Association of Dietary Vegetable and Fruit Consumption with Sarcopenia: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Eligibility Criteria and Study Selection
2.3. Data Extraction
2.4. Main and Subgroup Analyses
2.5. Quality Assessment Based on the Risk of Bias
2.6. Statistical Analysis
3. Results
3.1. Selection of Relevant Studies
3.2. Characteristics of the Included Studies
3.3. Methodological Quality
Study | Country | Definition of Sarcopenia | Body Composition | Participants (Sarcopenia/No Sarcopenia) | Base Line Age (years) | Dietary Assessment | Definition of Vegetables and Fruits Consumption | Categories of Expose (Highest vs. Lowest Category) | OR (95%CI) | Adjusted Variables |
---|---|---|---|---|---|---|---|---|---|---|
Cross-sectional study | ||||||||||
2013 Fanelli [29] | USA | EWGSOP1 | DXA | 2176 (-/-) | 30–64 | 24 h dietary recall. Interviewer administered | Starchy vegetable cluster | Starchy vegetable cluster vs. pasta/rice reference cluster | 1.44 (0.72–2.90) | Sex, race, age, socioeconomic status |
2015 Hashemi [30] | Iran | EWGSOP1 | DXA | 300 (54/246) | ≥55 | FFQ. Interviewer administered | Mediterranean dietary pattern | Highest tertile (T3) vs. lowest tertile (T1) | 0.40 (0.17–0.97) | Age, sex, energy intake, physical activity, smoking, alcohol consume, drug consume, positive history of disease |
2015 Kim [19] | Korea | Baumgartner’s criteria (aLM/ht2 is less than 7.23 kg/ht2 in men and 5.67 kg/ht2 in women) | DXA | 1912 (1912/0) | ≥65 | FFQ. Interviewer administered | Vegetables and fruit | Highest quintile (T5) vs. lowest quintile (T1) | 0.50 (0.21–1.24) | Age, education level, number of physician-diagnosed chronic conditions, BMI, smoking, alcohol drinking, physical activity, supplementary nutrient intake, age at menarche, oral contraceptive use, hormone use, quintiles of other food group consumptions |
2016 Chan [31] | Hong Kong | AWGS2014 | DXA | 3957 (290/3667) | ≥65 | FFQ. Interviewer administered | Vegetables–fruit pattern score | Higher score vs. lower score | 0.87 (0.73–1.04) | Age, BMI, energy intake, PASE, education level, smoking status, alcohol use, number of chronic diseases, GDS category, CSID category, living alone, marital status |
2017 Mohseni [32] | Iran | EWGSOP1 | BIA | 250 (55/195) | ≥45 | FFQ. Interviewer administered | Mediterranean pattern | Highest tertile (T3) vs. lowest tertile (T1) | 0.40 (0.17–0.89) | Age, physical activity, BMI, menopause duration, hypothyroidism, hormone replacement therapy, ACEi use, statin use, vitamin D use |
2020 Koyanagi [15] | LMICs | SMM and either slow gait or low handgrip strength | None | 14,585 (2290/12,295) | ≥65 | Two questions. Interviewer administered | Vegetable consumption | ≥7/day vs. 0–1/day | 0.99 (0.62–1.58) | Sex, age, education wealth, physical activity, smoking, alcohol consumption, BMI, number of chronic conditions, fruit consumption |
2020 Li [33] | China | AWGS2014 | BIA | 861 (132/729) | ≥65 | FFQ. Interviewer administered | “Mushrooms-fruits-milk” pattern score | Q4 (0.49–6.12) vs. Q1 (−2.09–−0.66) | 0.33 (0.14–0.77) | Age, gender, region, BMI, exercise activity, lifestyle, total dietary energy, smoke status, status of NCDs |
2021 Fu [20] | China | EWGSOP2 | BIA | 591 (56/535) | ≥40 | FFQ. Interviewer administered | “Coarse cereals and vegetables” dietary patterns | Highest tertile (T3) vs. lowest tertile (T1) | 0.37 (0.17–0.77) | Age, sex, smoking, physical activity |
2021 Yokoyama [35] | Japan | AWGS2019 | BIA | 1606 (169/1437) | ≥65 | BDHQ. Self-administered | Dietary pattern 1 scores | Highest tertile (T3) vs. lowest tertile (T1) | 0.57 (0.34–0.94) | Sex, age, study site, education, living alone, smoking habits, drinking habits, self-perceived chewing ability, frequency of going out, medical history, BMI, energy intake, MMSE |
2022 Borges [36] | Spain | EWGSOP2 | BIA | 90 (27/63) | ≥65 | MEDAS. Interviewer administered | MEDAS categories | High (≥9) vs. low (1–8) | 1.13 (0.37–3.96) | None |
