Maternal Oxidative Balance Score during Pregnancy and Congenital Heart Defects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Dietary Assessment and Oxidative Balance Score
2.3. Covariates
2.4. Statistical Analyses
3. Results
3.1. Baseline Characteristics of the Study Participants
3.2. The Distribution of OBS Components among Groups
3.3. Association between Maternal OBS during Pregnancy and CHD
3.4. The Prediction Value for Maternal OBS in Pregnancy on CHD
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Chen, S.; Zühlke, L.; Black, G.C.; Choy, M.K.; Li, N.; Keavney, B.D. Global birth prevalence of congenital heart defects 1970–2017: Updated systematic review and meta-analysis of 260 studies. Int. J. Epidemiol. 2019, 48, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.M.; Liu, F.; Wu, L.; Ma, X.J.; Niu, C.; Huang, G.Y. Prevalence of Congenital Heart Disease at Live Birth in China. J. Pediatr. 2019, 204, 53–58. [Google Scholar] [CrossRef] [PubMed]
- GBD 2017 Congenital Heart Disease Collaborators. Global, regional, and national burden of congenital heart disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Child Adolesc. Health 2020, 4, 185–200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.N.; Wu, Q.J.; Liu, Y.S.; Lv, J.L.; Sun, H.; Chang, Q.; Lin, C.F.; Zhao, Y.H. Environmental Risk Factors and Congenital Heart Disease: An Umbrella Review of 165 Systematic Reviews and Meta-Analyses with More than 120 Million Participants. Front. Cardiovasc. Med. 2021, 8, 640729. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.; Elhakeem, A.; Thorbjørnsrud Nader, J.L.; Yang, T.C.; Isaevska, E.; Richiardi, L.; Vrijkotte, T.; de Moira, A.P.; Murray, D.M.; Finn, D.; et al. Effect of Maternal Prepregnancy/Early-Pregnancy Body Mass Index and Pregnancy Smoking and Alcohol on Congenital Heart Diseases: A Parental Negative Control Study. J. Am. Heart Assoc. 2021, 10, e020051. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Qiu, H.; Qu, P.; Zhang, R.; Zeng, L.; Yan, H. Prenatal Alcohol Exposure and Congenital Heart Defects: A Meta-Analysis. PLoS ONE. 2015, 10, e0130681. [Google Scholar] [CrossRef] [PubMed]
- Turunen, R.; Pulakka, A.; Metsälä, J.; Vahlberg, T.; Ojala, T.; Gissler, M.; Kajantie, E.; Helle, E. Maternal Diabetes and Overweight and Congenital Heart Defects in Offspring. JAMA Netw. Open 2024, 7, e2350579. [Google Scholar] [CrossRef] [PubMed]
- Saiyin, T.; Engineer, A.; Greco, E.R.; Kim, M.Y.; Lu, X.; Jones, D.L.; Feng, Q. Maternal voluntary exercise mitigates oxidative stress and incidence of congenital heart defects in pre-gestational diabetes. J. Cell. Mol. Med. 2019, 23, 5553–5565. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chang, Q.; Dang, S.; Liu, X.; Zeng, L.; Yan, H. Dietary Quality during Pregnancy and Congenital Heart Defects. Nutrients. 2022, 14, 3654. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chang, Q.; Du, Q.; Dang, S.; Zeng, L.; Yan, H. Dietary Inflammatory Index during Pregnancy and Congenital Heart Defects. Nutrients 2023, 15, 2262. [Google Scholar] [CrossRef]
