by Flemingia philippinensis
3.3. Protein Interaction Analysis
3.4. Network of Flemingia philippinensis–Active Ingredients–Their Targets for Inflammation Improvement
3.5. GO Enrichment Analysis of Potential Inflammatory Targets in Flemingia philippinensis
3.6. KEGG Pathway Enrichment Analysis of the Potential Anti-Inflammatory Targets of Flemingia philippinensis
3.7. Analysis of Molecular Docking
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hou, C.; Chen, L.; Yang, L.; Ji, X. An insight into anti-inflammatory effects of natural polysaccharides. Int. J. Biol. Macromol. 2020, 153, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.B.; Luo, D.D.; Xie, J.H.; Xian, Y.F.; Lai, Z.Q.; Liu, Y.H.; Liu, W.H.; Chen, J.N.; Lai, X.P.; Lin, Z.X.; et al. Curcumin’s Metabolites, Tetrahydrocurcumin and Octahydrocurcumin, Possess Superior Anti-inflammatory Effects in vivo Through Suppression of TAK1-NF-κB Pathway. Front. Pharmacol. 2018, 9, 1181. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021, 6, 263. [Google Scholar] [PubMed]
- Doran, A.C. Inflammation Resolution: Implications for Atherosclerosis. Circ. Res. 2022, 130, 130–148. [Google Scholar] [CrossRef] [PubMed]
- Gilroy, D.W.; Lawrence, T.; Perretti, M.; Rossi, A.G. Inflammatory resolution: New opportunities for drug discovery. Nat. Rev. Drug Discov. 2004, 3, 401–416. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wang, B.; Sun, T.; Zhou, F.; Zhu, B.; Li, C.; Wan, H.; Ding, Z. Investigation on the mechanism of 2,3,4′,5-Tetrahydroxystilbene 2-o-D-glucoside in the treatment of inflammation based on network pharmacology. Comput. Biol. Med. 2022, 145, 105448. [Google Scholar] [CrossRef] [PubMed]
- Polderman, J.A.; Farhang-Razi, V.; Van Dieren, S.; Kranke, P.; DeVries, J.H.; Hollmann, M.W.; Preckel, B.; Hermanides, J. Adverse side effects of dexamethasone in surgical patients. Cochrane Database Syst. Rev. 2018, 11, Cd011940. [Google Scholar] [PubMed]
- Cai, P.J.; Sun, A.D.; Jia, G.L. Research Progress on Anti-inflammatory Activity and Microencapsulation of Plant Polyphenols. J. Chin. Inst. Food Sci. Technol. 2022, 22, 417–427. [Google Scholar]
- Liu, W.; Cui, X.; Zhong, Y.; Ma, R.; Liu, B.; Xia, Y. Phenolic metabolites as therapeutic in inflammation and neoplasms: Molecular pathways explaining their efficacy. Pharmacol. Res. 2023, 193, 106812. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Wang, Y.; Li, Z.P.; Baiseitova, A.; Ban, Y.J.; Park, K.H. Xanthine Oxidase Inhibition and Anti-LDL Oxidation by Prenylated Isoflavones from Flemingia philippinensis Root. Molecules 2020, 25, 3074. [Google Scholar] [CrossRef] [PubMed]
- Ahn, E.M.; Nakamura, N.; Akao, T.; Nishihara, T.; Hattori, M. Estrogenic and antiestrogenic activities of the roots of Moghania philippinensis and their constituents. Biol. Pharm. Bull. 2004, 27, 548–553. [Google Scholar] [CrossRef]
- Li, L.; Deng, X.; Zhang, L.; Shu, P.; Qin, M. A new coumestan with immunosuppressive activities from Flemingia philippinensis. Fitoterapia 2011, 82, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, M.; Ma, X. Flavonoids from roots of Flemingia philippinensis. China J. Chin. Mater. Medica 2009, 34, 724–726. [Google Scholar]
- Yan, D.; Xia, B.H.; Li, C.; Liu, S.; Li, Y.M.; Liao, D.F.; Lin, L.M.; Wu, P. Research progress on medicinal plants of Flemingia Roxb. ex W. T. Ait. Chin. Tradit. Herb. Drugs 2016, 47, 4456–4471. [Google Scholar]