2022 Wang [38] | China | AWGS2014 | BIA | 2423 (391/2032) | ≥60 | FFQ. Self-administered | Vegetable pattern | Highest quartile (Q4) vs. lowest quartile (Q1) | 0.54 (0.34–0.86) | Age, sex, BMI, physical activity, smoking status, drinking status, individual history of disease, total energy intake, depressive symptoms, household income, marital status, education level, employment status, the scores of other two dietary patterns |
Cohort study | ||||||||||
2021 Yeung [34] | Hong Kong | AWGS2019 | DXA | 3992 (899/3093) | ≥65 | FFQ. Interviewer administered | Combined FV variety | T3 (≥38) vs. T1 (≤28) | 0.94 (0.60–1.49) | Age, sex, BMI, current smoker, current drinker, live alone, education level, subjective social status, CSID category, number of chronic diseases, depressive symptoms, PASE score, daily energy intake, DQI-I score, daily amount of fruit and vegetable consumption |
2022 Karlsson [37] | Sweden | EWGSOP2 | DXA | 257 (50/207) | Mean age 71 | 7-day diet record. Interviewer administered | Dietary pattern 2 | Highest tertile vs. lowest tertile | 0.40 (0.17–0.94) | Age, follow-up period, energy intake, education, physical activity, smoking, morbidity, BMI |
2022 Park [24] | Korea | AWGS2014 | DXA | 801 (111/690) | 70–84 | 24 h dietary recall. Interviewer administered | Vegetables | Highest quartile vs. lowest quartile | 0.28 (0.13–0.59) | Age, sex, BMI, family type, marital status, education level, income level, smoking status, drinking status |
3.4. Result of the Meta-Analysis
3.5. Subgroup Meta-Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cruz-Jentoft, A.J.; Sayer, A.A. Sarcopenia. Lancet 2019, 393, 2636–2646. [Google Scholar] [CrossRef]
- Petermann-Rocha, F.; Balntzi, V.; Gray, S.R.; Lara, J.; Ho, F.K.; Pell, J.P.; Celis-Morales, C. Global prevalence of sarcopenia and severe sarcopenia: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2022, 13, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Kelley, G.A.; Kelley, K.S. Is sarcopenia associated with an increased risk of all-cause mortality and functional disability? Exp. Gerontol. 2017, 96, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Yeung, S.S.Y.; Reijnierse, E.M.; Pham, V.K.; Trappenburg, M.C.; Lim, W.K.; Meskers, C.G.M.; Maier, A.B. Sarcopenia and its association with falls and fractures in older adults: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2019, 10, 485–500. [Google Scholar] [CrossRef] [PubMed]
- Bai, T.; Fang, F.; Li, F.; Ren, Y.; Hu, J.; Cao, J. Sarcopenia is associated with hypertension in older adults: A systematic review and meta-analysis. BMC Geriatr. 2020, 20, 279. [Google Scholar] [CrossRef] [PubMed]
- Anagnostis, P.; Gkekas, N.K.; Achilla, C.; Pananastasiou, G.; Taouxidou, P.; Mitsiou, M.; Kenanidis, E.; Potoupnis, M.; Tsiridis, E.; Goulis, D.G. Type 2 Diabetes Mellitus is Associated with Increased Risk of Sarcopenia: A Systematic Review and Meta-analysis. Calcif. Tissue Int. 2020, 107, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Hao, Q.; Hai, S.; Wang, H.; Cao, L.; Dong, B. Sarcopenia as a predictor of all-cause mortality among community-dwelling older people: A systematic review and meta-analysis. Maturitas 2017, 103, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Cheung, C.L.; Nguyen, U.S.; Au, E.; Tan, K.C.; Kung, A.W. Association of handgrip strength with chronic diseases and multimorbidity: A cross-sectional study. Age 2013, 35, 929–941. [Google Scholar] [CrossRef] [PubMed]
- Bowden Davies, K.A.; Pickles, S.; Sprung, V.S.; Kemp, G.J.; Alam, U.; Moore, D.R.; Tahrani, A.A.; Cuthbertson, D.J. Reduced physical activity in young and older adults: Metabolic and musculoskeletal implications. Ther. Adv. Endocrinol. Metab. 2019, 10, 2042018819888824. [Google Scholar] [CrossRef]
- Sieber, C.C. Malnutrition and sarcopenia. Aging Clin. Exp. Res. 2019, 31, 793–798. [Google Scholar] [CrossRef]