- Yang, J.; Cheng, Y.; Zeng, L.; Dang, S.; Yan, H. Maternal dietary diversity during pregnancy and congenital heart defects: A case-control study. Eur. J. Clin. Nutr. 2021, 75, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Kang, Y.; Chang, Q.; Zhang, B.; Liu, X.; Zeng, L.; Yan, H.; Dang, S. Maternal Zinc, Copper, and Selenium Intakes during Pregnancy and Congenital Heart Defects. Nutrients 2022, 14, 1055. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Kang, Y.; Cheng, Y.; Zeng, L.; Shen, Y.; Shi, G.; Liu, Y.; Qu, P.; Zhang, R.; Yan, H.; et al. Iron intake and iron status during pregnancy and risk of congenital heart defects: A case-control study. Int. J. Cardiol. 2020, 301, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Kang, Y.; Cheng, Y.; Zeng, L.; Yan, H.; Dang, S. Maternal Dietary Patterns during Pregnancy and Congenital Heart Defects: A Case-Control Study. Int. J. Environ. Res. Public Health 2019, 16, 2957. [Google Scholar] [CrossRef] [PubMed]
- Carmichael, S.L.; Yang, W.; Ma, C.; Desrosiers, T.A.; Weber, K.; Collins, R.T.; Nestoridi, E.; Shaw, G.M.; The National Birth Defects Prevention Study. Oxidative balance scores and neural crest cell-related congenital anomalies. Birth Defects Res. 2023, 115, 1151–1162. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Ruiz, Á.; García-Villanova, B.; Guerra-Hernández, E.; Amiano, P.; Ruiz-Canela, M.; Molina-Montes, E. A Review of A Priori Defined Oxidative Balance Scores Relative to Their Components and Impact on Health Outcomes. Nutrients 2019, 11, 774. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.J.; Park, H.M.; Lee, J.H. Inverse Association between Oxidative Balance Score and Incident Type 2 Diabetes Mellitus. Nutrients 2023, 15, 2497. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, C.; Dong, Z.; Luo, H.; Ye, C.; Li, L.; Wang, E. Interplay of sleep patterns and oxidative balance score on total cardiovascular disease risk: Insights from the National Health and Nutrition Examination Survey 2005–2018. J. Glob. Health 2023, 13, 04170. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Li, B.; Xiang, L.; Xu, Z.; Tang, Y.; Zhu, Z.; Jiang, Y.; Peng, L.; He, H.; Wang, Y. Association between oxidative stress exposure and colorectal cancer risk in 98,395 participants: Results from a prospective study. Front. Nutr. 2023, 10, 1284066. [Google Scholar] [CrossRef]
- Lee, J.H.; Son, D.H.; Kwon, Y.J. Association between oxidative balance score and new-onset hypertension in adults: A community-based prospective cohort study. Front. Nutr. 2022, 9, 1066159. [Google Scholar] [CrossRef]