- Li, L.; Qin, M.J.; Zhang, L.X.; Zhao, Q. Advances in the Chemical Constituents and Biological Activities of Flemingia Plants. Mod. Pharm. Clin. 2009, 24, 203–211. [Google Scholar]
- Sun, G.; Xing, C.; Zeng, L.; Huang, Y.; Sun, X.; Liu, Y. Flemingia philippinensis Flavonoids Relieve Bone Erosion and Inflammatory Mediators in CIA Mice by Downregulating NF-κB and MAPK Pathways. Mediat. Inflamm. 2019, 2019, 5790291. [Google Scholar] [CrossRef]
- Jain, B.; Raj, U.; Varadwaj, P.K. Drug Target Interplay: A Network-based Analysis of Human Diseases and the Drug Targets. Curr. Top. Med. Chem. 2018, 18, 1053–1061. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, D.; Zhou, W.; Wang, L.; Wang, B.; Zhang, T.; Li, S. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine. Brief. Bioinform. 2023, 25, bbad518. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, B. Traditional Chinese medicine network pharmacology: Theory, methodology and application. Chin. J. Nat. Med. 2013, 11, 110–120. [Google Scholar] [CrossRef]
- Yu, J.W.; Yuan, H.W.; Bao, L.D.; Si, L.G. Interaction between piperine and genes associated with sciatica and its mechanism based on molecular docking technology and network pharmacology. Mol. Divers. 2021, 25, 233–248. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shi, J.L.; Guo, J.Y.; Chen, Y.; Ma, X.J.; Wang, S.N.; Zheng, Z.Q.; Lin, M.X.; He, S. Anxiolytic-like effect of Suanzaoren-Wuweizi herb-pair and evidence for the involvement of the monoaminergic system in mice based on network pharmacology. BMC Complement. Med. Ther. 2023, 23, 7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhou, Q.; Yang, X.; Zhang, Z.; Wang, D.; Hu, D.; Huang, Y.; Sheng, J.; Wang, X. Gallic Acid Can Promote Low-Density Lipoprotein Uptake in HepG2 Cells via Increasing Low-Density Lipoprotein Receptor Accumulation. Molecules 2024, 29, 1999. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Tang, G.W.; Zhu, K.M.; Long, B.; Tian, X. Conformational relationship between mogroside monomers and sweet/biter taste receptors based on molecular docking and electronic tongue sensory analysis. Sci. Technol. Food Ind. 2024, 1–16. [Google Scholar] [CrossRef]
- Li, R.; Zhao, J.W.; Ning, T.B.; Yao, J.C.; Liang, H.B. Mechanism of Shanhuajing Granules on reliving visual fatigue based on network pharmacology and molecular docking method. Chin. Tradit. Herb. Drugs 2021, 52, 4921–4930. [Google Scholar]
- Volkamer, A.; Kuhn, D.; Grombacher, T.; Rippmann, F.; Rarey, M. Combining global and local measures for structure-based druggability predictions. J. Chem. Inf. Model. 2012, 52, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yuan, F.J.; Zhang, M.; Yu, L.; Liu, W.Y.; Wu, H.G.; Gao, J.W.; Wang, T.Y. Acetylcholinesterase Inhibition Effect of Flavonoids from Flemigia philippinensis. Sci. Technol. Food Ind. 2021, 42, 118–124. [Google Scholar]
- Yan, X.M.; Peng, Q.; Xu, Z.G.; Zhou, Y.; Zhao, Z.X.; Liao, Q.F.; Chen, F.L.; Zhang, L. Establishment of an HPLC-DAD Fingerprint Profile for Flemingia philippinensis. Chin. Tradit. Pat. Med. 2020, 42, 1366–1371. [Google Scholar]
- Li, H. Studies on the Constituents and Quality Control of Flemingia philippinensis Merr et Rolfe. Doctor Thesis, China Union Medical University, Beijing, China, 2009. [Google Scholar]
- Sun, F.; Li, Q.; Xu, J. Chemical Composition of Roots Flemingia philippinensis and Their Inhibitory Kinetics on Aromatase. Chem. Biodivers. 2017, 14, e1600193. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Curtis-Long, M.J.; Lee, B.W.; Yuk, H.J.; Kim, D.W.; Tan, X.F.; Park, K.H. Inhibition of tyrosinase activity by polyphenol compounds from Flemingia philippinensis roots. Bioorg. Med. Chem. 2014, 22, 1115–1120. [Google Scholar] [PubMed]