- Robinson, S.M.; Reginster, J.Y.; Rizzoli, R.; Shaw, S.C.; Kanis, J.A.; Bautmans, I.; Bischoff-Ferrari, H.; Bruyere, O.; Cesari, M.; Dawson-Hughes, B.; et al. Does nutrition play a role in the prevention and management of sarcopenia? Clin. Nutr. 2018, 37, 1121–1132. [Google Scholar] [CrossRef] [PubMed]
- Ganapathy, A.; Nieves, J.W. Nutrition and Sarcopenia-What Do We Know? Nutrients 2020, 12, 1755. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.Y.; Yang, K.C.; Chang, H.H.; Lee, L.T.; Lu, C.W.; Huang, K.C. The Association between Total Protein and Vegetable Protein Intake and Low Muscle Mass among the Community-Dwelling Elderly Population in Northern Taiwan. Nutrients 2016, 8, 373. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.J.; Lim, Y.H.; Yun, J.M.; Yoon, H.J.; Park, M. Sex- and age-specific effects of energy intake and physical activity on sarcopenia. Sci. Rep. 2020, 10, 9822. [Google Scholar] [CrossRef] [PubMed]
- Koyanagi, A.; Veronese, N.; Solmi, M.; Oh, H.; Shin, J.I.; Jacob, L.; Yang, L.; Haro, J.M.; Smith, L. Fruit and Vegetable Consumption and Sarcopenia among Older Adults in Low- and Middle-Income Countries. Nutrients 2020, 12, 706. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, X.; Ma, Y.; Li, X. Physical Activity, Sedentary Behavior, Fruit and Vegetable Consumption, and Sarcopenia in Older Chinese Adults: A Cross-Sectional Study. Nutrients 2023, 15, 3417. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.J.; Dudash, H.J.; Docherty, M.; Geronilla, K.B.; Baker, B.A.; Haff, G.G.; Cutlip, R.G.; Alway, S.E. Vitamin E and C supplementation reduces oxidative stress, improves antioxidant enzymes and positive muscle work in chronically loaded muscles of aged rats. Exp. Gerontol. 2010, 45, 882–895. [Google Scholar] [CrossRef] [PubMed]
- Granic, A.; Jagger, C.; Davies, K.; Adamson, A.; Kirkwood, T.; Hill, T.R.; Siervo, M.; Mathers, J.C.; Sayer, A.A. Effect of Dietary Patterns on Muscle Strength and Physical Performance in the Very Old: Findings from the Newcastle 85+ Study. PLoS ONE 2016, 11, e0149699. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.; Kye, S.; Chung, Y.S.; Kim, K.M. Association of vegetables and fruits consumption with sarcopenia in older adults: The Fourth Korea National Health and Nutrition Examination Survey. Age Ageing 2015, 44, 96–102. [Google Scholar] [CrossRef]
- Fu, R.; Sun, Y.; Zhai, J.; Zhang, H.; Hu, Y.; Chen, H.; Cao, Y.; Qiu, Y.; Huang, X.; Kang, T.; et al. Dietary patterns and sarcopenia in a Chinese population. Asia Pac. J. Clin. Nutr. 2021, 30, 245–252. [Google Scholar]
- Davis, J.A.; Mohebbi, M.; Collier, F.; Loughman, A.; Staudacher, H.; Shivappa, N.; Hebert, J.R.; Pasco, J.A.; Jacka, F.N. The role of diet quality and dietary patterns in predicting muscle mass and function in men over a 15-year period. Osteoporos. Int. 2021, 32, 2193–2203. [Google Scholar] [CrossRef] [PubMed]
- Cacciatore, S.; Calvani, R.; Marzetti, E.; Picca, A.; Coelho-Junior, H.J.; Martone, A.M.; Massaro, C.; Tosato, M.; Landi, F. Low Adherence to Mediterranean Diet Is Associated with Probable Sarcopenia in Community-Dwelling Older Adults: Results from the Longevity Check-Up (Lookup) 7+ Project. Nutrients 2023, 15, 1026. [Google Scholar] [CrossRef] [PubMed]
- Besora-Moreno, M.; Llaurado, E.; Valls, R.M.; Tarro, L.; Pedret, A.; Sola, R. Antioxidant-rich foods, antioxidant supplements, and sarcopenia in old-young adults >=55 years old: A systematic review and meta-analysis of observational studies and randomized controlled trials. Clin. Nutr. 2022, 41, 2308–2324. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Park, J.; Won, C.W.; Lee, H.J. The Inverse Association of Sarcopenia and Protein-Source Food and Vegetable Intakes in the Korean Elderly: The Korean Frailty and Aging Cohort Study. Nutrients 2022, 14, 1375. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm (accessed on 1 May 2023).