- Wang, K.; Deng, M.; Wu, J.; Luo, L.; Chen, R.; Liu, F.; Nie, J.; Tao, F.; Li, Q.; Luo, X.; et al. Associations of oxidative balance score with total abdominal fat mass and visceral adipose tissue mass percentages among young and middle-aged adults: Findings from NHANES 2011–2018. Front. Nutr. 2023, 10, 1306428. [Google Scholar] [CrossRef] [PubMed]
- Pace, N.D.; Desrosiers, T.A.; Carmichael, S.L.; Shaw, G.M.; Olshan, A.F.; Siega-Riz, A.M. Antioxidant Consumption is Associated with Decreased Odds of Congenital Limb Deficiencies. Paediatr. Perinat. Epidemiol. 2018, 32, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Tylavsky, F.A.; Han, L.; Taylor, L.M.S.; Mason, W.A.; Carroll, K.N.; Bush, N.R.; LeWinn, K.Z.; Melough, M.M.; Hartman, T.J.; Zhao, Q. Oxidative Balance Score during Pregnancy Is Associated with Oxidative Stress in the CANDLE Study. Nutrients 2022, 14, 2327. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Yan, H.; Dibley, M.J.; Shen, Y.; Li, Q.; Zeng, L. Validity and reproducibility of a semi-quantitative food frequency questionnaire for use among pregnant women in rural China. Asia Pac. J. Clin. Nutr. 2008, 17, 166–177. [Google Scholar] [PubMed]
- Crozier, S.R.; Robinson, S.M.; Godfrey, K.M.; Cooper, C.; Inskip, H.M. Women’s dietary patterns change little from before to during pregnancy. J. Nutr. 2009, 139, 1956–1963. [Google Scholar] [CrossRef] [PubMed]
- Institute of Nutrition and Food Safety; China Center for Disease Control. China Food Composition Book 2; Peking University Medical Press: Beijing, China, 2005. [Google Scholar]
- Institute of Nutrition and Food Safety; China Center for Disease Control. China Food Composition Book 1, 2nd. ed.; Peking University Medical Press: Beijing, China, 2009. [Google Scholar]
- Lei, X.; Xu, Z.; Chen, W. Association of oxidative balance score with sleep quality: NHANES 2007–2014. J. Affect. Disord. 2023, 339, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Li, H.; Fu, X.; Cen, M.; Wu, J. Association of the Oxidative Balance Score and Cognitive Function and the Mediating Role of Oxidative Stress: Evidence from the National Health and Nutrition Examination Survey (NHANES) 2011–2014. J. Nutr. 2023, 153, 1974–1983. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Wu, Y.; Meng, Y.; Liu, C.; Deng, B.; Zhen, J.; Dong, W. Trends in Oxidative Balance Score and Prevalence of Metabolic Dysfunction-Associated Steatotic Liver Disease in the United States: National Health and Nutrition Examination Survey 2001 to 2018. Nutrients 2023, 15, 4931. [Google Scholar] [CrossRef] [PubMed]
- Nie, X.; Liu, X.; Wang, C.; Wu, Z.; Sun, Z.; Su, J.; Yan, R.; Peng, Y.; Yang, Y.; Wang, C.; et al. Assessment of evidence on reported non-genetic risk factors of congenital heart defects: The updated umbrella review. BMC Pregnancy Childbirth 2022, 22, 371. [Google Scholar] [CrossRef]