- Alfaro, S.; Acuña, V.; Ceriani, R.; Cavieres, M.F.; Weinstein-Oppenheimer, C.R.; Campos-Estrada, C. Involvement of Inflammation and Its Resolution in Disease and Therapeutics. Int. J. Mol. Sci. 2022, 23, 10719. [Google Scholar] [CrossRef]
- Netea, M.G.; Balkwill, F.; Chonchol, M.; Cominelli, F.; Donath, M.Y.; Giamarellos-Bourboulis, E.J.; Golenbock, D.; Gresnigt, M.S.; Heneka, M.T.; Hoffman, H.M.; et al. A guiding map for inflammation. Nat. Immunol. 2017, 18, 826–831. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.C.; Pan, Z.Q.; Xiao, M.G.; Zhang, Y.Y. Advances in research on small intestinal injuries caused by nonsteroidal anti-inflammatory drugs and its prevention and treatment. J. China Pharm. Univ. 2023, 54, 150–158. [Google Scholar]
- Qian, Y.N.; Sun, L.Y.; Zhang, S. The role and mechanism of intestinal flora in non-steroidal anti-inflammatory drug enteropathy. Chin. J. Microecol. 2022, 34, 608–612. [Google Scholar]
- Radu, A.F.; Negru, P.A.; Radu, A.; Tarce, A.G.; Bungau, S.G.; Bogdan, M.A.; Tit, D.M.; Uivaraseanu, B. Simulation-Based Research on Phytoconstituents of Embelia ribes Targeting Proteins with Pathophysiological Implications in Rheumatoid Arthritis. Life 2023, 13, 1467. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, N.B.; Lambert, M.N.T.; Jeppesen, P.B. The Effect of Plant Derived Bioactive Compounds on Inflammation: A Systematic Review and Meta-Analysis. Mol. Nutr. Food Res. 2020, 64, e2000473. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Bao, Y.; Liang, H.; Zhang, X.; Li, B.; Yang, R.; Zeng, N. Potential mechanisms of formononetin against inflammation and oxidative stress: A review. Front. Pharmacol. 2024, 15, 1368765. [Google Scholar] [CrossRef] [PubMed]
- Qin, Q.X.; He, L.H.; Wei, M.; He, H.; Ma, L.H.; Pang, T.; Zhou, L. Mechanism of Flemiphilippinin D Regulating Inflammatory Response in CIA Rats Through TLR2/MyD88/NF-κB Signaling Pathway. Chin. J. Exp. Tradit. Med. Formulae 2023, 29, 134–141. [Google Scholar]
- Yousuf, M.; Shamsi, A.; Khan, S.; Khan, P.; Shahwan, M.; Elasbali, A.M.; Haque, Q.M.R.; Hassan, M.I. Naringenin as a potential inhibitor of human cyclin-dependent kinase 6: Molecular and structural insights into anti-cancer therapeutics. Int. J. Biol. Macromol. 2022, 213, 944–954. [Google Scholar] [CrossRef] [PubMed]
- Yadav, B.; Vishwakarma, V.; Kumar, S.; Aggarwal, N.K.; Gupta, R.; Yadav, A. Ameliorative role of naringenin against lead-induced genetic damage and oxidative stress in cultured human lymphocytes. J. Biochem. Mol. Toxicol. 2022, 36, e23036. [Google Scholar] [CrossRef] [PubMed]
- Sanson, C.; Boukaiba, R.; Houtmann, S.; Maizières, M.A.; Fouconnier, S.; Partiseti, M.; Bohme, G.A. The grapefruit polyphenol naringenin inhibits multiple cardiac ion channels. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2022, 395, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, M.A.; Singh, B.N.; Sudheer, S.; Kharwar, R.N.; Siddiqui, S.; Abdel-Azeem, A.M.; Fernandes Fraceto, L.; Dashora, K.; Gupta, V.K. Chrysophanol: A Natural Anthraquinone with Multifaceted Biotherapeutic Potential. Biomolecules 2019, 9, 68. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.C.; Wang, C.C.; Lu, J.W.; Lee, C.H.; Chen, S.C.; Ho, Y.J.; Peng, Y.J. Chondroprotective Effects of Genistein against Osteoarthritis Induced Joint Inflammation. Nutrients 2019, 11, 1180. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.; Hwang, H.J.; Yang, H.; Kim, J.H.; Park, J.H.Y.; Kim, J.E.; Lee, K.W. Orobol, A Derivative of Genistein, Inhibits Heat-Killed Propionibacterium acnes-Induced Inflammation in HaCaT Keratinocytes. J. Microbiol. Biotechnol. 2020, 30, 1379–1386. [Google Scholar] [CrossRef]