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Fanelli Kuczmarski, M.; Mason, M.A.; Beydoun, M.A.; Allegro, D.; Zonderman, A.B.; Evans, M.K. Dietary patterns and sarcopenia in an urban African American and White population in the United States. J. Nutr. Gerontol. Geriatr. 2013, 32, 291–316. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, R.; Motlagh, A.D.; Heshmat, R.; Esmaillzadeh, A.; Payab, M.; Yousefinia, M.; Siassi, F.; Pasalar, P.; Baygi, F. Diet and its relationship to sarcopenia in community dwelling Iranian elderly: A cross sectional study. Nutrition 2015, 31, 97–104. [Google Scholar] [CrossRef]
- Chan, R.; Leung, J.; Woo, J. A Prospective Cohort Study to Examine the Association Between Dietary Patterns and Sarcopenia in Chinese Community-Dwelling Older People in Hong Kong. J. Am. Med. Dir. Assoc. 2016, 17, 336–342. [Google Scholar] [CrossRef]
- Mohseni, R.; Aliakbar, S.; Abdollahi, A.; Yekaninejad, M.S.; Maghbooli, Z.; Mirzaei, K. Relationship between major dietary patterns and sarcopenia among menopausal women. Aging Clin. Exp. Res. 2017, 29, 1241–1248. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Kang, B.; Zhang, T.; Gu, H.; Song, P.; Chen, J.; Wang, X.; Xu, B.; Zhao, W.; Zhang, J. Dietary Pattern and Dietary Energy from Fat Associated with Sarcopenia in Community-Dwelling Older Chinese People: A Cross-Sectional Study in Three Regions of China. Nutrients 2020, 12, 3689. [Google Scholar] [CrossRef]
- Yeung, S.S.Y.; Zhu, Z.L.Y.; Chan, R.S.M.; Kwok, T.; Woo, J. Prospective Analysis of Fruit and Vegetable Variety on Health Outcomes in Community-Dwelling Chinese Older Adults. J. Nutr. Health Aging 2021, 25, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, Y.; Kitamura, A.; Seino, S.; Kim, H.; Obuchi, S.; Kawai, H.; Hirano, H.; Watanabe, Y.; Motokawa, K.; Narita, M.; et al. Association of nutrient-derived dietary patterns with sarcopenia and its components in community-dwelling older Japanese: A cross-sectional study. Nutr. J. 2021, 20, 7. [Google Scholar] [CrossRef] [PubMed]
- Borges, K.; Artacho, R.; Jodar-Graus, R.; Molina-Montes, E.; Ruiz-Lopez, M.D. Calf Circumference, a Valuable Tool to Predict Sarcopenia in Older People Hospitalized with Hip Fracture. Nutrients 2022, 14, 4255. [Google Scholar] [CrossRef]
- Karlsson, M.; Wulf Becker, W.; Tommy E Cederholm, T.E.; Byberg, L. A posteriori dietary patterns in 71-year-old Swedish men and the prevalence of sarcopenia 16 years later. Br. J. Nutr. 2021, 128, 909–920. [Google Scholar] [CrossRef]
- Wang, X.; Ye, M.; Gu, Y.; Wu, X.; Meng, G.; Bian, S.; Wu, H.; Zhang, S.; Wang, Y.; Zhang, T.; et al. Dietary patterns and sarcopenia in elderly adults: The Tianjin Chronic Low-grade Systemic Inflammation and Health (TCLSIH) study. Br. J. Nutr. 2022, 128, 900–908. [Google Scholar] [CrossRef]
- Wang, B.; Wei, Y.; Shao, L.; Li, M.; Zhang, X.; Li, W.; Zhao, S.; Xia, X.; Liu, P. Association of dietary patterns and sarcopenia in the elderly population: A cross-sectional study. Front. Aging 2023, 4, 1239945. [Google Scholar] [CrossRef]