- Mickey, R.M.; Greenland, S. The impact of confounder selection criteria on effect estimation. Am. J. Epidemiol. 1989, 129, 125–137. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Grzeszczak, K.; Łanocha-Arendarczyk, N.; Malinowski, W.; Ziętek, P.; Kosik-Bogacka, D. Oxidative Stress in Pregnancy. Biomolecules 2023, 13, 1768. [Google Scholar] [CrossRef] [PubMed]
- Aramouni, K.; Assaf, R.; Shaito, A.; Fardoun, M.; Al-Asmakh, M.; Sahebkar, A.; Eid, A.H. Biochemical and cellular basis of oxidative stress: Implications for disease onset. J. Cell. Physiol. 2023, 238, 1951–1963. [Google Scholar] [CrossRef] [PubMed]
- Dennery, P.A. Effects of oxidative stress on embryonic development. Birth Defects Res. C Embryo Today 2007, 81, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Greco, E.R.; Engineer, A.; Saiyin, T.; Lu, X.; Zhang, M.; Jones, D.L.; Feng, Q. Maternal nicotine exposure induces congenital heart defects in the offspring of mice. J. Cell. Mol. Med. 2022, 26, 3223–3234. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, C.A.; Cleves, M.A.; Zhao, W.; Melnyk, S.; James, S.J. Congenital heart defects and maternal biomarkers of oxidative stress. Am. J. Clin. Nutr. 2005, 82, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Ademuyiwa, O.; Odusoga, O.L.; Adebawo, O.O.; Ugbaja, R. Endogenous antioxidant defences in plasma and erythrocytes of pregnant women during different trimesters of pregnancy. Acta Obstet. Gynecol. Scand. 2007, 86, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Ward, E.J.; Bert, S.; Fanti, S.; Malone, K.M.; Maughan, R.T.; Gkantsinikoudi, C.; Prin, F.; Volpato, L.K.; Piovezan, A.P.; Graham, G.J.; et al. Placental Inflammation Leads to Abnormal Embryonic Heart Development. Circulation 2023, 147, 956–972. [Google Scholar] [CrossRef] [PubMed]
- Bosco, J.L.; Tseng, M.; Spector, L.G.; Olshan, A.F.; Bunin, G.R. Reproducibility of reported nutrient intake and supplement use during a past pregnancy: A report from the Children’s Oncology Group. Paediatr. Perinat. Epidemiol. 2010, 24, 93–101. [Google Scholar] [CrossRef]
- Bunin, G.R.; Gyllstrom, M.E.; Brown, J.E.; Kahn, E.B.; Kushi, L.H. Recall of diet during a past pregnancy. Am. J. Epidemiol. 2001, 154, 1136–1142. [Google Scholar] [CrossRef]
Cases (N = 474) | Controls (N = 948) | |||||||
---|---|---|---|---|---|---|---|---|
Tertile 1 (N = 279) | Tertile 2 (N = 124) | Tertile 3 (N = 71) | p 2 | Tertile 1 (N = 316) | Tertile 2 (N = 303) | Tertile 3 (N = 329) | p 2 | |
Oxidative balance score | ||||||||
Range | 6.0 to 16.0 | 17.0 to 25.0 | 26.0 to 34.0 | 5.0 to 16.0 | 17.0 to 25.0 | 26.0 to 37.0 | ||
Median (25th percentile, 75th percentile) | 10.0 (9.0, 13.0) | 20.5 (19.0, 23.0) | 30.0 (28.0, 31.0) | <0.001 | 12.0 (10.0, 14.0) | 21.0 (19.0, 23.0) | 31.0 (28.0, 32.0) | <0.001 |
Baseline characteristics, N (%) | ||||||||
Maternal age ≥ 30 years | 98 (35.1) | 37 (29.8) | 24 (33.8) | 0.583 | 110 (34.8) | 98 (32.3) | 116 (35.3) | 0.712 |
Maternal education, senior high school or above | 147 (52.7) | 80 (64.5) | 52 (73.2) | 0.002 | 235 (74.4) | 240 (79.2) | 290 (88.1) | <0.001 |