- Wu, C.; Ba, Q.; Lu, D.; Li, W.; Salovska, B.; Hou, P.; Mueller, T.; Rosenberger, G.; Gao, E.; Di, Y.; et al. Global and Site-Specific Effect of Phosphorylation on Protein Turnover. Dev. Cell 2021, 56, 111–124.e6. [Google Scholar] [CrossRef] [PubMed]
- Gong, T.; Jiang, W.; Zhou, R. Control of Inflammasome Activation by Phosphorylation. Trends Biochem. Sci. 2018, 43, 685–699. [Google Scholar] [CrossRef] [PubMed]
- Oostindie, S.C.; Lazar, G.A.; Schuurman, J.; Parren, P. Avidity in antibody effector functions and biotherapeutic drug design. Nature reviews. Drug Discov. 2022, 21, 715–735. [Google Scholar] [CrossRef] [PubMed]
- Tu, H.; Xiong, W.; Zhang, J.; Zhao, X.; Lin, X. Tyrosine phosphorylation regulates RIPK1 activity to limit cell death and inflammation. Nat. Commun. 2022, 13, 6603. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.D.; Chen, H.L.; Lou, L.M.; Zhang, H.; Yang, G.L. SKA3 promotes lung adenocarcinoma metastasis through the EGFR-PI3K-Akt axis. Biosci. Rep. 2020, 40, BSR20194335. [Google Scholar] [CrossRef]
- Venkatachalam, K.; Mummidi, S.; Cortez, D.M.; Prabhu, S.D.; Valente, A.J.; Chandrasekar, B. Resveratrol inhibits high glucose-induced PI3K/Akt/ERK-dependent interleukin-17 expression in primary mouse cardiac fibroblasts. Am. J. Physiol. Heart Circ. Physiol. 2008, 294, H2078–H2087. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, U.O.; Bode, M.; Kurts, C.; Ehmke, H. Salt, inflammation, IL-17 and hypertension. Br. J. Pharmacol. 2019, 176, 1853–1863. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Dong, L.L.; Guo, T.; Zhang, L.T. Natural Products Treat Atopic Dermatitis via NF-κB Signaling Pathway: A Review. Chin. J. Exp. Tradit. Med. Formulae 2024, 30, 271–280. [Google Scholar]
- Shi, Z.M.; Han, Y.W.; Han, X.H.; Zhang, K.; Chang, Y.N.; Hu, Z.M.; Qi, H.X.; Ting, C.; Zhen, Z.; Hong, W. Upstream regulators and downstream effectors of NF-κB in Alzheimer’s disease. J. Neurol. Sci. 2016, 366, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Zhao, L.; Peng, R. HIF-1 signaling: An emerging mechanism for mitochondrial dynamics. J. Physiol. Biochem. 2023, 79, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Kim, Y.H.; Nam, B.H.; Kong, H.J.; Kim, H.H.; Kim, Y.J.; An, W.G.; Cheong, J. HIF-1alpha expression in response to lipopolysaccaride mediates induction of hepatic inflammatory cytokine TNFalpha. Exp. Cell Res. 2007, 313, 1866–1876. [Google Scholar] [CrossRef] [PubMed]
NO. | Molecule Name | Molecular Formula | Molecular Weight | GI Absorption | Number of Drug-like “YES” |
---|---|---|---|---|---|
1 | (2S)-Liquiritigenin | C15H13O4 | 256.25 | High | 5 |
2 | Monopalmitin | C19H38O4 | 330.50 | High | 3 |
3 | 2′-Hydroxygenistein | C15H10O6 | 286.24 | High | 5 |
4 | Luteolin | C15H10O6 | 286.24 | High | 5 |
5 | 1,8-Cineole | C10H18O | 154.28 | High | 3 |
6 | Cubenol | C15H26O | 222.37 | High | 4 |
7 | Formononetin | C16H12O4 | 268.26 | High | 5 |
8 | Orobol | C15H10O6 | 286.24 | High | 5 |
9 | Chrysophanol | C15H10O4 | 254.24 | High | 5 |
10 | Physcion | C16H12O5 | 284.26 | High | 5 |
11 | Dihydrodaidzein | C15H12O4 | 256.25 | High | 5 |