- Welch, A.A.; MacGregor, A.J.; Skinner, J.; Spector, T.D.; Moayyeri, A.; Cassidy, A. A higher alkaline dietary load is associated with greater indexes of skeletal muscle mass in women. Osteoporos. Int. 2013, 24, 1899–1908. [Google Scholar] [CrossRef]
- Workeneh, B.T.; Mitch, W.E. Review of muscle wasting associated with chronic kidney disease. Am. J. Clin. Nutr. 2010, 91, 1128S–1132S. [Google Scholar] [CrossRef]
- Dalle, S.; Rossmeislova, L.; Koppo, K. The Role of Inflammation in Age-Related Sarcopenia. Front. Physiol. 2017, 8, 1045. [Google Scholar] [CrossRef] [PubMed]
- Cerullo, F.; Gambassi, G.; Cesari, M. Rationale for antioxidant supplementation in sarcopenia. J. Aging Res. 2012, 2012, 316943. [Google Scholar] [CrossRef] [PubMed]
- Lewis, L.N.; Hayhoe, R.P.G.; Mulligan, A.A.; Luben, R.N.; Khaw, K.T.; Welch, A.A. Lower Dietary and Circulating Vitamin C in Middle- and Older-Aged Men and Women Are Associated with Lower Estimated Skeletal Muscle Mass. J. Nutr. 2020, 150, 2789–2798. [Google Scholar] [CrossRef]
- Anderson, L.J.; Liu, H.; Garcia, J.M. Sex Differences in Muscle Wasting. Adv. Exp. Med. Biol. 2017, 1043, 153–197. [Google Scholar] [PubMed]
- Gheller, B.J.; Riddle, E.S.; Lem, M.R.; Thalacker-Mercer, A.E. Understanding Age-Related Changes in Skeletal Muscle Metabolism: Differences Between Females and Males. Annu. Rev. Nutr. 2016, 36, 129–156. [Google Scholar] [CrossRef] [PubMed]
- Rivera, J.J.; Fonseca-Sanchez, M.A.; Rodriguez, P.; Garcia, J.M.; Palma, I.; Aristi, G.; Flores-Luce, A.; Garcia, L.; Trujillo, Y.; Queipo, G. Physical Activity Protects Men but Not Women for Sarcopenia Development. Gerontol. Geriatr. Med. 2016, 2, 2333721416667879. [Google Scholar] [CrossRef]
- Baker, A.H.; Wardle, J. Sex differences in fruit and vegetable intake in older adults. Appetite 2003, 40, 269–275. [Google Scholar] [CrossRef]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.K.; Liu, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Bahyah, K.S.; Chou, M.Y.; Chen, L.Y.; Hsu, P.S.; Krairit, O.; et al. Sarcopenia in Asia: Consensus report of the Asian Working Group for Sarcopenia. J. Am. Med. Dir. Assoc. 2014, 15, 95–101. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyere, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Gedmantaite, A.; Celis-Morales, C.A.; Ho, F.; Pell, J.P.; Ratkevicius, A.; Gray, S.R. Associations between diet and handgrip strength: A cross-sectional study from UK Biobank. Mech. Ageing Dev. 2020, 189, 111269. [Google Scholar] [CrossRef] [PubMed]
- Sim, M.; Lewis, J.R.; Blekkenhorst, L.C.; Bondonno, C.P.; Devine, A.; Zhu, K.; Peeling, P.; Prince, R.L.; Hodgson, J.M. Dietary nitrate intake is associated with muscle function in older women. J. Cachexia Sarcopenia Muscle 2019, 10, 601–610. [Google Scholar] [CrossRef] [PubMed]
Cross-Sectional Study (n = 11) | Selection | Comparability | Exposure | Total | |||||
Adequate Definition of Cases | Representativeness of Cases | Selection of Controls | Definition of Controls | Control for Important Factor or Additional Factor | Ascertainment of Exposure (Blinding) | Same Method of Ascertainment for Participants | Nonresponse Rate | ||
2013 Fanelli [29] | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 6 |
2015 Hashemi [30] | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 |