Maternal occupation, in employment | 131 (47.0) | 65 (52.4) | 44 (62.0) | 0.070 | 235 (74.4) | 246 (81.2) | 266 (80.9) | 0.061 |
Rural residence | 78 (28.0) | 45 (36.3) | 38 (53.5) | <0.001 | 108 (34.2) | 89 (29.4) | 72 (21.9) | 0.002 |
Nullparity | 149 (53.4) | 71 (57.3) | 54 (76.1) | 0.003 | 247 (78.2) | 244 (80.5) | 270 (82.1) | 0.457 |
Medication use in early pregnancy | 117 (41.9) | 52 (41.9) | 28 (39.4) | 0.925 | 83 (26.3) | 93 (30.7) | 112 (34.0) | 0.099 |
Anemia in early pregnancy | 52 (18.6) | 22 (17.7) | 6 (8.5) | 0.118 | 40 (12.7) | 31 (10.2) | 32 (9.7) | 0.446 |
Cases (N = 474) | Controls (N = 948) | |||||||
---|---|---|---|---|---|---|---|---|
Tertile 1 | Tertile 2 | Tertile 3 | p 1 | Tertile 1 | Tertile 2 | Tertile 3 | p 1 | |
OBS components 2 | ||||||||
Dietary OBS components 3 | ||||||||
Fiber, g/d | 15.3 (12.7, 18.6) | 23.6 (20.5, 28.8) | 37.7 (30.0, 46.5) | <0.001 | 13.4 (11.0, 16.4) | 21.4 (17.1, 25.0) | 33.5 (25.2, 45.1) | <0.001 |
β-Carotene, RE/d | 1065.4 (766.2, 1503.2) | 2292.9 (1576.3, 3620.6) | 4606.3 (2778.1, 6582.8) | <0.001 | 1075.5 (783.2, 1299.0) | 1866.8 (1288.2, 2349.0) | 3158.9 (2190.2, 6152.9) | <0.001 |
Vitamin B2, mg/d | 0.4 (0.3, 0.6) | 0.8 (0.7, 1.0) | 1.4 (1.1, 2.0) | <0.001 | 0.5 (0.4, 0.7) | 0.9 (0.8, 1.1) | 1.7 (1.2, 2.3) | <0.001 |
Niacin, mg/d | 8.1 (6.1, 9.7) | 12.6 (10.3, 14.9) | 21.0 (16.5, 29.6) | <0.001 | 8.4 (6.6, 10.4) | 13.5 (11.6, 16.3) | 22.9 (18.3, 30.4) | <0.001 |
Vitamin B6, mg/d | 0.4 (0.3, 0.5) | 0.8 (0.6, 0.9) | 1.3 (1.0, 1.8) | <0.001 | 0.4 (0.3, 0.5) | 0.7 (0.6, 0.8) | 1.4 (1.0, 2.1) | <0.001 |
Folate, mg/d | 150.3 (96.9, 198.6) | 259.2 (199.4, 341.6) | 406.0 (302.8, 541.7) | <0.001 | 205.4 (160.7, 263.4) | 272.1 (232.9, 372.4) | 446.4 (344.3, 621.7) | <0.001 |
Vitamin B12, mg/d | 0.1 (0, 0.2) | 0.1 (0, 0.4) | 0.3 (0.1, 1.4) | <0.001 | 0.2 (0.1, 0.3) | 0.3 (0.1, 0.7) | 1.0 (0.3, 2.4) | <0.001 |
Vitamin C, mg/d | 47.0 (33.0, 64.7) | 98.4 (73.1, 122.7) | 173.6 (136.9, 229.1) | <0.001 | 50.2 (39.9, 64.3) | 86.6 (69.1, 111.1) | 184.2 (125.0, 302.8) | <0.001 |
Vitamin E, mg/d | 8.3 (5.3, 11.8) | 16.6 (12.0, 21.2) | 26.9 (21.9, 34.3) | <0.001 | 9.2 (6.9, 12.8) | 16.2 (13.3, 20.6) | 30.2 (22.5, 40.7) | <0.001 |
Calcium, mg/d | 328.6 (210.0, 445.1) | 566.0 (458.0, 694.7) | 1010.3 (762.9, 1213.4) | <0.001 | 437.3 (324.2, 553.8) | 618.5 (506.8, 748.1) | 946.8 (755.3, 1191.8) | <0.001 |
Magnesium, mg/d | 155.3 (122.2, 206.8) | 278.6 (240.9, 336.7) | 452.2 (373.6, 556.3) | <0.001 | 158.1 (132.0, 198.1) | 262.5 (221.9, 304.9) | 435.5 (344.4, 584.6) | <0.001 |
Zinc, mg/d | 3.6 (2.5, 4.6) | 6.72 (5.85, 7.74) | 10.8 (9.5, 15.0) | <0.001 | 4.4 (3.5, 5.2) | 7.2 (6.0, 8.5) | 12.9 (10.0, 16.8) | <0.001 |
Copper, mg/d | 1.4 (0.9, 1.7) | 2.0 (1.5, 2.3) | 2.8 (2.2, 3.6) | <0.001 | 1.2 (0.9, 1.7) | 2.0 (1.6, 2.3) | 3.0 (2.5, 3.8) | <0.001 |