12 | 4′,7-Dihydroxyflavanone | C15H10O5 | 254.24 | High | 5 |
13 | Quercetin | C15H10O7 | 302.24 | High | 5 |
14 | 3′-O-Methylorobol | C16H12O6 | 300.26 | High | 5 |
15 | Elemene | C15H24 | 204.39 | High | 4 |
16 | Diisobutyl phthalate | C16H22O4 | 278.34 | High | 5 |
17 | o-Thymol | C10H14O | 150.24 | High | 3 |
18 | Flemiphilippinin D | C25H28O6 | 424.50 | High | 4 |
19 | Flemiphilippinin C | C26H26O6 | 406.46 | High | 4 |
21 | Medicagol | C16H8O6 | 296.23 | High | 5 |
21 | Wedelolactone | C16H10O7 | 314.25 | High | 5 |
22 | Flemichin D | C25H26O6 | 422.47 | High | 4 |
23 | Genistein | C15H10O5 | 270.24 | High | 5 |
24 | Kaempferol | C15H10O6 | 286.24 | High | 5 |
25 | Lupinifolin | C25H26O5 | 406.50 | High | 4 |
26 | Prunetin | C16H12O5 | 284.26 | High | 5 |
27 | Naringenin | C15H12O5 | 272.25 | High | 5 |
28 | Lupeol | C30H50O | 426.80 | Low | 3 |
29 | Palmitic acid | C16H32O2 | 256.42 | High | 3 |
NO. | Gene Name | Target Protein | Degree | Betweenness Centrality | Closeness Centrality |
---|---|---|---|---|---|
1 | AKT1 | Serine/threonine-protein kinase AKT | 49 | 0.041 266 | 0.962 264 |
2 | TNF | TNF-alpha | 47 | 0.030 942 | 0.927 273 |
3 | BCL2 | Apoptosis regulator Bcl-2 | 47 | 0.028 528 | 0.927 273 |
4 | ALB | Serum albumin | 47 | 0.034 065 | 0.927 273 |
5 | ESR1 | Estrogen receptor alpha | 46 | 0.031 392 | 0.910 714 |
6 | PPARG | Peroxisome proliferator-activated receptor gamma | 44 | 0.026 722 | 0.879 310 |
7 | EGFR | Epidermal growth factor receptor erbB1 | 44 | 0.021 417 | 0.879 310 |
8 | PTGS2 | Cyclooxygenase-2 | 42 | 0.018 727 | 0.850 000 |
9 | SRC | Tyrosine-protein kinase SRC | 41 | 0.014 351 | 0.836 066 |
10 | HSP90AA1 | Heat shock protein HSP 90-alpha | 40 | 0.016 795 | 0.822 581 |
Key Molecular Components | Core Targets | Average Binding Energy | ||||
---|---|---|---|---|---|---|
AKT1 | TNF | BCL2 | ALB | ESR1 | ||
Flemichin D | −9.57 | −8.70 | −8.32 | −8.20 | −7.54 | −8.47 |
Naringenin | −7.82 | −7.48 | −7.01 | −7.60 | −7.96 | −7.57 |
Chrysophanol | −8.00 | −7.20 | −6.25 | −8.85 | −7.29 | −7.52 |
Genistein | −7.60 | −6.67 | −5.78 | −6.74 | −8.03 | −6.96 |
Orobol | −7.25 | −6.76 | −6.23 | −7.02 | −8.10 | −7.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Zhou, Q.; Zhang, Z.; Yang, X.; Man, J.; Wang, D.; Li, X. Based on Network Pharmacology and Molecular Docking, the Active Components, Targets, and Mechanisms of Flemingia philippinensis in Improving Inflammation Were Excavated. Nutrients 2024, 16, 1850. https://doi.org/10.3390/nu16121850
Zhang D, Zhou Q, Zhang Z, Yang X, Man J, Wang D, Li X. Based on Network Pharmacology and Molecular Docking, the Active Components, Targets, and Mechanisms of Flemingia philippinensis in Improving Inflammation Were Excavated. Nutrients. 2024; 16(12):1850. https://doi.org/10.3390/nu16121850
Chicago/Turabian StyleZhang, Dongying, Qixing Zhou, Zhen Zhang, Xiangxuan Yang, Jiaxu Man, Dongxue Wang, and Xiaoyong Li. 2024. "Based on Network Pharmacology and Molecular Docking, the Active Components, Targets, and Mechanisms of Flemingia philippinensis in Improving Inflammation Were Excavated" Nutrients 16, no. 12: 1850. https://doi.org/10.3390/nu16121850
APA StyleZhang, D., Zhou, Q., Zhang, Z., Yang, X., Man, J., Wang, D., & Li, X. (2024). Based on Network Pharmacology and Molecular Docking, the Active Components, Targets, and Mechanisms of Flemingia philippinensis in Improving Inflammation Were Excavated. Nutrients, 16(12), 1850. https://doi.org/10.3390/nu16121850