2015 Kim [19] | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 8 |
2016 Chan [31] | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 |
2017 Mohseni [32] | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 6 |
2020 Koyanagi [15] | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 6 |
2020 Li [33] | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 8 |
2021 Fu [20] | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 6 |
2021 Yokoyama [35] | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 8 |
2022 Borges [36] | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 5 |
2022 Wang [38] | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 7 |
Cohort Study (n = 3) | Selection | Comparability | Exposure | Total | |||||
Representativeness of the Exposed Cohort | Selection of the Non-Exposed Cohort | Ascertainment of Exposure | Outcome of Interest was not Present at Start of Study | Control for Important Factor or Additional Factor | Assessment of Outcome | Follow-Up Long Enough for Outcomes to Occur | Adequacy of Follow-up of Cohorts | ||
2021 Yeung [34] | 1 | 1 | 1 | 1 | 2 | 0 | 1 | 0 | 7 |
2022 Karlsson [37] | 1 | 1 | 1 | 0 | 2 | 0 | 1 | 0 | 6 |
2022 Park [24] | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 5 |
Factors | Number of Studies | Summary OR (95% CI) | Heterogeneity, I2 (%) |
---|---|---|---|
Study design | |||
Cross-sectional study | 11 | 0.64 (0.49–0.84) | 56.3 |
Cohort study | 3 | 0.50 (0.22–1.11) | 76.4 |
Sex | |||
Men | 4 | 0.60 (0.37–0.98) | 63.9 |
Women | 4 | 0.85 (0.62–1.17) | 30.4 |
Age | |||
65 years and older | 9 | 0.65 (0.49–0.87) | 58.4 |
60 years and older | 10 | 0.64 (0.49–0.83) | 58.0 |
Dietary patterns | |||
Vegetable | 5 | 0.66 (0.44–0.99) | 62.7 |
Fruit | 4 | 0.62 (0.42–0.91) | 58.2 |
Mediterranean diet | 4 | 0.68 (0.38–1.21) | 65.2 |
Definition of sarcopenia | |||
AWGS2014 | 4 | 0.50 (0.29–0.87) | 79.6 |
AWGS2019 | 2 | 0.74 (0.45–1.21) | 51.6 |
EWGSOP1 | 3 | 0.63 (0.26–1.53) | 73.2 |
EWGSOP2 | 3 | 0.48 (0.27–0.88) | 23.8 |
Region | |||
America | 1 | 1.44 (0.72–2.90) | 0.0 |
Asia | 10 | 0.54 (0.40–0.72) | 63.2 |
Europe | 2 | 0.62 (0.23–1.69) | 48.4 |
Methodological quality | |||
High quality | 7 | 0.64 (0.48–0.84) | 53.9 |
Low quality | 7 | 0.60 (0.36–0.98) | 67.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, S.-H.; Bae, Y.-J. Association of Dietary Vegetable and Fruit Consumption with Sarcopenia: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 1707. https://doi.org/10.3390/nu16111707
Hong S-H, Bae Y-J. Association of Dietary Vegetable and Fruit Consumption with Sarcopenia: A Systematic Review and Meta-Analysis. Nutrients. 2024; 16(11):1707. https://doi.org/10.3390/nu16111707
Chicago/Turabian StyleHong, Seung-Hee, and Yun-Jung Bae. 2024. "Association of Dietary Vegetable and Fruit Consumption with Sarcopenia: A Systematic Review and Meta-Analysis" Nutrients 16, no. 11: 1707. https://doi.org/10.3390/nu16111707
APA StyleHong, S. -H., & Bae, Y. -J. (2024). Association of Dietary Vegetable and Fruit Consumption with Sarcopenia: A Systematic Review and Meta-Analysis. Nutrients, 16(11), 1707. https://doi.org/10.3390/nu16111707