Selenium, mg/d | 16.9 (12.2, 23.3) | 30.1 (24.0, 37.6) | 48.2 (37.1, 62.2) | <0.001 | 20.8 (16.7, 24.9) | 32.6 (26.0, 38.3) | 51.7 (40.3, 72.2) | <0.001 |
Total fat, g/d | 21.3 (15.0, 34.0) | 40.9 (28.8, 54.4) | 60.9 (46.9, 77.8) | <0.001 | 27.6 (20.8, 36.3) | 43.7 (32.0, 54.5) | 62.0 (47.0, 83.3) | <0.001 |
Iron, mg/d | 15.2 (10.2, 19.4) | 22.2 (18.0, 28.5) | 34.7 (26.9, 49.2) | <0.001 | 17.6 (12.3, 22.7) | 25.3 (20.8, 33.9) | 41.8 (30.8, 55.1) | <0.001 |
Lifestyle OBS components | ||||||||
Moderate/high physical activity | 15 (5.4) | 14 (11.3) | 4 (5.6) | 0.078 | 25 (7.9) | 22 (7.3) | 33 (10.0) | 0.420 |
No smoking | 146 (52.3) | 81 (65.3) | 52 (73.2) | <0.001 | 146 (46.2) | 189 (62.4) | 203 (61.7) | <0.001 |
No alcohol drinking | 271 (97.1) | 118 (95.2) | 70 (98.6) | 0.375 | 312 (98.7) | 302 (99.7) | 327 (99.4) | 0.379 |
Body mass index, kg/m2 | 23.1 (20.2, 24.3) | 23.2 (19.8, 24.0) | 22.2 (19.1, 23.9) | 0.310 | 21.3 (20.1, 23.8) | 20.9 (19.6, 23.4) | 20.7 (19.5, 22.7) | 0.024 |
Tertile 1 | Tertile 2 | Tertile 3 | ptrend | Per 1 Higher Score | |
---|---|---|---|---|---|
Total congenital heart defects | |||||
Ncases/Ncontrols | 279/316 | 124/303 | 71/329 | 474/948 | 474/948 |
Unadjusted OR (95%CI) | 1 | 0.46 (0.36, 0.60) | 0.24 (0.18, 0.33) | <0.001 | 0.92 (0.91, 0.94) |
Adjusted OR (95%CI) 1 | 1 | 0.56 (0.41, 0.77) | 0.31 (0.19, 0.50) | <0.001 | 0.93 (0.90, 0.95) |
Ventricular septal defects | |||||
Ncases/Ncontrols | 131/316 | 58/303 | 33/329 | 222/948 | 222/948 |
Unadjusted OR (95%CI) | 1 | 0.46 (0.33, 0.66) | 0.24 (0.16, 0.37) | <0.001 | 0.92 (0.90, 0.94) |
Adjusted OR (95%CI) 1 | 1 | 0.63 (0.43, 0.93) | 0.37 (0.23, 0.57) | <0.001 | 0.93 (0.89, 0.96) |
Atrial septal defects | |||||
Ncases/Ncontrols | 116/316 | 63/303 | 39/329 | 218/948 | 218/948 |
Unadjusted OR (95%CI) | 1 | 0.57 (0.40, 0.80) | 0.32 (0.22, 0.48) | <0.001 | 0.94 (0.92, 0.95) |
Adjusted OR (95%CI) 1 | 1 | 0.70 (0.48, 1.02) | 0.42 (0.27, 0.64) | <0.001 | 0.92 (0.89, 0.95) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Du, Q.; Xiao, Z.; Guo, R.; Chang, Q.; Li, Y.-H. Maternal Oxidative Balance Score during Pregnancy and Congenital Heart Defects. Nutrients 2024, 16, 1825. https://doi.org/10.3390/nu16121825
Yang J, Du Q, Xiao Z, Guo R, Chang Q, Li Y-H. Maternal Oxidative Balance Score during Pregnancy and Congenital Heart Defects. Nutrients. 2024; 16(12):1825. https://doi.org/10.3390/nu16121825
Chicago/Turabian StyleYang, Jiaomei, Qiancheng Du, Ziqi Xiao, Rui Guo, Qianqian Chang, and Yue-Hua Li. 2024. "Maternal Oxidative Balance Score during Pregnancy and Congenital Heart Defects" Nutrients 16, no. 12: 1825. https://doi.org/10.3390/nu16121825
APA StyleYang, J., Du, Q., Xiao, Z., Guo, R., Chang, Q., & Li, Y. -H. (2024). Maternal Oxidative Balance Score during Pregnancy and Congenital Heart Defects. Nutrients, 16(12), 1825. https://doi.org/10.3390/nu16121825